Dennss D. S’”'»/a's:up‘

decsys

UTILITIES MANUAL

dlilgliltiall

decsystemic
UTILITIES MANUAL

DEC-10-UTILA-A-D

digital equipment corporation - maynard. massachusetts

1st Edition March 1975

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any ertors that may appear in this manual.

The software described in this document is furnished to the purchaser under a license for use on a
single computer system and can be copied (with inclusion of DIGITAL’s copyright notice) only
for use in such system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software
on equipment that is not supplied by DIGITAL.

Copyright © 1975 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page. located at the back of this docu-
ment. explains the various services available to DIGITAL software users.

The postage prepaid READER'S COMMENT form on the last page of this document requests
the user’s critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation.

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAI0 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0OS/8 RT-11
DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET-10

UNIBUS

CREF
DDT
FILCOM
FILEX
GLOB
OPSER
PIP
RUNOFF

MASTER INDEX

CONTENTS

Cross-Referenced Listing

Dynamic Debugging Technique (DEC-10-UDDTA-A-D)
File Comparison Program

File Transfer Program

Global Symbol Listing

Operator Service Program

Peripheral Interchange Program (DEC-10-UPIPA-A-D)

Getting Started With RUNOFF (DEC-10-URUNA-A-D)

Page

79
93
101
109
119

187
233

FOREWORD

This manual contains the documentation for the following software:

CREF Version 51
DDT Version 35
FILCOM Version 20A
FILEX Version 16
GLOB Version SA
OPSER Version 5A
PIP Version 33A

RUNOFF Version 10

These utilities are used

1.

7.

8.

To obtain cross-referenced listings for all operand-type symbols, user-defined sym-
bols, and/or op codes and pseudo-op codes.

To check out and test on-line programs.

To compare two versions of a file and output any differences.

To convert various core image formats while transferring files.

To obtain an alphabetical cross-referenced listing of all global symbols encountered.
To facilitate multiple job control for operators.

To transfer files from one peripheral device to another.

To format documents easily and efficiently.

The change bars in the margins of these documents indicate a change in the software since
the last version.

decsyscemic
CREF
Cross-Referenced Listing

digital equipment corporation - maynard. massachusetts

Ist Edition March 1975

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser under a license for use on
a single computer system and can be copied (with the inclusion of DIGITAL’s copvright notice)

only for use in such system. except as may otherwise be provided in writing bv DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software
on equipment that is not supplied by DIGITAL,

Copyright © 1975 by Digital Equipment Corp.

The HOW TO OBTAIN SOFTWARE INFORMATION page. located at the back of this docu-
ment. explains the various services available to DIGITAL software users.

The postage prepaid READER'S COMMENT form on the last page of this document requests
the user’s critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAI10 QUICKPOINT
COMSYST EDGRIN LLAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOM GLC-8 0S5/8 RT-11
DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET &

UNIBUS

CREF

CROSS-REFERENCE LISTING (CREF)

CREF produces a sequence-numbered assembly listing followed by one to three tables, one
showing cross references for all operand-type symbols (labels, assignments, etc.), another
showing cross references for all user-defined operators (macro calls, OPDEFs etc.), and
another (if the proper switch is specified) showing the cross references for all op codes and
pseudo-op codes (MOVE, XALL, etc.). A number sign (#) appears on the definition line of
all symbols. The input to CREF is a modified assembly listing file created during a MACRO-
10 assembly or FORTRAN IV compilation when the /C switch is specified in the command
string.

CREF provides an invaluable aid for program debugging and modification.

1.0 REQUIREMENTS

Minimum Core: 2K pure, 1K impure

Additional Core: Takes advantage of any additional core available, as necessary.

Equipment: One input device (normally disk) which contains the modified assem-
bly listing file; one output device (normally the line printer) for the
listing.

2.0 INITIALIZATION

. R CREF) Loads the Cross-Reference Listing program into core.
* The program is ready to receive a command.
NOTE

If CREF cannot initialize the terminal, it exits.

3.0 COMMANDS
3.1 Command Formats
a. output-dev:filename.ext[ppn]=input-dev:filel.ext[ppn] file2.ext,...

b. progname!

output-dev:filename.ext

input-dev:filename.ext

[ppn]

progname!

CREF

The device on which the assembly listing and cross-reference
tables are to be printed. If no output file name is specified,
the default file name is the same as that specified for the
first input file, but with the extension .LST. In such a case,
the default device is LPT. However, if an output file name
is specified, the default output device is DSK.

The device on which the modified assembly listing was writ-
ten during MACRO-10 assembly. DSK: is assumed if the
device is not specified. When looking for the input file,
CREF tries the following default extensions in the order
listed: .CRF, .LST, .TMP, or a null extension. A missing
input file name is given the name CREF. If the input file
extension is .CRF or .LST and the /P switch is not included
in the command string, the input file is deleted after the out-
put file is successfully closed.

Multiple input files can be specified to be combined into a
single CREF listing by separating the input files with com-
mas. Switches affecting the entire listing (/K, /M, /O, and
/S) must be specified before the terminator for the first
input file. Switches affecting the positioning of an input
file are specified with each file.

The ?CRFCFF CANNOT FIND FILE. . . message will be
printed for each occurrence of a missing file. If the missing
file is not part of a COMPIL-class command file (that is, if

it was typed in directly), the command will be aborted,
allowing the user to retype the command string. However,

if the missing file is part of a COMPIL-class command file,
processing will continue for the rest of the existing files in
the command string. (Refer to section 4.0 of this document.)
Note that if any file is in fact missing, no input file will be
deleted.

The disk area on which the files are to be placed (output) or
the disk area on which the source files reside (input). If
omitted, the default is the user’s disk area.

The output device and the input device are separated by an
equal sign. If the equal sign is omitted, output defaults occur
as described above. Any files specified by the user are for
input.

The user can request CREF to run a system program by
typing the program name followed by an exclamation point.

CREF

Examples of Commands:
R MACRO) Load the MACRO-10 Assembler into core.

*PTP: ,/C=DTAl:TX CALC) Assemble the program TXCALC from DTAI;
THERE ARE NOQ ERRORS writes the object program coding on the paper

tape punch; writes a modified assembly listing
PROGRAM BREAK IS ©¥3771 on DSK: (assumed) and assigns it the filename

CREF.LST.
[CRFXKC 7K CORE] Return to the monitor.

*C

«R CR EF) Load CREF into core.

”-‘‘) Select the default assumptions of:
output-dev: LPT:
input-dev: DSK:
input filename.ext CREF.CRF (.LST,

.TMP)
output filename.ext CREF.LST
Equivalent to the command string
LPT:CREF.LST=DSK:CREF.CRF
AC Return to the monitor.
«R CREF Make single merged cross-reference file for

*OQUTFIL=FIL1,FILZ,FILS three program files.

|

*xLINK! Run LINK10.
*FIL1,FIL2,FIL3/G

LINK: LOADING

EXIT

—

3.2 Switches

Switches are used to specify such options as magnetic tape control and list selection. All
switches are preceded by a slash (/).

Examples of Switches:
.R CREF Load CREF into core.
*/M=MTAL: /W Rewind MTA1 and process the first file, listing

only the cross references for operand-type sym-
bols (labels, assignments, etc.).

Version 51 CREF 3 February 1975

*DTAS: SAVEL/Z=

[CRFXKC 7K

*.fc

CORE]

CREF

Process the file named CREF.LST in the user’s
area of disk; write the program listing and
operand-type cross reference on DTAS and call
the file SAVE]1.

Return to monitor.

CREF Switch Options

SWITCH MEANING

A Advance magnetic tape reel by one file. /A may be repeated.

B Backspace magnetic tape reel by one file. /B may be re-
peated.

H Print help for running CREF.

K Kill listing of references to basic symbols (labels, assignments,
etc.).

M Suppress listing of references to user-defined operators
(Macro calls, OPDEFs, etc.).

0 Allow listing of references to machine and pseudo-operation
codes (MOVE, XALL, etc.).

P Preserve an input file with the extension .CRF or .LST,
which is normally deleted.

R Request the line number at which the listing is to Restart.
CREF prints:

RESTART LISTING AT LINE:

at which time the user types the line number followed by a
carriage return. (Such action might be necessary if the line
printer ran out of paper, or jammed, etc.)

S Suppress program listing (list only the selected tables).

T Skip to logical end of magnetic tape.

W ReWind magnetic tape.

Z Zero the DECtape directory (DECtape must be output

only).

CREF

4.0 MONITOR COMMANDS

CREF-format listing files generated by COMPILE, LOAD, EXECUTE, and DEBUG commands
(using the /CREF switch) can be printed on the line printer by typing

.CREF y

The CREF command will print out all listing files that are specified in the COMPIL-class com-
mand file, nnnCRE.TMP (where nnn is the user’s job number). It will also transfer control to
a system program if its name is present in the form “progname!”. After completion of this
operation, nnnCRE. TMP is deleted to prevent the listing files from being listed again by the
next CREF command.

The CREF files may also be listed by an R CREF command and a response of “filename” to
each asterisk (*) typed by CREF. It is important to note that, if the user uses the R CREF

command to list files created by the monitor’s COMPIL-class commands, the names of the
files to be listed must be typed in response to the asterisks.

5.0 DIAGNOSTIC MESSAGES

CREF Diagnostic Messages

MESSAGE MEANING

?CRFBTB INPUT BUFFERS TOO BIG The monitor set up input buffers longer than
2035. This is not a user error and hopefully
will never occur.

?CRFCEF CANNOT ENTER FILE, n dev: DTA or DSK directory is full; file cannot be
file.ext entered; n indicates the cause of the failure
" and is obtained from the ENTER directory

block.

7CRFCFE COMMAND FILE INPUT ERROR, Disk data error while reading nnnCRE.TMP;

n dev;file.ext n is a six-digit (or less) octal number repre-
senting the file status word returned from
the GETSTS UUO.

7CRFCFF CANNOT FIND FILE, n dev: The file cannot be found on the device

file.ext specified; n indicates the cause of the fail-

ure and is obtained from the LOOKUP
directory block.

Version 51 CREF 5 February 1975

CREF Diagnostic Messages (Cont.)

MESSAGE

MEANING

2CRFCME COMMAND ERROR--TYPE/H
FOR HELP

CRFDNA DEVICE NOT AVAILABLE

%CRFIDC IMPROPER INPUT DATA,
CONTINUING

?CRFIMA INSUFFICIENT MEMORY
AVAILABLE

?CRFINE INPUT ERROR n dev:file.ext
?CRFOUE OUTPUT ERROR, n dev:file.ext

[CRFXKC nK CORE]

Error in last command string entered.

1. Device name, filename, or extension
consisted of non-alphanumeric char-
acters.

2. The project-programmer number was
not in standard format (i.e., it was
not octal numbers in the form ppn).

3. Anundefined switch was specified,
switches in parentheses were not
separated by commas, or the closing
parenthesis was missing,.

4. The /Z switch was used on the input
side of the command string.

Device is assigned to another job.

Input data is not in CREF format. Output
listing continues.

Additional core is required for execution
but none is available from the monitor.

READ error has occurred on the device.
WRITE error has occurred on the device.

Size of low segment in K of core.

Version 51 CREF

February 1975

Denﬂ-'\ﬁ D Sn:*a?son

decsusternmic
DDT
Dynamic Debugging Technique

Order No.DEC-10-UDDTA-A-D

digital equipment corporation - maynard. massachusetts

Ist Printing, January 1968

2nd Printing (Rev), April 1969

3rd Printing (Rev), June 1969

4th Printing (Rev), November 1969
5th Printing (Rev), August 1970
6th Printing, February 1975

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser under a license for use on a
single computer system and can be copied (with inclusion of DIGITAL’s copyright notice) only
for use in such system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software
on equipment that is not supplied by DIGITAL.

Copyright © 1968, 1969, 1970, 1975 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page. located at the back of this docu-
ment. explains the various services available to DIGITAL software users.

The postage prepaid READER'S COMMENT form on the last page of this document requests
the user’s critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation.

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAI0 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 OS/8 RT-11
DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET-10

UNIBUS

DDT

CONTENTS
Page
CHAPTER 1 INTRODUCTION. v soow o svvn sara sien aie sies avasd e 1-1
1:1 LOADING PROCEDURE . o cns van wins va wres wsne s 1-1
12 LEARNING TOUSEDDT" i sisss sreme ssmos son wnsss ssseine sssoms 1-2
CHAPTER 2 BASIC DDT COMMANDS 2-1
2.1 EXAMINING STORAGEWORDSc00vuunn 2-1
2.2 TYPE-OUT MODES &v o ¢ 6 s Sai 2008 G aeds S50 i 2-1
2.3 MODIFYING STORAGEWORDS 2-2
2.4 TYPEINMODES. .. ons s maon woon’ wss a ems sais soass 2-3
2.5 SYMBOLS: o0 sren coves sese w09 sy Sioss wHio8 A SHEes $5900, s 2-4
2.6 EXPRESSIONSt e e e 2-5
Bl BREAKPOINTS: .. .o cin s 08 siiis sies b 55 5o 5000 955 2-6
2.7.1 Setting Breakpoinls o siow s s v s s siavs wies s 2-6
292 Breakpoint Restrictions « vs s v wens v wme waii s s 2-6
2.7.3 BiakpoIat TYDEHOUES o o mue visns sings wmeve s mss mmm oo 2-7
2.7.4 Removing and Reassigning Breakpoints 2-7
2.1.5 Proceeding From a Breakpoint 2-1
2.8 STARTING THE PROGRAM:; : o5 wimin sivin o widis wok was 2-8
2.9 DELETING TYPINGERRORS 2-8
2.10 BRRORMESSAGES: . .: « v e stams wowis avs aavie sus aosis 2-8
2.1 SUMMARNY . siove oo sims o sowe sosis s s @06 S Sie 2-8
CHAPTER 3 DDTCOMMANDS et 3-1
3.1 EXAMINING THE CONTENTS OF A PROGRAM
STORAGE WORD oz o & o wios ovaie wa o 560 simen s 3-1
3.2 CHANGING THE CONTENTSOF AWORD. 3-2
3.3 INSERTING A CHANGE, AND EXAMINING
THE CONTENTS OF THE LAST TYPED
ADDRESS 33
3.4 STARTING THEPROGRAM 3-5
35 ONE-TIME TYBEOUTS . . . c.s siom e 558 i s v 3-5
3.5:1 Type:Out Nufhetie- cn aon gs ods ge 9w 785 e van oas 3-5
352 TypeOut Bymbolittc cun o won won sas ses 98 Sws s 3-5
3.5.3 TypeOut M COIFEREMOEE . vuov v wmes wem am s s 3-5
3.6 SYMBOLSot e e 3-6
3.7 TYPINGIN ... e et e e 3-6
3.7.1 Typing In Symbolic Instructions 3-7
3.7.2 Tping: L NUbers wiw wrs on vwn ges 20 oy o o s 3-7
3.7.3 Typing In Text Chatacters .« .. . o s vem vow w6 wsa wa 3-8
374 ATIEMEC BXDIeSHGHE e s woaon woans soms semns, g 5w s 3-8
3.8 DELETE . o v svssy sesun sane s sosms symgs £008 w6 00 s 39
3.9 ERROR MESSAGES 39
3.10 UPPER AND LOWER CASE : ¢ iuowon v v 2 0 vt was 3-9

iii

12

CHAPTER

CHAPTER

CHAPTER

APPENDIX

Wh Lh L Lh Lh Lh Ln Lh Lh L
O) —

oo

A

Al
A2
A3
A4
A.5
A6
A7

DDT

CONTENTS (Cont)

Page
MORE DDT-10 COMMANDS 4-1
CHANGING THE OUTPUTRADIX 4-1
TYPE-OUTMODES e 4-1
Primary Type-Out Modes 4-2
BREAKPOINTS i vt vh sne oos mmm o s sior monie ses sois 4-3
Setting BreakpoInls: :i v vn 5o vs sroim 06 5 3% Bas s o 4-3
Removing Breakpoints 4-4
Restrictions for Breakpoints. v ii v 4-4
Restarting After a Breakpoint Stop 4-5
Automatic Restarts from Breakpoints 4-5
Checking Breakpoint Status 4-5
Conditional Breakpoints 4-6
Using the Proceed Counter: . . v v vi vn v oo oo v sas sas an 4-6
Using the Conditional Break Instruction. 4-7
Entering DDT from a Breakpoint 4-8
Single Instriuction Proceed . .o« voo s v s wnw cun sum o 4-9
SBARCHES .x on s svwss omoe v s s sme s s 15 4-9
MISCELLANEOUS COMMANDS 4-11
SYMBOLS AND DDTASSEMBLY 5-1
BEEINING SYMBOLS oy smve sivn 50 28w soe oes 5o o 5-1
PELETING SYMBOES wox vwn anw on van ows ouv ou@ o8 5-2
BEEASSEMBEYS: joms anmn wmen ol s snem e i was w0 5-3
FIELD SEPARATORS e e e 5-4
EXPRESSION EVALUATION 5-5
SPECIAL SYMBOLS . . o0 cvis vie o oaih sias sos smn siem oos 5-5
Order of Symbol TableSearch 5-5
Order of Symbol Table Search for Symbol Education 5-5
SPECIAL SYMBOLS: . o saw son soom ans s s s i 5-6
BINARY VALUE INTERPRETATION 5-6
PAPER TAPE 5 i v o aiati i 5005 §ah ol 5% 930 1o 6-1
PAPER TAPE CONTROL . « % v v viv wus svs sim s ain v i 6-1
SUMMARY OF DDT FUNCTIONS A-1
TYPE-OUTMODES i A-1
ADDRESS MODES i it e A-1
RADIX CHANGE A-1
PREVAILING VS. TEMPORARY MODES A-2
STORAGE WORDS s v s oiiin S s oies 5w ol w4 A-2
RELATED STORAGEWORD A-3
ONE-TIME ONLY TYPEOUTS A-3

iv

APPENDIX

APPENDIX

APPENDIX

e e
e b T e ke e

S kW — O

P g
od ot b
oo oe

==}

D

D.2
D.3

DDT
CONTENTS (Cont)

Page
TAPING I . .vr vir o s wmn mmis wvmn somss moe mudois Gih 608 A-4
SYMBOLS .. s o0 ws vl vas Sog 058 5% SeE He o A-5
SPECIAL DDT SYMBOLS i sian s siisrey s siss s A-5
ARITHMETIC OPERATORS : :vc voow was v wave wwia v A-6
FIELD DELIMITERS IN SYMBOLIC TYPE-INS. A-6
BREAKPOINTS: 5 e o s pis soss wsos s 9ess oo s A-T
CONDITIONAL BREAKPOINTSo nn. A-T7
STARTING THEPROGRAM. A-8
SEARCHING0 ciome s enemnaesainsss s A-8
UNUSED FUNCTIONS! 5 5 o5 ses oes o5 o oo 5l aa A-9
ZEROING MEMORY ; i 556 viats sive 9o o % 2% swie doavs A-9
SPECIAL CHARACTERS . i v anvn wara am ware ssans sae A-9
PAPER TAPECOMMANDScc0vivvenonn A-10
EXECUTIVE MODE DEBUGGING (EDDT). B-1
STORAGE MAP FOR USER MODEDDT C-1
OPERATING ENVIRONMENTc...... D-1
ENTERING AND LEAVINGDDT D-1
LOADING AND SAVINGDDT D-2
BEXELANATION . oo o5 0% 065 v o8 0 5 4 g wew D-3

13

14

FIGURE

TABLE

DDT
FIGURES
Page
6-1 RIMI1OB Blotk FOBRat . vow vn ves v owos e wws voans o 6-3
TABLES
Page
3-1 Special Character Functions. 3-4

vi

DDT ke

CHAPTER 1

INTRODUCTION

DDT-10 (for Dynamic Debugging Technique)* is used for on-line checkout and testing of
MACRO-10 and FORTRAN programs and on-line program composition in all DECsystem-
10 software systems.

After the user’s source program has been assembled or compiled, the user’s binary object
program (with its symbol table) may be loaded along with DDT. DDT occupies about 2K
of core.

By typing commands to DDT, the user may set breakpoints where DDT will suspend execu-
tion of his program and await further commands. This allows the user to check out his
program section by section. Either before starting execution or during breakpoint stops,

the user may examine and modify the contents of any location. Insertions and deletions

may be done in symbolic source language or in various numeric and test modes at the user’s
option. DDT also performs searches, gives conditional dumps, and calls user-coded debugging
subroutines at breakpoints.

Symbolic on-line debugging with DDT provides a means for rapid checkout of new programs.
If a bug is detected, the programmer makes changes quickly and easily and may then imme-
diately execute the corrected section of his program.

1.1 LOADING PROCEDURE

The user loads the program to be debugged with DDT using the Linking Loader. (The
/DEBUG:DDT switch commands LINK-10 to load DDT.) To transfer control to DDT, the
user types the monitor command,

DDT

After DDT responds by skipping two lines, the user may begin typing commands to DDT.

* Historical footnote: DDT was developed at MIT for the PDP-1 computer in 1961, At that time DDT stoed for “DEC
Debugging Tape.” Since then, the idea of an on-line debugging program has propagated throughout the computer industry.
DDT programs are now available for all DEC computers. Since media other than tape are now frequently used, the more
descriptive name “Dynamic Debugging Technique™ has been adopted, retaining the DDT acronym. Confusion between
DDT-10 and another well known pesticide, dichloro-diphenyl-trichloroethane (C(14)H(9)CL(5)), should be minimal since
they attack different, and apparently mutually exclusive, classes of bugs.

16

DDT

1.2 LEARNING TO USE DDT

This manual is designed to make DDT easy to use. A survey was made of several programmers
who use DDT frequently, and it was learned that most debugging is done with a limited set of
commands. These basic commands are described in the next chapter. When learning DDT, it

is reccommended that the reader concentrate on learning to use the commands in Chapter 2.

If more detailed information is required, skip ahead to later chapters.

After reading Chapter 2, practice debugging, using the basic commands. This may be all that
will ever be needed. Read the following chapters which describe the entire command set in
detail; this should be read when the basic commands are understood.

After learning the system, the Summary of Commands, listed by function in Appendix A, will
be useful for quickly finding any DDT command.

DDT
CHAPTER 2

BASIC DDT COMMANDS

The DDT commands most frequently used by programmers are described in this chapter.
Many programs are debugged successfully using only these basic commands.

This chapter introduces the main features of DDT to the uninitiated user. Later chapters
describe in detail these basic commands, less frequently used commands and other more
complex options.

2.1 EXAMINING STORAGE WORDS

By using DDT, a programmer may examine the contents of any storage word by typing the
address of the desired word followed immediately by a slash (/). For example, to type out
the contents of a location whose symbolic address is CAT, the user typed,

CAT/
DDT now types out the contents (preceded and followed by tabs) on the same line' .
CAT/ povell Ac,p0u+2l

The word labeled CAT is now considered to be opened, and DDT has set its location pointer
to point to this address.

2.2 TYPE-OUT MODES

The preceding example showed DDT typing out the contents of location CAT as a symbolic
instruction with its address file also relative to a symbol. This is the type-out mode in which
DDT is initialized. It is also initialized to type all numbers in the octal radix. The user may
ask DDT to retype the preceding quantity as a number in the current radix by typing an
equal sign (=). For example?

CAT/ MOVEN AC,D0G+2] =202041,,6736

'In this manual information typed out by DDT is underlined to distinguish DDT output from user-typed input.

2The two commas indicate the 202400 is in the left half of CAT, and 6736 is in the right half.

2
1

17

18

DDT

DDT has numerous commands which reset the type-out mode permanently, temporarily, or
for only one typeout. The modes that can be selected include numeric constants, floating
point numbers, ASCII and SIXBIT text modes, and half-word format. Absolute or relative
addressing and different radixes may similarly be selected. For example, to change the cur-
rent type-out mode to ASCII text, the user types the command?

ST
or, to change the current type-out mode to half-word format, he types
SH
or, to select decimal numbers in his typeouts, he types
51 2R
Using these commands (and others described in Chapter 3), a programmer may examine any
location in the mode most appropriate to the information stored there. A semicolon (;) com-

mands DDT to retype the preceding quantity in the current mode. Combining this command
with a mode change gives results such as the following:

CAT/ MOVENM AC,D0G+21 318R;MOVEM AC,DO0G+17
or CAT/ MOVEM AC,00G+21 3292043, ,D0G6+21
or TEXT/ ANDM 1,342212(C12) ST3A3CDE

2.3 MODIFYING STORAGE WORDS

Once a word has been opened, its contents may be changed by typing the desired new con-
tents immediately following the typeout produced by DDT. A carriage return will command
DDT to make the indicated modification and close the word. For example:

caT/ MOVEN AC,D 0u+2] MOVAI ACZ,D06+21,)
The carriage return simply closes the previously examined register without opening another” .
The line feed (+) may also be used to close a word after examining (and optionally modifying

it. The line feed commands DDT to

1. echo a carriage return,

2. close the current word (making a modification if one was typed),

3Thc terminal keys ALTMODE (ALT), PREFIX (PREFIX), or ESCAPE (ESC) are all equivalent and echo as $.

]Thc carriage return command has the additional property of causing temporary type-out modes to revert to permanent
mode.

DDT 19

3. add one to DDT’s location pointer, and
4. type out the new pointer value and the contents of that address.
Thus, if a line feed had been used in the previous example, the result would be:
CAT/ MoveM AC,DCu+21 [MoViM ACZ,D06+21 4
CAT+1/ AO3JH XR6,L0O0P5
Location CAT+1 is now open and may be modified if desired.
The vertical arrow (1) is similar to the line feed command except that the location counter

is decremented by one. Therefore, if the user continued the previous example by typing 1
the result would be

CAT+1/ AO03J4 XR6,LO0P54
CAT/ MCVNM AC2,D0G+21

Location CAT is thus displayed and shows the result of the modification made in the previous
example.

The tab (=) and backslash (\) both close the current register and open the address last typed
(whether typed by DDT or the user). However, tab sets DDT’s location pointer (.) to this

new address while backslash leaves it unaltered. A more complex example may clarify the
usefulness of these commands.

CAT+1/ AOBJN XR6,L0CP5 -
LOOPS/ CAMSE AC2,TADL(XRE) CAlG ACZ,TASL+L (XKE)\ SETLI B=4010d0, L%
LOOPS5+1/ JUNPL AC3,FAULT JUMPL ACZ, FAULT -

FAULT/ JSRT 4, FAULT

2.4 TYPE-IN MODES
The examples in the preceding section showed modifications made as symbolic instructions

in a form identical to MACRO-10 machine language. It is also possible to enter various
numbers and forms of text.

2-3

20

DDT

Octal values may be typed in as octal integers with no decimal point. To be interpreted
as a decimal number, an-integer must be followed by a decimal point. Numeric strings
with numbers following the decimal point imply decimal floating-point numbers. The
E-notation may also be used on floating-point numbers. Some examples are:

Octal: 1234 FITTTETITNTT -6 0
Decimal integers: 6789. 99999999 5, 0.
Floating-point numbers: 78.1 0.249876E-10 -4.00E+20 0.0
Incorrect formats: T6E+2 76.E+2 (instead write 76.0E+2)

To enter ASCII text (up to five characters, left justified in a word), type a double quote
(") followed by any printing character to serve as a delimiter, then type the one to five
ASCII characters and repeat the delimiter. For example:

“/ABCDE/ (/ is the delimiter)
"ABCOA (A is the delimiter)

Note that the mode of a quantity typed in is determined by the user’s input format and
is unaffected by any type-out mode settings.

2.5 SYMBOLS

The user’s symbol tables are loaded by the Linking Loader when it loads programs and
DDT. However, initially DDT is set to treat only global symbols (created by INTERNAL
and ENTRY pseudo-ops in MACRO-10) as being defined. This means that only global
symbols will be used for relative address typeouts and, likewise, only these globals can

be referenced when typing in symbolic modifications. In order to make the local symbols
within a particular program available to DDT, the user types the program name (this
comes from the MACRO-10 TITLE statement or the FORTRAN IV SUBROUTINE or
FUNCTION statement) followed by ALTMODE and a colon ($:). For example, the
command

NACTANE:

DDT

will unlock the local symbols in the program named ARCTAN. This provision in DDT per-
mits the user to debug several related subroutines simultaneously and reference the local
symbol table of each independently without fear of multiply-defined local symbols. If the
user’s program is not titled, the command MAIN.$: will unlock the local symbol table.

NOTE

DDT is not quite so stringent on the use of local

symbols as indicated above (see Section 5.6).

However, the user is advised to unlock symbols

with $: until he is fairly familiar with DDT.
The user may also insert symbols into the symbol table. To insert a symbol with a particular
value, type the value, followed by a left angle bracket (<), the symbol, and a colon (:). Some
examples are

T6T7<CON5 2T<8s 12 o1 BEF<Mdllds ALUR+1Z<ADR A2

To assign a symbol with a value equal to DDT’s location pointer, simply type the symbol
followed by a colon. For example,

XFER+4/ JRST ¢ TA3L(3) JRNCH:

will cause BRNCH to be defined with the value XFER+4.

2.6 EXPRESSIONS

DDT permits the user to combine symbols and numeric quantities into expressions by using
the following characters to indicate arithmetic operators:

+ The plus sign indicates 2’s complement addition
- The minus sign indicates 2’s complement subtraction
* The asterisk indicates integer multiplication

The single quote or apostrophe indicates integer division (remainder discarded) —
slash cannot be used to indicate division since it has another use in DDT.

As usual in arithmetic expressions, the evaluation proceeds from left to right with multiplica-
tion and division performed before addition and subtraction.

21

22

DDT

2.7 BREAKPOINTS

The breakpoint facility in DDT provides a means of suspending program operation at any
desired point to examine partial results and thus debug a program section by section. The
simpler facts about breakpoints are presented next; the use and control of conditional
breakpoints is deferred to Paragraph 4.2.

2.7.1 Setting Breakpoints

- The programmer can automatically stop his program at strategic points by setting as many

as eight breakpoints. Breakpoints may be set before the debugging run is started, or during
another breakpoint stop. To set a breakpoint, the programmer types the symbolic or abso-
lute address of the word at the location point in which he wants the program to stop,
followed by $B. For example, to stop when location 6004 is reached, he types,

630438

Breakpoint numbers are normally assigned by DDT in sequence from 1 to 8. The user may
instead assign breakpoint numbers himself when he sets a breakpoint by typing,

S4B
when n is the breakpoint number (1<n<8). Here are three examples:

CAT+3543 DOG+15$73 04583
When the programmer sets up a breakpoint he may request that the contents of a specified
word be typed out when the breakpoint is reached. To do this, the address of the word to
be examined is inserted, followed by two commas, before the breakpoint address. Some

examples are

D0G,,CATE33 ACL,,LOOP+253 X,, 5604563

2.7.2 Breakpoint Restrictions
The locations where breakpoints are set may not
1. be modified by the program
2. be used as data or literals
3. be used as part of an indirect addressing chain
4. contain the user mode monitor command INIT

5. be accumulator 0.

2-6

DDT 23

2.7.3 Breakpoint Type-Outs

When the breakpoint location is reached. DDT suspends program execution without execut-

ing the instruction at the breakpoint location. DDT then types the breakpoint number and

the Program Counter value at the time the breakpoint is reached (this value will differ from

the typed-in breakpoint address if the breakpoint is executed by an XCT instruction else-

where in the program). The format of this typeout is as shown in the following examples:
$4B>>CAT+3 $73>>D0G+] HE8>>6844

If the user requested that a specified address be examined at that breakpoint, it will be
opened; for example:

$33>>CAT DOG/ S0JGE 3,GO0AT+6

2.7.4 Removing and Reassigning Breakpoints

The user may remove a breakpoint by typing,
JHN3

where n is the number of the breakpoint to be removed. For example:
%213

removes the second breakpoint. All assigned breakpoints are removed by typing
$8

The user may reassign a breakpoint without formally removing it. Thus, if he has set break-
point No. 2 at location ADR (via the command ADR$2B) he may reassign No. 2 to LOC+6
by typing LOC+6$2B.

2.7.5 Proceeding From a Breakpoint

Program execution may be resumed (in sequence) following a breakpoint stop by typing
the proceed command, $P.

If the user does not wish to stop until the nth time that this breakpoint is encountered
he types,

NoP

Then this breakpoint will be passed n-1 times before a break occurs.

24

DDT

To execute the next instruction, the user types

FX

which, without an argument, executes the instruction about to be executed after the last
breakpoint of the last $X. After the instruction is executed, the PC is updated. (The
breakpoint, however, is not moved.) After any number of $X’s, $P will always proceed
from where the single stepping left off. After executing the instruction, DDT prints out
the contents of referenced locations.

2.8 STARTING THE PROGRAM
The program is started by typing

G
This starts the program at previously specified starting address .JBSA. (Typically this is
the address from the MACRO-10 END statement.) The programmer may start at any
other location by typing that address followed by $G. For example:

4543356

starts the program at the instruction stored at location 4000. BEGINSG starts the program
at the symbolic location BEGIN.

The start command may also be used to restart from a breakpoint stop when it is not
desired to continue in sequence from the point where program execution was suspended.
2.9 DELETING TYPING ERRORS

Any partially typed command may be deleted by pressing the RUB OUT key. This causes
DDT to ignore any preceding (unexecuted) partial command. DDT types XXX. The correct
command may then be retyped.

2.10 ERROR MESSAGES

If the user types an undefined symbol which cannot be interpreted by DDT, everything
typed by the user since DDT’s last typeout is ignored, and U is typed. If an illegal DDT
command is typed, or a location outside the user’s assigned memory area is referenced,

the effect is the same except that DDT types a ? instead of a U.

2.11 SUMMARY

As was said in the beginning, these basic commands are sufficient for debugging many pro-
grams. Complete descriptions of all DDT commands are explained in the following chapters.

DDT

CHAPTER 3

DDT COMMANDS

When DDT is initialized, it is set to type out in the symbolic instruction format with relative
addresses, and to type out numbers in octal radix.

3.1 EXAMINING THE CONTENTS OF A PROGRAM STORAGE WORD

To type out the contents of a storage word, the programmer types the address, followed
immediately by a slash (/). For example, to examine the contents of a word whose symbolic
address is ADR, the user types,

ADR/

DDT types out the contents on the same line. In this manual, information typed out by DDT
is underlined.

ADR/ MOVE 4,CCl

The word labeled ADR is now considered to be opened, and DDT continues to point to this
address. The point, or period, character (.) represents DDT’s location pointer, and may be
used to type out its contents, as in the following command.

o MOVE A,CCl

Since we did not change the contents, they are the same, but we use the location pointer to
reexamine the currently opened word. Similarly, the programmer may use the period (.) as
an arithmetic expression component, such as

+5 SOJGE 2,ADR+S

DDT’s location pointer is set to new value by the / command when immediately preceded by
an address. For example,

2al/ 4

sets the location pointer to 201. If the user types / without typing an address, the contents
of the location addressed in the last typeout are typed.

687/ MOVE 1,6 Pz J

of #oVz 1,6

Location 667 contains the instruction MOVE 1.6. The second slash displays the contents of
Accumulator 6, which is zero. This does not change the location pointer, which is still point-
ing to location 667.

ADR/ MOVE A,CCI / ADD 2,5UMHT

3-1

25

26

DDT

It should also be noted that the spaces, which occur after DDT completes the typing of the
contents of ADR, are automatically produced by DDT, not the user.

The left square bracket ([)' has the same effect as the slash (the address immediately preced-
ing the [will be opened). However, [forces the typeout to be in numbers of the current
radix.

ADRL 11 COCTAL)
ADR] S (DECIMAL)D

The right bracket (])' has the same effect as the slash except that it forces the typeout to be
in symbolic instructions.

ADR+23]1 MOVE |5,LIST+2

The exclamation point (!) works like the slash except that it suppresses type out of contents
of locations until either /, or [, or] is typed by the user. The LINE FEED () commands
DDT to type out the contents of ADR+I.

£DR! MOVE AC,555+ (1)
adR+11,) 2)
BDR/ MOVE AC,555 (3)

Thus, in step (1) of the example the contents of ADR are not typed out, but the address is
opened to modification and MOVE AC,555 has been typed in by the user.

Step (2) of the example shows that the location pointer has been incremented by one and the
contents of ADR+1 are not typed out. This is because the exclamation point is still in effect
and will continue to take effect until /, [, or] is typed in by the user. In this case, the slash
terminates the effect of the exclamation point.

Step (3) shows that the modification (MOVE AC,555) of ADR typed in Step (1) has been
accomplished,
3.2 CHANGING THE CONTENTS OF A WORD

After a word is opened, its contents can be changed by typing the new contents following the
type out by DDT, followed by a carriage return. For example,

AJR/ YOVE A,CCl MOVE A,CC2,)

Lon Teletype Models 33 and 35 the left square bracket ([) is produced by holding the SHIFT key down and striking the K
key. The right square bracket (]), is produced by holding the SHIFT key down and striking the M key.

32

DDT

The carriage return closes the open word, but does not move the location pointer. A LINE
FEED (}) command could also be used to make this modification. A LINE FEED causes a
carriage return, adds one to DDT’s location counter (moves the pointer), types out the result-
ing address and the contents of the new address. Thus, if we conclude our last example with
a LINE FEED

AOR/ MOVE A,CCl MOVE A,CC2+
ADR+1/ ADD 3,CC3

ADR+1 is now open, and may be modified by the user.

The vertical arrow (1) works similarly, except that one is subtracted from the location pointer.

The open word is closed (modified if a change is given) and the new address and contents are
typed out.

AOR+1/ ADDS, CG31
AUR/ MOVE A,CC2

Since the vertical arrow subtracts one from the pointer, the resulting address is ADR, and the
contents now show the change made in the previous example.

3.3 INSERTING A CHANGE, AND EXAMINING THE CONTENTS OF THE LAST
TYPED ADDRESS

The horizontal tab (1) causes a carriage-return line feed, then sets the location pointer to
the last address typed (the new address if a modification was made) of the instruction in the
register just closed. Then DDT types this new address, followed by a slash and the contents
of that location, as shown below.

ADRS/ JRST ADR! JRST ADR -
ADR/ MOVEM 3,CC2 -
Gee 665

The backslash (\)* opens the word at the last address typed and types out the contents. How-
ever, backslash does not change the location pointer. The backslash closes the previously
opened word and causes it to be modified if a new quantity has been typed in.

ADR/ MOVE A,CC2 JRST X\ MOVE AC,S

L1 s produced by SHIFT-N on Teletype Models 33 and 35. The backspace key may be used instead of T on Teletype
Model 37.

\is produced by SHIFT-L on Telety pe Models 33 and 35.

3-3

27

28

DDT

The use of the backslash accomplishes two things. First it changes ADR by replacing its con-
tents with JRST X. Second, the backslash causes DDT to type out the contents of X, namely,
MOVE AC,3. The location pointer continues to point to ADR, but now location X is open
and may be modified if desired.

If the line-feed control character and the vertical arrow were used in conjunction with the
backslash, the results would be as follows.

AOR/ MOVEM 3,CC2 MOVE A,CCL\ 145776+
AURH1/ MOVE A,C+
AOR/ MOVE A,CCl \ 145776

The following is a summary in table form of these special control characters and their cor-
responding functions. For example, the chart shows that the forward slash (/) will examine
the contents of an address, type out in the current mode, open the address, change the loca-
tion pointer to the address just opened, but it does not cause a new quantity to be inserted
in that address.

Table 3-1
Special Character Functions

INSERT
NEW QTY
CHANGE IF NEW QTY
COMMAND TYPE OUT ADDRESS LOCATION HAS BEEN
CHARACTER CONTENTS MODE OPENED POINTER TYPED
/ Yes Current
[Yes Numeric '
Yes Yes No
] Yes Symbolic
! No None
\ Yes® Current Yes No Yes
TAB (=) Yes® Current Yes Yes Yes
1 or backspace Yes® Current Yes Yes (.-1) Yes
Line-feed ({) Yes? Current Yes Yes (.+1) Yes
Carriage No None No No Yes
return (}) (closes)

Yt a user-typed quantity preceded.

2If 1 has not suppressed typeout.

3-4

DDT 29

A ? typed by DDT when examining a location indicates that the address of the location is
outside the user’s assigned memory area. A ? typed when depositing indicates that the loca-
tion cannot be written in, because it is either outside the assigned memory area or inside a
write-protected memory segment.

3.4 STARTING THE PROGRAM
The program is started by typing
$G

This starts the program with the instruction beginning at the user’s previously specified start-
ing address taken from location JOBSA. The programmer may start at any other instruction
by typing the address of that instruction followed by $G. For example,

422¢5G 0R ADR+5%4

starts the program at the instruction stored at location 4000 or, in the second part, at the
symbolic address ADR+5. The start command may also be used to restart from breakpoints
when the user does not wish to proceed to the next instruction.

3.5 RETYPING IN MODES OTHER THAN PREVAILING OR TEMPORARY

Each of the following commands specifies the mode in which DDT should immediately retype
the last expression typed by DDT or the user. Neither the temporary nor the prevailing mode
is altered.

3.5.1 Type Out Numeric

Although DDT is initialized to type out in symbolic mode, it is often useful to change to
numeric typeout. When the programmer types the equal sign (=), the last expression typed
is retyped by DDT in the current radix (initially octal). This is useful when a symbolic type-
out is meaningless. Since this usually indicates that numeric data is stored in that word, the
user can verify this by typing = and checking the value.

3.5.2 Type Out Symbolic

If a typeout is numeric, and the user wants to examine it in symbolic mode, he types the left
arrow (<). The last typed quantity is retyped as a symbolic instruction. The address mode
is determined by §A or §R.

3.5.3 Type Out in Current Mode

To retype a typeout in the current mode, the user types a semicolon (;). This may be used,
for example, if the user has changed the typeout mode. For example,

TEXT/ AMNDIY 1,342212 (13) 3T$A3CDE
3-5

30

DDT

3.6 SYMBOLS

Before DDT commands can be used to reference local symbols in the program Symbol Table,
the user should type the program name as specified in the MACRO-10 TITLE statement, or
the FORTRAN IV SUBROUTINE or FUNCTION statement, followed by an ALTMODE and

a colon. For example,

AT NS
makes the local symbols in the program called MAIN available. Since the user can debug
several related subroutines simultaneously, reference to several independent symbol tables is
permitted, each of which may use the same local symbols with different values. DDT allows
the user to reference unique local symbols in other programs without respecifying the pro-
gram name with §: (see Section 5.6.2). However, to access a local symbol that is used in
several programs, the user must specify the program name to remove the ambiguity. Global

symbols, such as those specified in MACRO-10 INTERNAL statements, may always be ref-
erenced.

The user may insert (or redefine) a symbol in the symbol table by typing the symbol, followed
by a colon. The symbol will have a value equal to the address of the location pointer (.).

7 A0D1 3,V TAG:
causes TAG to be defined with the same value as X. All user defined symbols are global.
The user may also directly assign a value to a symbol by typing the value, a left angle bracket

(<) and the symbol, terminated by a colon. This is the equlvalent of a MACRO-10 direct
assignment statement. Some examples are:

T07<CONS: 12,1 sH2< N4l

2T7<XKs 1Jd1<MILs
3.7 TYPINGIN
To change or modify the contents of a word, the user may type symbolic instructions, num-
bers, and text characters. Type-ins are interpreted by DDT in context. That is, DDT tests
the data typed in to determine whether it is to be interpreted as an instruction, a number
(octal or decimal), or text. Typeout mode settings, such as $S, $C, and $nR, do not affect
typed input.
The user may type the following:

. Symbolic instructions

2. Numbers

a. Octal integers

b. Fixed-point decimal integers

3-6

DDT 31

¢. Floating-point decimal mixed numbers

Text

a. Up to five ASCII characters, left justified in a word
b. Up to six SIXBIT characters, left justified in a word
c. A single ASCII character, right justified in a word
d. A single SIXBIT character, right justified in a word
Symbols

Anything that is not a number or text is interpreted by DDT as a symbol.

3.7.1 Typing In Symbolic Instructions

In general, a symbolic instruction is written for insertion by DDT, in the same way the
instruction is written as a MACRO-10 source program statement. For example:

K/

2 ADD ACl,DATE

where a space terminates the instruction field, and a comma terminates the accumulator field.
For example:

1.

In DDT, the operation code determines the interpretation of the accumulator
file. If an /O instruction is used, DDT inserts the I/O device number in the
correct place, and

Indirect and indexed addresses are written, as in MACRO-10 statements, where
@ precedes the address to set the indirect bit, and the index register specified
follows in parentheses.

V¥4 J ADD 4, NUMCLT

To type in two 18-bit halfwords, the left and right expressions are separated by
two commas. For example:

b4 2 Ay 0
This is similar to the MACRO-10 statement

AW A,

3.7.2 Typing In Numbers

A typed-in number is interpreted by DDT as octal if it does not contain a decimal point. The
following examples are octal type-ins:

1234 -12131
172 719777777777

32

DpT

Fixed-point decimal integers must contain a decimal point with no digits following.

1234, =29 877.

Floating-point numbers may be written in two formats: with a decimal point and a digit
following the decimal point

121.1 1234,5 599,83 =-2.,7182¢
or as in MACRO-10, with E indicating exponentiation

12 02 TT.085 12,542 31.4159E-1

3.7.3 Typing In Text Characters

To type in up to five ASCII characters, left justified in an opened word, the user types a quo-
tation mark, followed by any printing delimiting character, then the text characters, and
terminated by the delimiting character. The following examples are legal:

" ITEXT/ ™ABCUEEA In these cases, [and A are the delimiting
characters.

To type in up to six SIXBIT characters, left justified in an opened word, the user types ALT-
MODE quotation mark ($"), followed by any delimiting character, then the text characters,
and terminated by repeating the delimiting character.. Lower case letters are converted to

upper case. Characters outside the SIXBIT set are illegal, and DDT types a question mark.
The two examples below are SIXBIT type ins.

" /UIVIIJZ/ " EXXKXAXKE

To type in a single ASCII character, right justified in an opened word, the user types a quo-
tation mark, followed by a single ASCII text character, then by an ALTMODE.

"QS "/% "5
To type in a single SIXBIT character, right justified in an opened word, the user types an

ALTMODE, followed by a quotation mark, a single SIXBIT text character and terminated
by an ALTMODE.

A% UM S"3S
3.7.4 Arithmetic Expressions

Numbers and symbols may be combined into expressions using the following characters to
indicate arithmetic operations.

+ The plus sign means 2’s complement integer addition.

-~ The minus sign means 2’s complement integer subtraction.

3-8

DDT 33

* The asterisk means integer multiplication.

The single quote means integer division with any remainder discarded. (The
slash has another function.)

Symbols and numbers are combined by +, -, *, ’ to form expressions. Examples:

$'2,51+3ASE
exd+1

3.8 DELETE

Any partially typed command may be deleted by pressing the RUBOUT or DELETE key.
This causes DDT to ignore any preceding (unexecuted) partial command and DDT types
XXX. The correct command may then be retyped.

3.9 ERROR MESSAGES

If the user types an undefined symbol which cannot be interpreted by DDT, U is typed back.
If an illegal DDT command is typed, ? is typed back. Examining or depositing into a location
outside the user’s assigned memory area causes DDT to type a 7. Depositing in a write-
protected high memory segment also results in a ? typeout.

3.10 UPPER AND LOWER CASE

DDT will accept alphabetic input in either upper or lower case. Lower case letters are inter-
nally converted to upper case, except when inputting text where they are taken literally as

explained in Section 3.7.3.

DDT output is in upper case, except for text which is taken literally.

DDT

CHAPTER 4

MORE DDT-10 COMMANDS

This chapter describes other type-out modes, conditional breakpoints, searches and addi-
tional features. Commands are available to change modes from the initial settings so that
numeric data can be typed out in a radix chosen by the user, in floating-point format,

in RADIX50 format, as halfwords (two addresses) and as bytes of any size. The contents
of a storage word may also be typed out as 7-bit DECsystem-10 ASCII text, or SIXBIT text

characters. (See MACRO-10 Manual, Appendix C.)

Searches can be made in any part of the program for any word, not-word (inequality), or
effective address. The user specifies the instruction or data to be searched for and the
limits of the search.

Breakpoints can be set conditionally, so that a program stop occurs if the condition is
satisfied. In addition, a counter can be set up allowing the user to specify the number of
times a breakpoint is passed before a program stop occurs.

4.1 CHANGING THE OUTPUT RADIX

Any radix (>1) may be set by typing $nR, where n is the radix for the next typeout only,
and n is interpreted by DDT as a decimal value. The radix is permanently changed when the
double ALTMODE is used in the command $SnR. To change the type-out radix permanently
to decimal, the user types,

bol ¥R

When the output radix is decimal, DDT follows all numbers with a point.

4.2 TYPE-OUT MODES

When DDT-10 is loaded, the type-out modes are initialized to produce symbolic instructions
with addresses relative to symbolic locations. For numeric typeouts, the radix is initially set
to octal.

These modes may be changed by the user. The duration, or lasting effect of a type-out mode
change is also set by the user. Prevailing modes, which are semipermanent, are preceded by
two ALTMODES. Temporary modes are preceded by a single ALTMODE. In addition, some
mode changes effect only one typeout, such as the equal sign, which causes DDT to retype
the last typed quantity in numeric mode.

In general, prevailing modes are changed by replacing them with another prevailing mode or
by reinitializing the system. Temporary modes remain in effect until the user types a carriage
return (), or re-enters DDT. One-time modes apply only to a single typeout.

35

4.2.1 Primary Type-out Modes

$S (OR $$S)

$A (OR $SA)

SR (OR $$R)
8C (OR $8C)

$F (OR $$F)

$T (OR 8§T)

36T (OR $86T)

$ST (OR $$5T)

DDT 36

Type out symbolic instructions. The address part interpre-
tation is set by $R or $A.

55 ADR/ ADD ACl, TASLEFS
Type out the address parts of symbolic instructions, and

both addresses when the mode is halfword, as absolute
numbers in the current radix.

SA ADR/ ADD 4202

Type out addresses as relative addresses.

Type out constants; i.e., as numbers in the current radix.
$C ABLE/ 254111,,425¢

If the output radix is octal and the left half is not 0, the
word will be divided into halves separated by commas.

Type out the contents of storage words as floating point
numbers.

5F X/ De875162335E-45

Unnormalized numbers are typed out as signed decimal
integers.

Type out as 7-bit ASCII text characters. Left-justified char-
acters are assumed unless the leftmost character is null. If

the leftmost character is null, then right-justified characters
are assumed.

3T REX/ A3CD&
Type out as SIXBIT text characters.
$8T heXx/ ASCDEF

Type out symbols in radix 50 mode. (See MACRO-10
Manual, Chapter 6.)

55T 13774/ 4 CREF=4U845,,26155¢

42

DpT

$H (OR $$H) This command causes the typeout to be in halfwords, the
left half separated from the right half by double commas,
The address mode interpretation is determined by $R or

SA.
SA SH Z/ 4593, ,4502
3R $H Z/ TA3L+14,,TA3L+13
§NO (OR $SNO) Type out in n-bit bytes, where n is decimal. (Use the letter

0O, not zero.)
56¢ 3YTS/ 82,23, l, 15, 5, 46

As in all DDT typeouts, leading zeros are suppressed.

4.3 BREAKPOINTS
4.3.1 Setting Breakpoints

The programmer can automatically stop his program at strategic points by setting up to eight
breakpoints. Breakpoints may be set before the debugging run is started, or during another
breakpoint stop. To set a breakpoint, the programmer types the symbolic or absolute address
of the word at the location at which he wants the program to stop, followed by $B. For
example, to stop when location 4002 is reached, he types,

434238
If all eight breakpoints are in use, DDT will type a question mark. The user may assign break-

point numbers when he sets a breakpoint by typing ADR $nB, where n is the breakpoint num-
ber (1<n<8&). For example,

SYMP33 AORLTS
If n is not entered DDT will assign 1 through 8 in sequence. In the previous example, when
ADR is reached, DDT types,

573>>A DK

indicating that the break has occurred at location ADR, and breakpoint No. 7 was encountered.
The break always occurs before the instruction at the breakpoint address is executed.

If the instruction at the breakpoint location is executed by an XCT instruction, the typeout
will show the address of the XCT instruction, not the location of the breakpoint. The pro-

gram stops at each breakpoint address, and the programmer can then type other commands
to examine and debug his program.

4-3

37

DDT

When the programmer sets a breakpoint, he may request that the contents of a word be typed
out when a breakpoint is reached. To do this, the address of the word to be examined is
inserted, followed by two commas, before the breakpoint address.
Xy 4082323
When address 4002 is reached, DDT types out:
32 3>>40832 X/ ADD AC,Y+2
where ADD AC, Y+2 is the contents of X. Location X is left open at this point. Location 0
may not be typed out in this way because a zero argument implies no typeout.
4.3.2 Removing Breakpoints
The user may remove a breakpoint by typing:
43 N8
where n is the number of the breakpoint to be removed. Therefore:
np2 B
removes the second breakpoint. All assigned breakpoints are removed by typing
53
The user may reassign a breakpoint. If he has set breakpoint No. 2 at location ADR
(ADRS$2B), he may reassign No. 2 to ADR+1 by typing ADR+1$2B.
4.3.3 Restrictions for Breakpoints
Breakpoints may not be set on instructions that are:
1. Modified by the program
2. Used as data or literals
3. Used as part of an indirect addressing chain
4. The user mode monitor command, INIT
A breakpoint at any other monitor command will operate correctly,
except that if the monitor command is in error, the monitor will type
out an error and the Program Counter, but the Program Counter will

be Internal to DDT and meaningless to the user.

5. A breakpoint may not be assigned to accumulator 0.

4-4

DDT 39

4.3.4 Restarting After a Breakpoint Stop
To resume the program after stopping at a breakpoint, the user types the proceed command,
TP

!

The program is restarted by executing the instruction at the location where the break occurred.
If the user types n$P, this breakpoint will be passed n-1 times before a break can occur; the
break will occur the nth time. If n is not specified, it is assumed to be one. If the user pro-
ceeds by typing $$P (or n3P), the program will proceed automatically when the program
breaks again. If DDT encounters an XCT loop or the monitor command INIT when proceed-
ing, a question mark will be typed.
Alternatively, the user may restart at any location by typing the start command,

ADRDG

where ADR is any program address, or $G, which restarts at the previously specified starting
address in location JOBSA.
4.3.5 Automatic Restarts from Breakpoints

If the user requests DDT to type out the contents of a word and then continue program exe-
cution without stopping, he types two ALTMODES when specifying the breakpoint address.

AC,,AUR333
When ADR is encountered, the contents of AC are typed out and program execution contin-
ues. To get out of the automatic proceed mode, type any Teletype key during the typeout,
and then remove the breakpoint or reassign it with a single ALTMODE. It may be necessary
to use 1C and DDT to get back to DDT to remove or reassign the breakpoint.

4.3.6 Checking Breakpoint Status

The user may determine the status of a breakpoint by examining locations $nB, $nB+1, and
$nB+2.

$nB contains the address of the breakpoint in the right half and the address of the location
to be examined in the left half. If both halves equal zero, the breakpoint is not in use.

$nB contains the conditional breakpoint instruction. (See Paragraph 4.3.7.)

$nB+2 contains the proceed count.

4-5

40

DDT

4.3.7 Conditional Breakpoints

Breakpoints may be set up conditionally in two ways. The user may provide his own instruc-
tion or subroutine to determine whether or not to stop, or he may set a proceed counter
which must be equal to or less than zero in order for a break to occur.

When a breakpoint location is reached, DDT enters its breakpoint analysis routine consisting
of five instructions.

SKIPE SN3+1 :Is the conditional break instruction 0?7
xCT N3+ ;No, execute conditional break instruction
S0S3 $NB+2 ;Decrement and text the proceed counter
JRST break routine

JRST proceed routine

If the contents of $nB+1 are zero (indicating that there is no conditional instruction) the
proceed counter at $nB+2 is decremented and tested. If it is less than or equal fo zero, a
break occurs; if it is greater than zero the execution of the user’s program proceeds with the
instruction where the break occurred.

If the conditional break instruction is not zero, it is executed. If the instruction (or the

closed subroutine) does not cause a program counter skip, the proceed counter is decremented
and tested as above. If a program counter skip does occur, a break occurs. If the conditional
instruction is a call to a closed subroutine which returns skipping over two instructions, exe-
cution of the user’s program proceeds.

If the user wishes a break to occur based only on the conditional instruction, he should set
the proceed counter to a large positive number so that the proceed counter will never reach
ZEero.

4.3.7.1 Using the Proceed Counter — If the user wishes to proceed past a breakpoint a speci-
fied number of times, and then stop, he inserts the number of passes in $nB+2, which contains
the proceed count.

The proceed counter may be set in two ways. The first way is by direct insertion. For
example,

SH3+2/ s 20

sets the counter to 20. The second method is as follows. After stopping at a breakpoint, the
proceed count may be set (or reset) by typing the count before the proceed command:

3

2457

4-6

DDT 41

(P will proceed from the interrupted instruction sequence even if the breakpoint has been
removed or reassigned.)

4.3.7.2 Using the Conditional Break Instruction — The user inserts a conditional instruction,
or a call to a closed subroutine at $nB+1. For example,

$33+1/ g CAIGE ACC,15,)
or

48+ / %) JS5A 16,TEST/
When the breakpoint is reached, this instruction or subroutine is executed. If the instruction
does not skip or the subroutine returns to the next sequential location, the proceed counter
is decremented and tested, as explained in Paragraph 4.3.7. If the instruction skips or the

subroutine returns skipping over one instruction, the program breaks. If the subroutine causes
a double skip return, the program proceeds with the instruction at the breakpoint address.

Examples of Conditional Breakpoints

If address 6700 is reached and DDT’s No. 4 breakpoint registers are as follows:

$43/ ACl,, 8722
S4B+ / CAIE ACl,1088
$43+2/ 220

AC1 contains 100, and DDT types
34B=8729 ACl/ 144

Since AC1 contains 100, the compare instruction skips and the program breaks. If AC1 did
not contain 100, $4B+2 would be decremented by one and the user’s program would continue
running.

If the conditional break instruction transfers to a subroutine which, after the subroutine is
executed, returns to the calling location +3, a break will never occur regardless of the pro-
ceed counter. Example: If the internal DDT breakpoint registers ($2B and $2B+1) have the
following contents, a break would not occur unless accumulator 3 contains 100.

4-7

42

DDT
328/ AUR
28+1/ JSR TEST
TEST/ Y
TEST+HL / AQS TEST (contains PC when JSR to subroutine TEST
! is made)
FESTH2/ CAIE 3,190
TEST+3/ ADS TEST
TEST+4/ JRST @ TEST

The subroutine TEST causes a double skip (the return is to the third instruction after the
call) in DDT if accumulator 3 does not equal 100, A break will never occur at address ADR
(regardless of the proceed counter) unless accumulator 3 contains 100.

4.3.8 Entering DDT from a Breakpoint

When a break occurs, the state of the user’s program is saved, the JSR breakpoint instructions
are removed, and the programmer’s original instructions are restored to the breakpoint loca-
tion. DDT types out the number of the breakpoint and a symbol indicating the reason for

the break, > for the conditional break instruction, >> for the proceed counter and the address
in the user’s program where the break occurred.

Example: If address ADR is reached in the user’s program and DDT’s break point registers
contain:

52 3/ ADR
31/ 2
$e B2/) (proceed counter contains zero)

DDT stops the program and types,

523>>A0K

DDT 43

4.3.9 Single Instruction Proceed
To execute the next instruction, the user types
£X

which, without an argument, executes the instruction about to be executed after the last
breakpoint or the last $X. After the instruction is executed, the PC is updated. (The break-
point, however, is not moved.) After any number of $X’s, 8P will always proceed from
where the single stepping left off. After executing the instruction, DDT prints out the con-
tents of referenced locations. These are printed in floating point where appropriate. The
modified flags are also printed out for JRSTF and JFCL. Then the next instruction is printed
out (always in symbolic despite temporary or permanent output mode settings). A blank line
is printed between the operands and the next instruction, provided that the instruction just
executed was a skip or a jump that succeeded.

The following is a list of forms taken by the §X command:

1. n$X where n<2*#*27: performs $X n times, as above.
where n is an instruction, the command performs as it always has.

2. n$$X where n 2**27: is the same as n$X, except that printout is suppressed
for all but the last instruction executed.

3. $$X without an argument, perform $X indefinitely, without printing anything
until the PC reaches either .+1 or .+2. This command is useful if one
wants to execute a debugged subroutine.

NOTE
DDT looks for typein after each instruction in an
n$X cycle. This procedure is followed by the search
logic also.

Breakpoints are not in place during a $X.
In exec mode, DDT does not restore the RI system
during $X.

4.4 SEARCHES

There are three types of searches: the word search, the not-word search, and the effective
address search.

44 DDT

Searches can be done between limits. The format of the search command is:

W Word search
ac$ N Not-word search
E Effective address search

where:

a is the lower limit of the search; 0 is assumed if this argument and its delimiter
are not present.

b is the upper limit of the search. The lower numbered end of the symbol table
is assumed if this argument and its delimiter are not present.

¢ Is the quantity searched for.
The effective address search (E) will find and type out all locations where the effective address,
following all indirect and index-register chains to a maximum length of 64(10) levels, equals
the address being searched for.
Examples:

451 7/<5233> X$E

INPUT<5382>Td85E

Examples of DDT output, when searching for X in the above example, are as follows.

4517/ SETZM X
47217 MOVE 2, X
SQae/ MOVE 3, 2 4721 (Indirectly addresses X through address 4721)

The word search (W) and the not-word search (N) compare each storage word with the word
being searched for in those bit positions where the mask, located at $M, has ones. The mask
word contains all ones unless otherwise set by the user. If the comparison shows an equality,
the word search types out the address and the contents of the register; if the comparison
results in an inequality, the word search will type out nothing. The not-word search types
nothing if an equality is reached. It types the contents of the register when the comparison
is an inequality,

Examples:

INPT<INPT+13=>NUMBW
INPT<I NPT+12>3%N

4-10

sM/

NBI1

ASM FIRST<LAST>USW

4.5 MISCELLANEOUS COMMANDS

$Q

£DR/ 120,222
3510

ADR/ 189,,200
LHSTSX

JRST AJRSX

FIRST<LASTSS$Z

Y

DDT

This command types out the contents of the
mask register, which is then open. The contents
of the mask register are ordinarily all ones un-
less changed by the user.

Inserts n into the mask register.

Lists a block of locations by setting the MASK
to zero then performing a word search for zero.

This symbol represents the last quantity typed.

$Q puts back in ADR the quantity 100,,200.
$Q+1 puts back in ADR the quantity 100,,201.
$Q/ displays the contents of location 200.
$Q+1/ displays the contents of location 201.

This symbol represents the last quantity typed
with the two halves of the word reversed.
($5Q was formerly §V.)

$$Q puts back in ADR the quantity 200,,100.

$$Q+1 puts back in ADR the quantity 200,,101.

$$Q/ displays the contents of location 100.
$$Q+1/ displays the contents of location 101.

This command causes the instruction inst to be
executed.

Starts the user’s program at ADR.

This command zeros the memory locations be-
tween the indicated FIRST and LAST address
inclusively. If the first address is not present,
location 0 is assumed. If the last address is not
present, the location before the low-numbered
end of the symbol table is assumed. Locations
20-137, DDT, and the symbol table are not
zeroed.

This command causes a command file to be read
and executed, in user mode, the default name
for the command file is DSK:BATCH.DDT.

The command string $°/NAME/$Y causes the
file DSK:NAME.DDT to be interpreted. In
exec mode, the command reads a command

file from the paper tape reader.

45

46

DDT

When DDT is reading a command file; rubouts and the character immediately following a
carriage return (assumed to be a linefeed) are ignored. Any sequence of DDT commands
including 8§X, §G is legal.

The ? error message is given if

1. A lookup failure occurs on the command file, or

2. This command is not implemented.

4-12

DDT 47

CHAPTER 5

SYMBOLS AND DDT ASSEMBLY

A symbol is defined in DDT as a string of up to six letters and numbers including the special
characters period (.), percent sign (%), and dollar sign ($). Characters after the sixth are
ignored. A symbol must contain at least one letter. If a symbol contains numerals and only
one letter, that letter must not be a B, D, or an E. These letters are reserved for binary-shifted
and floating-point numbers.

Certain symbols can be referenced in one program from another. These symbols are called
“global”. Those which can only be referenced from within the same program are called
“local” or “internal”. Any symbol which has been defined as global by MACRO-10 (using
the INTERNAL or ENTRY statements) will be considered as global by DDT-10 when it is
referenced. FORTRAN subroutine entry points and common block names are globals. All
symbols which the user defines via DDT are defined or redefined as global symbols.

The user may want to reference a local symbol within a particular program. In order to do
this he should first type the program name followed by $:. Thus, if a user wishes to use a
symbol local to program MIN, he types the command,

MI NS

This command unlocks the symbol table associated with MIN. DDT allows the user to refer-
ence unique local symbols in other programs without respecifying the program name with
$: (see Section 5.6.2). However, to access a local symbol that is used in several programs,
the user must specify the program name to remove the ambiguity. The program name is that
specified in the MACRO-10 TITLE statement. In FORTRAN, the program name is either
MAIN., the name from the SUBROUTINE or FUNCTION statement, or DAT. for BLOCK

DATA subprograms.

5.1 DEFINING SYMBOLS
There are two ways to assign a value to a symbol.
NUMERIC VALUE<SYMBOL: This command puts SYMBOL into DDT-10"s
symbol table with a value equal to the specified
NUMERIC VALUE. SYMBOL is any legal
symbol defined or undefined.
Example:

3d5< X VAR:

XVAR has now been defined to have the value
305.

5-1

43 DDT

TAG: This command puts TAG into DDT-10’s sym-
bol table with a value equal to the address of
the location pointer.

Example:

429/ ADo 2, l2vl2 K3

This puts the symbolic tag X into DDT-10’s
symbol table and sets X equal to 400, the
address of the last register opened.

5.2 DELETING SYMBOLS

There are times when the user will want to restrict or eliminate the use of a certain few de-
fined symbols. The following three ways give the user of DDT-10 these capabilities.

SYMBOL §SK SYMBOL is killed (removed) in the user’s sym-
bol table. SYMBOL can no longer be used for
input or output.

Example:

KB K

This command removes the symbol X from the
symbol table.

SYMBOL $K This command prevents DDT from using this
symbol for typeout; it can still be used for
typein. For example, the user may have set
the same numeric value to several different
symbols. However, he does not wish certain
symbol(s) to be typed out as addresses or accu-
mulators.

X/ MOVE J,5AV J3K «MOVE AC,5AV NSK <« MOVE AC,SAV

Since the user does not wish J to be typed out

as an accumulator, he types in J$SK, followed

by a left arrow to type out the contents of X
again and MOVE N.SAV is typed out. He then
repeats the above process until the desired result,
namely AC, is typed out. Any further symbolic
typeouts with the same number in the accumu-
lator field of the instruction will type out as

AC,

5-2

DDT

$D The last symbol typed out by DDT has $K per-
formed on it. The value of the last quantity
output is then retyped automatically. For
example,

A/ MOVE AC,LOC $D MOVE AC,ABC+!

5.3 DDT ASSEMBLY

When improvising a program on-line to the DECsystem-10 on a terminal, the user will want to
use symbols in his instructions in making up the program. In this and in other situations, unde-
fined symbols may be used by following the symbol with the number sign (#). The symbol
will be remembered by DDT from then on. Until the symbol is specifically defined by the

use of a colon, the value of the symbol is taken to be zero. Successive use of the undefined
symbol causes DDT to type out #. Appending # to all subsequent uses of the symbol enables
the user to readily identify undefined (not yet defined by a colon) symbols. When an unde-
fined symbol is finally defined, all previously tagged (#) occurrences of the symbol will be
filled in.

Example:

MOVE 2, VALUE#

VALUE is now remembered by DDT and may be used further without the user appending

the #. If subsequent instructions are given involving VALUE, DDT appends a # automatically
to that symbol. Thus VALUE will always appear as VALUE followed by the # (until VALUE
is defined).

Example:
START! MOVE 2, VALUE# 4 (user types the #)
START+1! ADDI 2, VALUE Y
START+2! MOVEM 2, VALUE ¢
P (DDT types #)
START+3! JRST VALUE+#1+4

(DDT types # after the plus sign because
only at that point does DDT realize the
symbol VALUE is complete.)

START+4!

Undefined symbols can be used only in operations involving addition or subtraction. The
undefined symbols may be used only in the address file.

49

50

Example:

MOVEL 2,3% UNDEF#

DDT

This is an illegal operation — multiplication with a symbolic tag (UNDEF) which has not pre-

viously been defined.

The question mark (?) is a command to DDT to list all undefined symbols that have been
used in DDT up to that point in the program.

Example:

£
a
| o
oy

5.4 FIELD SEPARATORS

The storage word is considered by DDT to consist of three fields: the 36-bit wholeword
field: the accumulator or I/O device field; and the address field. Expressions are combined
in these three fields by two operators:

Space

Single Comma

Double Comma

The space adds the expression immediately preceding it
(normally an op code) into the storage word being formed.
It also sets a flag so that the expression going into the
address field is truncated to the rightmost 18 bits.

The comma does three things: the left half of the expres-
sion is added into the storage word; the right half is
shifted left 23 bits (into the accumulator field) and added
into the storage word. If the leftmost three bits of the
storage word are ones, the comma shifts the right half
expression left one more place (I/O instructions thus

shift device numbers into the device field). The comma
also sets the flag to truncate addresses to 18 bits.

Double commas are used to separate the left and right
halves of a word with contents expressed in halfword
mode. -

The address field expression is terminated by any word termination command or character.

DDT

5.5 EXPRESSION EVALUATION

Parentheses are used to denote an index field or to interchange the left and right halves of
the expression inside the parentheses. DDT handles this by the following generalized pro-
cedure.

A left parenthesis stores the status of the storage-word assembler on the pushdown list and
re-initializes the assembler to form a new storage word. A right parenthesis terminates the
storage word and swaps its two halves to form the result inside the parentheses. This result
is treated in one of two ways:

I. If+, -, or * immediately precede the left parenthesis, the expression is treated
as a term in the larger expression being assembled and therefore may be trun-
cated to 18 bits if part of the address field.

2. If+,-,’, or * did not immediately precede the left parenthesis, this swapped
quantity is added into the storage word.

Parentheses may be nested to form subexpressions, to specify the left half of an expression,
or to swap the left half of an expression into the right half.

5.6 SYMBOL EVALUATION
5.6.1 Order of Symbol Table Search
DDT references two symbol tables:

1. A built-in operation table containing the machine language instructions and
monitor UUOs (e.g., MOVE, JRST, and INIT), and

2. A symbol table constructed by LOADER during the loading process, containing
all the user-defined symbols.

When a user types a symbol into DDT, which must be converted into a binary value, DDT
has two places to look for the symbol. If the expression (see Section 5.5) constructed has a
zero value (the normal case when typing in the operation code of an instruction such as the
JRST part of a JRST ADDRESS instruction), DDT looks for the symbol first in its internal
operation table, and then, if the symbol is not found, in the LOADER constructed symbol
table. If the expression constructed is non-zero, DDT searches the LOADER constructed
table first, and then the internal operation table. This method of searching the table allows
instructions such as JRST JRST to work correctly (the first JRST is an operation code, and
the second JRST is a user-defined address location).

5.6.2 Order of Symbol Table Search for Symbol Evaluation
When DDT searches the LOADER constructed symbol table to evaluate a symbol typed in,

it begins the search by looking through the symbols specified by <program name> $: (see
Section 2.5). DDT searches the table in the following order:

5-5

51

52

DDT
I.. Looks for the symbol as a local or global symbol in the currently unlocked (by
$:) program symbols.
2. Looks for the symbol as a global symbol anywhere in the symbol table.

3. Looks for the symbol as a local symbol in the symbol table of one and only one
program.

4. Looks for the symbol as a local symbol that appears in the symbol table of more
than one program, but with the same value in each table. (If the symbol appears
with different values in different tables, it will not be recognized as defined be-
cause there is no way to solve the ambiguity.)

5. If all the above fail, the symbol is undefined unless it appears in the internal
operation table of the DDT.

Fortunately, the searching is accomplished with a single pass over the symbol table.

If one of the several identical local symbols (in step 4) is redefined, it becomes a global, and
the symbol is then found at either step 1. or step 2.

This procedure relaxes the requirement of Sections 2.5, 3.6, and the beginning of Chapter 5
on the user of §: to unlock local symbols.

5.7 SPECIAL SYMBOLS

The @ sign sets the indirect bit in the storage word being formed.

Example:

MOVE AC, 23X

5.8 BINARY VALUE INTERPRETATION

When DDT is typing the symbolic equivalent of a binary word or address, it looks for the
symbol with a value that best matches the binary. DDT looks through the symbol values in
the following order:

1. Searches the symbols of the currently unlocked (by $:) program for a local or
global symbol with a value that exactly matches the binary to be interpreted.

2. Searches for a global symbol outside the currently locked program with a value
that exactly matches the binary to be interpreted.

3. Searches all the other local symbol tables for one or more entries with values that

match the binary to be interpreted. If more than one symbolic equivalent is
found, the DDT does not use any of them but goes on to step 4. If exactly one

5-6

DDT 53

symbolic equivalent is found (this includes the case of the same symbol with the
same value in more than one local symbol table), then this symbol is used. How-
ever, the symbol has a # appended to it to warn the user that this symbol might

have a different value in some other local symbol table.

4. Searches the currently unlocked program symbols for a local symbol, and searches
the entire symbol table for a global symbol, with the value closest to but less than
the binary to be interpreted. The closest symbol is then used for typeout if it is
not more than 64 smaller than the binary being interpreted.

If a usable symbol is not found in any of the above steps, the binary is typed out as an integer
in the current output radix.

The purpose of this complicated procedure is to output the best symbol without forcing the
user to continually respecify the program symbol table names by using $:.

DDT

CHAPTER 6
1
PAPER TAPE
6.1 PAPER TAPE CONTROL
The following commands are used in paper tape control:
5 This command causes DDT to punch a RIM10B

loader on paper tape RIM10B loader. (See
MACRO-10 Manual, Chapter 6.) Thus, if the
user wishes to punch out a program on paper
tape he gives a $L command first in order to
get a loader punched on the same tape as the
program. Later when the user wishes to read
in the program from the paper tape, the hard-
ware READ-IN feature will load the RIM10B
loader into the accumulators and then the pro-
gram will be loaded by the RIM10B loader.
(See Figure 6-1.)

FISSTCLAST TAPE (2) This command punches out checksummed
blocks in RIM10B format on paper tape from
consecutive locations between FIRST and
LAST address inclusively. For example, this
command will punch out a program existing
in core memory in its present state of check-
out for later use.

Example:
407020 29¢ TAPE

FIYSTCLAST % TAPE This command is similar to the preceding com-
mand, except that locations whose contents
are zero are not punched out whenever more
than two consecutive zeros are detected.

ADiBY This command punches a 2-word block that
causes a transfer address ADR after the pre-
ceding program has been loaded from paper
tape. If ADR is not present, a JRST 4, DDT
is punched as the first word.

'The paper tape functions are not available in the timesharing user mode version of DDT.

zTﬁPE is a single control key on the teletypewriter and is identical to 1R (control-R).

6-1

56

DDT
The following succession of steps will punch a program on paper tape ready to be used as an
independent entity.
1. ¥
2. 5882¢24201 TAPE (2)

3. 6724%) (Transfer to address 6000 after program is loaded.)

DDT

Typed in: e
tape feed Beginning of Tape

RIM10B
LOADER

tape feed
WC | FA-l

DATA

BLOCK
CHECKSUM Checksum includes pointer word
WC = word count

tape feed

DATA
BLOCK

DATA
BLOCK

tape feed

transfer block
JRST SA SA = starting address

0

tape feed
L e~]

Figure 6-1
RIM10B Block Format

DDT 59

APPENDIX A

SUMMARY OF DDT FUNCTIONS

A.1 TYPE-OUT MODES

The following are used to set the type-out modes:

Type Sample Output(s)
Symbolic instructions $5 ATD 4. TAGH4
A"D 4, 4012
Numeric, in current radix Iic 67,
15
Floating point BF B,125E~S
7-bit ASCII text T P"RET
SIXBIT text %67 TSREPO
RADIX50 57 4 DDTEND
Halfwords, two addresses EH 4:002,.4720
X+, , K+
Bytes (of n bits each) $NQ 320 ¢OULD YIELD

0,14,287,123.,0

A.2 ADDRESS MODES

The following are used to set the address mode for typeout of symbolic instructions and half-
words (see examples above):

Relative to symbolic address BR TLG+1

Absolute numeric address FA 495

A.3 RADIX CHANGE
The following is used to change the radix of numeric type-outs:

to n (for r=2): MR 3
2

COULD YIELD
112141108027 910200208A3 7211107 17112"

60

DDT

A.4 PREVAILING VS. TEMPORARY MODES

The following are used in prevailing vs. temporary modes:

To set a temporary type-out or

address mode or a temporary

radix as shown in the commands

above, type £ %

To set a prevailing type-out or

address mode on a prevailing

radix, in the commands above,

substitute 4§

To terminate temporary modes
and revert to prevailing modes,
type a carriage return .)

Initial prevailing (and tempo-
rary) modes are

A.5 STORAGE WORDS

The following are used to examine storage words:

To open and examine the
contents of any address
in current type-out mode adr/

To open a word, but
inhibit the type out adr!

To open and examine a
word as a number in the
current radix adr|[

To open and examine a
word as a symbolic
instruction adr]

To retype the last quantity

typed (particularly used

after changing the current

type-out mode) :

$°
$12R

7 o7
Y
[el O |

L"C/ 254g22,,DDTEND

LIC}

L2gE

3521

5473

151028, 3454

JRET @DUTEND

2%,¢0,20020,34,54

528 <L

DDT

A.6 RELATED STORAGE WORD
The following are used to examine related storage words:

To close the current open word
(making any modification typed
in) and to open the following
related words, examining them
in the current type-out mode:

To examine ADR-1 t (or backspace on
some hard-copy
terminals)

To examine the contents of

the location specified by the

address of the last quantity

typed, and to set the loca-

tion pointer to this address | (TAB)

To examine the contents of

address of last quantity

typed, but not change the

location pointer \(hacks|ash)

To close the currently open

word, without opening a

new word, and revert to

permanent type-out modes 2/ tearriage return)

A.7 RETYPING IN MODES OTHER THAN PREVAILING OR TEMPORARY

Each of the following commands specifies the mode in which DDT should immediately retype
the last expression typed by DDT or the user. Neither the temporary nor the prevailing mode
is altered.

To repeat the last typeout as
a number in the current radix =

To repeat the last typeout as

a symbolic instruction (the

address part is determined by

$A or 3R) +

To type out, in the current

type-out mode, the contents of

the location specified by the

address in the open instruction

word, and to open that location,

but not move the location /
pointer

62

DDT

To type out, as a number, the con-

tents of the location specified by

the open instruction word and to

open that location, but not move

the location pointer [

To type out, as a symbolic in-

struction, the contents of the

location specified by the open

instruction word, and to open

that word, but not move the

location pointer]

To examine ADR+1 (line feed)

A.8 TYPING IN

Current type-out modes do not affect typing in: instead, the following are performed:

To type in a symbolic instruction

To type in half words, separate
the left and right halves by two

commas 4A0Z,1473
To type in octal values 12734

To type in a fixed-point decimal

integer Q9,

To type in a floating-point 1g1.11
number 77 .0E+7
To type in up to five 7-bit

PDP-10 ASCII characters,

left justified, delimited by

any printing character "yABCDEY
To type in one PDP-10

ASCII character, right

justified Al

To type in up to six SIX-
BIT characters, left
justified, delimited by

any printing characters TuARCDFFGA

A-4

Apn ACL)PDATE(LT)

(/ is

delimiter)

($ must be
ALTMODE)

(A is
delimiter)

DDT

To type in one SIXBIT
character, right justified En" g

A.9 SYMBOLS
The following are DDT symbols:

To permit reference to local
symbols within a program
titled name name$

To insert or redefine a symbol
in the symbol table and give
it the value n n<symbol

To insert or redefine a symbol

in the symbol table, and give

it a value equal to the location

pointer (.) symbol:

To delete a symbol from the
symbol table . symbol " §X

To kill a symbol for typeouts
(but still permit it to be used
for typing in) symbol T K

To perform $K on the last
symbol typed out and then
to retype the last quantity n

To declare a symbol whose
value is to be defined later symbol#

To type out a list of all
undefined symbols (which

were created by #)

A.10 SPECIAL DDT SYMBOLS

The following are special DDT symbols:

To represent the address of
the location pointer . (point)

To represent the last quantity
typed 10

($ must be
ALTMODE)

MAIN, %3

14<TARL 3

SYM:

LPCTSEK

TaITSEK

JRST AJAXH

63

64

DDT

- To represent the last quantity

typed, halves reversed Ty

To read and execute a command
file $y

To represent the indirect
address bit

B

To represent the address of
the search mask register M

To represent the address of

the saved flags, etc. (see

Appendix D) L
To represent the pointers

associated with the nth

break point Tn!
A.11 ARITHMETIC OPERATORS

The following arithmetic operators are permitted in forming expressions:
Two’s complement addition +

Two’s complement subtraction -

Integer multiplication *

Integer division (remainder
discarded)

-

(arostroohe)

A.12 FIELD DELIMITERS IN SYMBOLIC TYPE-INS

The following are field delimiters:

To delimit op-code name one or more spaces JRST SUBRTE
To delimit accumulator field , (comma)

To delimit two halfwords left, ,right =6s,B8EGIN"1
To delimit index register ()

To indicate indirect addressing @

A-6

A.13 BREAKPOINTS

The following are used for breakpoints:

To set a specific breakpoint
n(1<n<8)

To set the next unused
breakpoint

To set a breakpoint with
automatic proceed

To set a breakpoint which
will automatically open
and examine a specified
address, x

To remove a specific
breakpoint

To remove all breakpoints

To check the status of
breakpoint n

To proceed from a
breakpoint

To set the proceed count
and proceed

To proceed from a
breakpoint and
thereafter proceed
automatically

DDT

adrdn?

adr®s

adr3§np
adris=

Xppadr$nB
Xrradrg”
Xppadrd-n”
Xy,adr3-B

£tnn

$nB/

P

nsp

$Tp
ntgp

A.14 CONDITIONAL BREAKPOINTS

The following are used for conditional breakpoints:

To insert a conditional
instruction (INST) or call

a conditional routine, when
break point n is reached

inB+4/
22R+1/72

A-7

CARE:B

Ip3%

CAREIBR
IP3gin

ACS,) 2+685¢
AC4,,ABLESB

AC3, ,2+633558
AC4, yABLEZER

%7

T8

?5%p

£ 3
2HIgF

65

66

DDT

If the conditional instruction
does not cause a skip, thé pro-
ceed counter is decremented
and checked. If the proceed
count <0, a break occurs

If the conditional instruction
or subroutine causes one
skip, a break occurs.

[f the conditional instruction
or subroutine causes two skips,
execution of the program
proceeds.

A.15 STARTING THE PROGRAM

The following commands are used to start the program:

To start at the starting

address in JOBSA $6G

To start, or continue, at

a specified address adr€G
To execute an instruction instgx

A.16 SEARCHING

The following commands are used for searching:
To set a lower limit (a), an

upper limit (b), a word to

be searched for (c), and

search for that word ac ' i

To set limits and search
for a not-word acHy

To set limits and search
for an effective address ac *E

A-8

L1

LOTgo
JRET 2, @JCBOPC§X
returns to program

after 1C and DDT
commands

P

BI¢r5>05h

391731228

421<"71>2L0C+65E

bbDT
To examine the mask used
in searches (initially contains
all ones) M/
To insert another quantity n
in the mask neM

A.17 UNUSED FUNCTIONS
The following are unused:
U

$V — formerly same as $3Q

A.18 ZEROING MEMORY

The following are used for zeroing memory:
To zero memory, except DDT,

locations 20-137, and the

symbol table $52

To zero memory locations

FIRST through LAST

inclusive FIRSTLLAST i§7Z
A.19 SPECIAL CHARACTERS

The following special characters are used in DDT typeouts:

Breakpoint stops

Break caused by con-
ditional break instruction >

Break because proceed
counter <0 >

Undefined symbol cannot be
assembled U

Half-word type-outs left, right

Unnormalized floating-point
number #1,234g+27

A-9

SM/ w4

77797277777 7§M

41, ,492

#1,254E+27

67

68

DDT
To indicate an integer is
decimal. The decimal
point is printed $1QR 77=63,
Illegal command ?
If all eight breakpoints
have been assigned ?
RUBOUT echo XXX

A.20 PAPER TAPE COMMANDS
The following commands are available only in EDDT:
To punch a RIM10B loader $L

To punch checksummed data

blocks where ADR1 is the

first, and ADR?2 is the last

location of the data ADR1<AD T2

To punch data as above,

except that more than two

consecutive locations con-

taining zeros are not ADR1<AD 2 §
punched. (TAPE is tR)

To punch a one-word

block to cause a transfer

to adr after the preceding

program has been loaded

from paper tape adr®

TAPE

TAPE

DDT

APPENDIX B

EXECUTIVE MODE DEBUGGING (EDDT)

A special version of DDT, called EDDT, is available for debugging programs in the executive
mode of the DECsystem-10. EDDT also runs in user mode under the monitor and performs the
same debugging functions as user-mode DDT. EDDT requires somewhat more memory space
than DDT; therefore, it is normally used only with hardware diagnostics and the monitor.

All of the paper tape commands are available in EDDT (those in DDT are marked by an
asterisk in Chapter 5). The paper tape 1/O routines in EDDT are optional at assembly time.

EDDT is used to debug monitor programs, diagnostic programs, and other executive (or
privileged) programs. EDDT performs its own 1/O on a Teletype and controls the Priority
Interrupt system. It does not check JOBREL for boundary limits as DDT does.

In EDDT, the symbol table pointer is in location 36 and the undefined-symbol table pointer
is in location 32. If the NXM STOP switch is ON, the machine will hang up if nonexistent
memory is referenced. If this happens, EDDT may be restarted by pressing START, or the
CONTINUE switch may be pressed.

Stand-alone programs should initialize EDDT by placing the contents of .JBSYM (116) into
location 36, and .JBUSY (117) into location 32.

The first address of EDDT is DDT; the last is DDTEND.

The $$7 command will not zero locations 20 through 37. (In the user mode version, $$Z
does not zero locations 20 through 127. See Section 4.5.)

B-1

69

DDT

APPENDIX C

STORAGE MAP FOR USER MODE DDT

See Figure C-1. The permanent symbol table, which contains all DECsystem-10 instructions
and monitor UUQs, is an integral part of DDT.

If the user’s symbol table is overwritten DDT can still interpret all instructions and UUOs.
It will not interpret 1/O device mnemonics, internal $ symbols ($M, $I, $1B through $8B),
DDT and DDTEND of the following:

0
|—— JBREL (points to highest address in low
- - segment of user area)
- JBDDT (XWD DDTEND, DDT)
-~ JBSYM (XWD-WC, 1st address of symbol table)
User - 1st address is DDT
Area _
(low 4 DDT -« [ast address is DDTEND
seg-
ment)
~=—— st address symbol table
User’s Symbol Table _
~ -«—— Highest location in low segment
400000
high segment
(optional)

Figure C-1
Storage Map for User Mode DDT

71

DDT

APPENDIX D

OPERATING ENVIRONMENT

D.1 ENTERING AND LEAVING DDT

When control is transferred to DDT, the state of the machine is saved inside DDT:

I

2.

The accumulators are saved.

The status of the priority interrupt system (the result of a CONI P1, §1) is stored
in the right half of register $1.!

The central processor flags are saved in the left half of register $1.

The PI channels are turned off (by a CONO PI, @§$I+1) if they have a bit in regis-
ter $1+1.!

The Teletype PI channel is saved in the right half of register $I+2. The Teletype
buffer is saved in the left half of $I+2 but can never be restored. The character
in the output buffer will have been typed on the Teletype.'

If DDT was entered via tCtC and the monitor DDT command, the old program
counter word is saved in location JOBOPC.

When execution of a program is restarted, the following happens:

1.

2

The accumulators are restored.

Those PI channels which were on (when DDT was entered) and which have a bit
equal to 1 in register $I+1 are turned on.!

(C(SI)C(R) C(S[*L)(R)YIVEOAPP P1 SYSTEM
(logical AND (n), logical OR (v))

The Teletype PI channel is restored.!

TTI DONE TT! gUSY TTO BUSY

TTO done is set to 1 if either TTO busy or TTO done was on when DDT was entered. Other-
wise O TTO done.

! Functions are not available in the timesharing user mode.

D-1

73

DDT

4. The processor flags are restored from the left half of register $I.
5. Toreturn to a program interrupted by tC, the user types:

JRIT 2, 2 JO3DPCEX to restore the PC and flags.

D.2 LOADING AND SAVING DDT
Load and save DDT.SAV in 2K of core in the following manner:
Instructions Example'

(1) Load DDT. R LINK
#DSKIDDT /G
LOADER
EXIT
'
ST 149

(2) ENTER DDT. $§H JOBSYM/ =112,,5666

(3) Type out, in halfword mode,
the contents of .JBSYM.

(4) Open register 6, and put

(.JBSYM) (RH) into left half of

6; put ((.JBSYM) (RH) AND?

1777) + 2000 into right half

of 6. 8] 5666,,3666

(5) Perform a block transfer
stopping at 3777. BLY 6937778X

(6) Open .JBSYM; leave the
left half as is and change the
right half to ((_(JBSYM) (RH)
AND? 1777) + 2000. JOBSYM/ =112,,5666 »112,,3666

(7) Zero memory, except for
DDT. §$%2

(8) Start over at 140 to initial-
ize the new symbol table. 14286

' ALTMODE is indicated by $.

2 Logical AND.

DDT

(9) Open .JBSA and put
DDTEND in the left half and
DDT in the right half

(10) Change back to symbol
type-out mode.

(11) Return to monitor.

(12) Reduce core to 2K.

(13) Reenter DDT.

(14) Check that .JBREL is 2K.
(15) Return to monitor,.

(16) Save DDT.

(17) Check start address.

75

JOBSA! 0DTEMD,,0DT

$£$S

*C

+CORE 2

00T

JOBRELZ 3777
tC

.SAVE DSk pD?

JSTART

o/ 3777

D.3 EXPLANATION

The DDT-saved file must be saved in 2K (minimum amount of core needed). Also, a starting

address must be set up for DDT as location 140. To get DDT into 2K, the DDT symbol table
must be moved down to the upper end of the first 2K of core. Any unused locations in DDT
should be set to zero (3Z) and JOBSYM should be set to the new location of the start of the
DDT symbol table. Before saving the resulting file, a CORE 2 request should be given to the

monitor to ensure that DDT is saved as a 2K core image.

D-3

DDT

INDEX

Assembly, 5-3

Binary value interpretation, 5-6
Breakpoints, 2-6, 4-3, A-7
checking status, 4-5, A-7
conditional, 4-6, A-7
proceeding from, 2-7, 4-5, 4-6, A-7
reassigning and removing, 2-7, 4-4, A-7
restrictions, 2-6, 4-4
setting, 2-6, 4-3, A-5
type-outs, 2-7, A-1, A-3

Conditional break instruction, 4-6, A-7

Error messages, 2-8, 3-9

Examining storage words, 2-1, 3-1, A-2
Executive mode debugging (EDDT), B-1
Expression evaluation, 5-5

Expressions, 2-5

Field separators, 5-4, A-6

Loading procedure, 1-1, D-2

Miscellaneous commands, 4-11
Modifying storage words, 2-2, 3-2

Operating environment, D-1

Paper-tape control, 6-1, A-10
Proceed counter, 4-6, A-7

Radix, changing the, 4-1, A-1

Searches, 4-9, A-8
Single instruction proceed, 4-9
Special symbols, 5-6, A-5
Starting the program, 2-8, 3-5, A-8
Storage map for user mode, C-1
Storage words, 2-1, 3-1, A-2
examining, 2-1, 3-1, A-2
modifying, 2-2, 3-2
Symbol evaluation, 5-5
Symbols, 2-4, 3-6, 5-1, A-5
defining, 5-1, A-5
deleting, 5-2, A-5

Type-in modes, 2-3, A-3
Type-out modes, 2-1, 3-5, 4-1, A-1
Typing errors, 2-8, 3-8
Typing in, 3-6, A-4
arithmetic expressions, 3-8, A-6
numbers, 3-7, A-4
symbolic instructions, 3-7, A-6
text characters, 3-7, A-4

Upper and lower case, 3-9

Index-1

77

APPENDIX E

FORDDT

FORDDT is an interactive program used to debug FORTRAN programs and
control their execution. By using the symbols created by the FORTRAN
compiler, FORDDT allows you to examine and modify the data and FORMAT
statements in your program, set breakpoints at any executable
statement or routine, trace your program statement-by-statement, and
make use of many other debugging techniques described in this
appendix.

Table E-1 lists all the commands available to the user of FORDDT.

Table E-1
Table of Commands

Command Purpose

Data Access Commands
ACCEPT Modifies Aata locations.
TYPE Displays data locations.

Declarative Commands

GROUP Defines indirect lists for TYPE statements.

MODE Specifies format of typeout.

QPEN Accesses program unit symbol table.

PAUSE Places pause requests.

REMOVE Removes pause requests.

DIMENSION Defines dimensions of arrays for FORDDT
references. (Unnecessary if
/DEBUG:DIMENSIONS was used. See Table
BE-2.)

DOUBLE Defines dimensions of double-precision
arrays for FORDDT references. (Unnecessary
if /DEBUG: DIMENSIONS was used. See Table
B-2.)

FORDDT

Table E-1 (Cont.)
Table of Commands

Command Purpose

Control Commands

START Begins execution of FORTRAN program.

CONTINUE Continues execution after a pause.

GOTO Transfers control to some program statement
within the open program unit.

NEXT Traces execution of the program.

STOP Terminates program and returns to monitor
mode.

DDT Enters DDT (if DDT is loaded).

Other Commands

LOCATE Lists program unit names in which a given
symbol is defined.

STRACE Displays routine backtrace of current
program status.

WHAT Displays current DIMENSION, GROUP, and
PAUSE information.

E.1 INPUT FORMAT

FORDDT commands are made up of alphabetic FORTRAN-like identifiers and
need consist of only those characters required to make the command
unique. If you wish to specify parameters, a space or tab is required
following the command name. FORDDT expects a parameter if a delimiter
(i.e., space or tab) is found. Comments may be appended to command
lines by preceding the comment with an !.

E.1.1 vVariables and Arrays

FORDDT allows you to access and modify the data locations in your
program by wusing standard FORTRAN-10 symbolic names. Variables are
specified simply by name. Array elements are specified in the
following format:

name (S1,...,Sn)
where

name
(81,...,8n)

& FORTRAN variable or array name
the subscripts of the particular array.

You may reference an entire array simply by its unsubscripted name:
you may specify a range of array elements by inputting the first and
last array elements of the desired range, separated by a dash(-).

E-2

FORCDT

Examples

ALPHA

ALPHA (7)

ALPHA (PI)

ALPHA (2)-ALPHA(5)

£.1.2 Numeric Conventions

FORDDT accepts optionally signed numeric data in the standard
FORTRAN-10 input formats:

1. INTEGER - A string of decimal digits.

2. FLOATING-POINT - A string of decimal digits optionally
including a decimal point. Standard engineering and
double-precision exponent formats are also accepted.

3. OCTAL - A string of octal digits optionally preceded by a
double guote (").

4. COMPLEX - An ordered pair of integer or real constants
separated by a comma and enclosed in parentheses.

F.1.3 Statement Labels and 5ource Line Numbers

FORTRAN statement labels are input and output by straightforward
numeric reference, 1i.e., 1234. However, Source line numbers must be

input to FORDDT with a number sign (#) preceding them. This mandatory
sign distinguishes statement labels from source line numbers.

E.2 NEW USER TUTORIAL

The new FORDDT user can rely on the commands described below as a
basis for debugging FORTRAN programs. These commands are easy to

understand and apply.

E.2.1 Basic Commands

The easiest method of loading and starting FORDDT is:
.DEBUG filename.ext (DEBUG)/F10
FORDDT will respond with

ENTERING FORDDT
>>

Just as an asterisk (*) signifies FORTRAN-10's readiness, the two
angle brackets signify that FORDDT is awaiting one of the following
commands:

OPEN Makes available to FORDDT the symbol names in a

particular program unit of the FORTRAN program. When a
program unit symbol table is opened, the previously

E-3

START

STOP

MODE

TYPE

FORDDT

open program unit is automatically closed. When FORDDT
is entered, the MAIN program is automatically opened.
The command format is:

QPEN name

This will open the particular program unit named and
allow all wvariables within that subprogram to be
accessible to FORDDT.

OPEN

with no arguments will reopen the symbol table of the
main program unit.

Starts your program at the main program entry point.
The command format is:

START

Terminates program execution, causes all files to be
closed, and exits to the monitor. The command format
is:

STOP

Defines the display format for succeeding FORODT TYEE
commands. You need type only the first character of
the mode to identify it to FORDDT. The modes are:

Mode Meaning

ASCII (left-justified)
COMPLEX
DOUBLE-PRECISION
FLOATING-POINT

INTEGER

OCTAL

RASCII (right-justified)

WOHmMOO >

Unless the MODE command is given, the default typeout
mode is the floating-point format.

The command format is:
MODE list

where list contains one or more of the mode identifiers
separated by commas. The current setting can be
changed by issuing another MODE command. If more than
one mode 1is given, the wvalues are typed out in the
order: F,D,C,I,0,A,R

MODE

with no arguments will reset FORDDT to the original
setting of floating-point format.

Allows you to display the contents of one or more data
locations. They are displayed on your terminal
formatted according to the 1last MODE specification.
The command format is:

TYPE list

ACCEPT

PAUSE

FORDDT

where list may contain one or more arrays, variables,
array elements, or array element ranges separated by
commas. For example:

TYPE I, ALPHA, BETA(2),J(3)-J(3)

Each item will be displayed in each of the currently
active typeout modes as set by the last MODE command.

Allows vyou to change the contents of a FORTRAN
variable, array, array element, or array element range.
The command format is:

ACCEPT name/mode wvalue

where

name the name of the wvariable, array, array
element, or array element range to be
modified. If the field contains an
unsubscripted array name or an element
range, it causes all the elements to be
set to the given value (see special case

for ASCII in Section F.6).

the format of the data wvalue to be
entered. If given, it must be preceded by
a slash (/) and immediately follow the
name. (Note that /mode does not apply to
FORMAT modification.)

mode

1

the new value to be assigned. It must
correspond in format to the given mode.

value

Data Modes

You need type only the first character of a data mode
to identify it to FORDDT. If not specified, the
default mode is REAL. The following input modes are
available:

Mode Meaning Example
A ASCII(left-justified) /FO0Q/
C COMPLEX {1.25,-78.E+%)
D DOUBLE-PRECISION 123.4567890
F REAL 123.45678
I INTEGER 1234567890
0 OCTAL 76543210
R RASCII(right-justified) “BAR\
5 SYMBOLIC PSI(2,4)

An example of the ACCEPT command format is:
ACCEPT ALPHA 100.6

This changes the value of the variable ALPHA to 100.6
with the default input mode of REAL, since mode was not
specified.

Allows you to set a breakpoint at any label, line
number, or subroutine entry in your program. You may
set up to ten pauses at one time. When one of these
pauses is encountered, execution of the FORTRAN program

E=5

CONTINUE

REMOVE

WHAT

FORDDT

is suspended and control is transferred to FORDDT.
Also, when a pause 1s encountered, the symbol table of
that subobrogram is automatically opened. The command

Eornat is:
FPAUSE P

where P is a statement label number, line number, or
routine entry point name; for example,

PAUSE 100

will cause a breakpoint at statement label 100 of the
currently open program unit.

Note that subprogram parameter values will be displayed
when a pause 1s encountered at a subprogram entry

point.

Allows the program to resume execution after a FORDDT
pause. After a CONTINUE 1is executed, the program
either runs to completion, or it runs wuntil another
pause is encountered. If vou include a value with this
command, the program will run until the nth occurrence
of the given pause or until a different pause is
encountered. The command formats are:

CONTINUE
or
CONTINUE n

Example
CONTINUE 15

will continue execution until the fifteenth occurrence
of the pause.

Used to remove those pauses from the program previocusly
set up by the PAUSE command. The command format is

REMOVE P

where P is the number of the statement label where the
pause was set, i.e.,

REMOVE 100
will remove the pause at statement label 100.

Note that REMOVE with no arguments will remove all
nauses; therefore, no abbreviation of the command is
allowed in this instance. This precaution prevents the
accidental removal of all pauses.

Displays on your terminal the name of the currently
open program unit and any currently active pause
settings. The command format is:

WHAT

FORDLDT

E.3 FORDDT AND THE FORTRAN-10/DEBUG SWITCH

Most facilities of FORDDT are available without the FORTRAN-10 /DEBUG

features;

however, if you do not use the /DEBUG switch when comoiling

a FORTRAN program, the trace features (NEXT command) will not be
available, and several of the other commands will Dbe restricted.

Using the /DEBUG switch tells FORTRAN-10 to gompile extra information
for FORDDT. (See Appendix B, Using the Compiler, for a complete
description of each feature.) The additional features include:

L5

/DEBUG:DIMENSIONS, which will generate dimension information
to the REL file for all arrays dimensioned in the subprogram.
The dimension information will automatically be available to
FORDDT if you wish to reference an array in a TYPE or ACCEPT
command . This feature eliminates the need to specify
dimension information for FORDDT by using the DIMENSION
command .

/DEBUG:LABELS, which will generate labels for every
executable source line in the form "line-number L". If these
labels are generated, they may be used as arguments with the
FORDDT commands PAUSE and GOTO.

This switch will also generate labels at the last location
allocated for a FORMAT statement so that FORDDT can detect
the end of the statement. These labels have the form
"format-label F". If they are generated, you will be able to
display and modify FORMAT statements via the TYPE and ACCEPT
commands.

Note that the :LABELS switch is automatically activated with
the :TRACE switch, since labels are needed to accomplish the

trace features.

/DEBUG:TRACE, which will generate a reference tco FORDDT
before each executable statement. This switch is required
for the trace command NEXT to function.

Note that if more than one FORTRAN statement has been placed
on a single input line, only the first statement will have a
FORDDT reference and line-number label associated with it.
This also applies to the :LABELS switch.

/DEBUG: INDEX, which will force the compiler to store in its
respective data location as well as a register the index
variable of all DO lcops at the beginning of each 1loop
iteration. You will then be able to examine DO loops by
using FORDDT. If you modify a DO loop index using FORDDT, it
will not affect the number of loop iterations because a
separate loop count is used. (See Section D.1.5.)

Note that this switch has no direct affect on any of the
commands in FORDDT.

E.4 LOADING AND STARTING FORDDT

The simplest method of loading and starting FORDDT 1is with
the following command string:

.DEBUG filename.ext (DEBUG)/F10

E-7

FORDDT

FORDDT responds with

ENTERING FORDDT
>>

The angle brackets indicate that FORDDT is ready to receive a
command, just as an asterisk (*) signifies FORTRAN-10's
readiness.

The DEBUG command to the monitor will also load DDT (standard
system debugging program). DDT can be used or ignored, but
it does require an extra 2K (octal) of core.

2. You may wish to 1load your compiled program and FORDDT
directly with the LINK-10 loader. (Loading with LINK-10 was
accomplished implicitly in the previous command string.) The
command seguence is as follows:

.R LINK
*filename.ext /DEB/G (loads DDT)
*filename.ext /DEB: FCRDDT /G (locads FORDDT)
FORTRA
*filename.ext /DEB: (DDT, FORDDT)/G loads both DDT
FORTRA and FORDDT

If the total FORTRAN program consists of many subroutines and
insufficient core 1is available to complete loading with
symbols, it is possible *to 1load with symbols just those
sections expected to give trouble. The remaining routines
need not be loaded.

E.5 SCOPE OF NAME AND LABEL REFERENCES

Each program unit has its own symbol table. When you initially enter
FORDDT, you automatically open the symbol table of the main program.
All references to names or labels via FORDDT must be made with respect
to the currently open symbol table. If you have given the main
program a name other than MAIN by using the PROGRAM statement (see
Chapter 5, Section 5.2), FORDDT will ask for the defined program name.
After you enter the program name, FORDDT will open the appropriate
symbel table. At this point, symbol tables in programs other than the
main program can be opened by using the OPEN command. (See Section
F.5.)

References to statement 1labels, 1line numbers, FORMAT statements,
variables, and arrays must have labels that are defined in the
currently open symbol table. However, FORDDT will accept variable and
array references outside the currently open symbol table, providing
the name is unique with respect to all program units in the given load
module,

E.6 FORDDT COMMANDS

This section gives a detailed description of all commands in FORLDDT.
The commands are given in alphabetical order.

ACCEPT

FORDDT

Allows you to change the contents of a FORTRAN variable,
array, array element, array element range, or FORMAT
statement. The command format is:

ACCEPT name/mode wvalue

where

name = the variable array, array element, array
element range, or FORMAT statement to be
modified.

mode = the format of the data value to be entered.
The mode keyword must be preceded by a slash
(/) and immediately follow the name.
Intervening blanks are not allowed. (Note
that /mode does not apply to FORMAT
modification.)

value = the new value to be assigned. The format of

the input value must correspond to the
specified mode.

DATA LOCATION MODIFICATION
Cata Modes

The following data modes are accepted:

Mode Meaning Example
A ASCII (left-justified) /FO0/
c COMPLEX (1.25,=-78.E+9)
D DOUBLE-PRECISION 123.45678890
F REAL 123.45678
I INTEGER 1234567890
0 OCTAL ' 76543210
R RASCII (right-justified) \BAR\
S SYMBOLIC PSI(2,4)

If not specified, the default mode is REAL.
Two-Word Values

For the data modes ASCII, RASCII, OCTAL, and SYMBOLIC,
FORDDT will accept a "/LONG" modifier on the mode switch.
This modifier indicates that the variable and the wvalue
are to be interpreted as two words long.

Example
ACCEPT VAR/RASCII/LONG '1234567890'

will assume that VAR is two words long and store the given
l0-character literal into it.

Initialization of Arrays

If the name field of an ACCEPT contains an unsubscripted
array name or a range of array elements, all elements of
the array or the specified range will be set to the given
value.

CONTINUE

FORDDT

Example

ACCEPT ARRAY/F 1.0
or
ACCEPT ARRAY (5)-ARRAY(10)/F 1.0

Note that this applies only to modes other than ASCII and
RASCII.

Long Literals

When the wvalue field of an ACCEPT contains an

unsubscripted array name or range of array elements, and
the specified data mode is ASCII or RASCII, the value
field is expected to contain a long 1literal string.
ACCEPT will store the string linearly into the array or
array range. If the array is not filled, the remainder of
the array or range will be set to zero. If the literal is
too long the remaining characters will be ignored.

Example
ACCEPT ARRAY/RASCII 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
FORMAT STATEMENT MODIFICATION

When the name field of an ACCEPT contains a label, FORDDT
expects this label to be a FORMAT statement label and that
the value field contains a new FORMAT specification.

Example
ACCEPT 10 (l1HO,F10.2,3(I2))

The new specification cannot be longer than the space
originally allocated to the FORMAT by the compiler. The
remainder of the area is cleared if the new specification
is shorter.

Note that FOROTS performs some encoding of FORMAT
statements when it processes them for the first time. If
any I/0 statement referencing the given FORMAT has been
executed, the FORTRAN program has to be restarted
(re-initializing FOROTS).

Allows the program to resume execution after a FORDDT
pause. After a CONTINUE is executed, the program either
runs to completion or until another pause is encountered.

The command format is:

CONTINUE n

where the n is optional and, if omitted, will be assumed
to be one. If a value is provided, it may be a numeric
constant or program variable, but it will be treated as an
integer. When the value n is specified, the program will
continue execution until the nth occurrence of this pause.
For example,

CONTINUE 20

'will continue execution after the 20th occurrence of the

pause.

E-10

DDT

DIMENSION

FORDDT

Transfers control of the wrojram to DDT, the standard
system debugging program (if loaded). Any files currently
opened by FOROTS are unaffected and return to T[ORDDT 1is
possible so that program execution nay be resumed.

.F10 is the global symbol wused to return control to
FORDDT. The command format is:

.F108G
where $ represents altmode or escape. Your program will
be in the same conditien as before unless you have
modified your core image with DDT.
Sets the user-defined dimensions of an array for FORDDT
access purposes. These dimensions need not agree with
those declared to the compiler in the source code. FORDDT
will allow vyou to redimension an array to have a larger
scope than that of the source program. If this is done, a
warning is given. The command format is:

DIMENSION S
where S is the name of the array specified.
For example:

DIMENSION ALPHA(7,5/6,10)

FORDDT will remember the dimensions of the array until it
is redefined or removed.

The command
DIMENSION

will give a full list of all the user-defined dimensions
for all arrays.

DIMENSION ALPHA

will display the current information for the array ALPHA
only.

DIMENSION ALPHA/REMOVE

will remove any user defined array information for the
array ALPHA.

Arrays, Array Elements, and Ranges
Array elements are specified in the following format:
name [dl/d2,...](S81l,...)

where

name = the name of the array

]

[wes] optional, and contains dimension information.
This form 1is wequivalent in effect to the

DIMENSION statement.

DOUBLE

GOTO

GROUP

FORDDT

{e..) = the subscripts of the specific element
desired.

The entire array is referenced simply by its unsubscripted
name. A range of array elements is specified by inputting
the first and last array elements of the desired range
separated by a dash (-) (A(5)-A(10)).

Defines the dimensions of a double-precision array. The
result of this command is the same as for the DIMENSION
command except that the array so dimensioned is understood
by FORDDT to be an array with word entries and, therefore,
reserves twice the space. The command format is:

DOUBLE arrayname

Allows you to continue your program from a point other
than the one at which it last paused. The GOTO allows you
to continue at a statement label or code-generating source
line number provided that the /DEBUG:LABELS switch has
oeen used or the contents of a symbol previously ASSIGNed
during the program execution.

Note that the program must be STARTed before this command
can be wused, and also note that a GOTO is not allowed
after the "C°C REENTER sequence. (See F.6.)

The command format is:
GOTO n

Sets up a string of text for input to a TYPE command. You
can store TYPE statements as a 1list of wvariables
identified by the numbers 1 through 8. This feature
eliminates the need to retype the same list of variables
each time you wish to examine the same group. Refer to
the TYPE command for the proper format of the list.

The command format is:

GROUP n list

where
n = the group number 1-8
list = a string of TYPE statements to be called in
future accessing of the current group number.
GROUP

with no arguments will cause FORDDT to type out the
current contents of all the groups

GROUP n

will type out the contents of the particular group
requested.

" Note that one group may call another.

LOCATE

MODE

NEXT

FORDDT

Lists the program unit names in which a given symbol is
defined. This 1is wuseful when the variable you wish to
locate is not in the currently open program unit and is
Jjefined in more than one program unit. The command format
is:

LOCATE n

where n may be any FORTRAN variable, array, label, line
number, or FORMAT statement number.

Defines the default formats of typeout from FORDDT. In
initial default mode, variables will be typed in
floating=-point format. If you wish to change the typeout
modes, the command format is:

MODE list

where list contains one or more of the modes in the
following table. (Only the first character of each mode
need be typed to identify it to FORDDT.)

Mode Meaning

FLOATING-POINT
DOUBLE-PRECISION
COMPLEX

INTEGER

OCTAL

ASCII (left-justified)
RASCII (right-justified)

WM OHRHOOM

A typical command string might be:
MODE &,I,CCTAL

Allows you to cause FORDDT to trace source lines,
statement labels, and entry point names during execution
of your program. This command will only provide trace
facilities if the program was compiled with the FORTRAN-10
/DEBUG switch. 1If this switch was not wused, the NEXT
command will act as a CONTINUE command. The command
format is:

NEXT n/sw
where
n = a program variable or integer numeric value
and
sSW = one of the'following switches

/S= statement label
/L= source line
/E= entry point

The default starting value of n is 1, a single statement
trace. The default switch is /L.

The command

NEXT 20/L

OPEN

PAUSE

FORDDT

will trace the execution of the next 20 source line
numbers or until another pause is encountered.

Note that if no argument is specified, the last argument
given will be used. For example,

NEXT /E

will change the tracing mode to trace only subprogram
entries using the numeric argument previously supplied.

Allows you to open a particular program unit of the loaded
program so that the variables will be accessible to
FORDDT. Any previously opened program unit is closed
automatically when a new one is opened. Only global
symbols, symbols in the currently open unit, and unique
locals are available at any one time. Note that starting
FORDDT automatically opens the MAIN program. The command

format is:
OPEN name

where name is the subprogram name. OPEN with no arguments
will reopen the MAIN program.

If the PROGRAM statement was used in the FORTRAN program,
the name supplied by you will be requested upon entering
FORDDT.

Allows you to place a pause request at a statement number,
source 1line number, or subroutine entry point. Up to ten
pauses may be set at any one time. When a pause Iis
encountered, execution is suspended at that point and
control is returned to FORDDT. Also, when a pause is
encountered, the symbol table of that subprogram is
automatically opened.

The command formats include:

PAUSE P
PAUSE P AFTER n
PAUSE P IF condition
PAUSE P TYPING /g
PAUSE P AFTER n TYPING /g
PAUSE P IF condition TYPING /g
where
P = the point where the pause is requested,
n = an 1integer constant or wvariable or array
element
o] = a group number
PAUSE 100

will set a pause at statement label 100, cause execution
toc be suspended, and cause FORDDT to be entered on
reaching 100 in the program.

PAUSE #245 AFTER MAX(5)

‘'will cause a pause to occur at source line number 245

after encountering this point the number of times
specified by MAX(5). Note that AFTER may not be
abbreviated.

E-14

REMOVE

START

STOP

FORDDT

PAUSE DELTA IF LIMIT(3,1).GT.2.5E-3

If the variable LIMIT(3,1) 1is greater than the wvalue
2.5E-3, the pause request will be granted. The IF may not
be abbreviated, but all the usual FORTRAN logical

connectives are allowed.
PAUSE 505 TYPING /5

will request a pause to be made at the first occurrence of
the 1label 505, and the wvariables in group 5 will be
displayed. The TYPING specification may not be
abbreviated.

PAUSE LINE#24 AFTER 16 TYPING 3

will place a request at source line number 24 after 16
(octal) times through; however, the contents of group 3
will be displayed every time.

When the TYPING option is used with the PAUSE command ,
control can be transferred to FORDDT at the next typeouk
by typing any character on the terminal.

Note that pause requests remain after a contrel C REENTER
sequence, a START command, or a control C START seguence.

Removes the previously reguested pauses. The command
format is:

REMOVE P
For example,
REMOVE L#123
will remove a pause at program source line number 123.
REMOVE ALPHA
will remove a pause at the subroutine entry to ALPHA.
REMOVE with no arguments will remove all your pause
requests, and, in this case, no abbreviation of REMOVE is
allowed. This prevents the unintentional removal of

pauses.

Starts your program at the normal FORTRAN main program
entry point. The command format is:

START
-

Terminates the program, requests FOROTS to close all open
files, and causes an exit to the monitor. The usual
command format is:

STOP
STOP/RETURN

will allow a return to monitor mode without releasing
devices or closing files so that a CONTINUE can be issued.

E-15

STRACE

TYPE

WHAT

FORDDT

Displays a subprogram level backtrace of the current state
of the program. The command format is:

STRACE

Causes one or more FORTRAN defined variables, arrays, or
array elements to be displayed on your terminal. The
command format is:

TYPE list

where list may be one or more variable or array references
and/or group numbers. These specifications must be
separated by commas, and group numbers must be preceded by
a slash (/). The command with no arguments will use the .
last argument list submitted to FORDDT.

An array element range <can also be specified. For
example:

TYPE PI(5)=-PI(13)

will display the values from PI(5) to PI(13) 1inclusive.
If an unsubscripted array name is specified, the entire
array will be typed.

There are several methods of choosing the form of typeout
in conjunction with the MODE command.

1. If you do not specify a format, the defaultis
floating-point form.

2. You can specify a format via the MODE command
described in this appendix.

3. You can change the format previously designated
by the MODE command by including print modifiers
in the TYPE or GROUP string. The print modifiers
are:

/A:/C,/D,/F,/1,/0,/R

The first print modifier specified in a string of
variables determines the mode for the entire
string unless another mode is placed directly to
the right of a particular variable. For example,
in

TYPE /IK,L/0,M,N/A,/2

the typeout mede is integer until another mode is
specified. Therefore,

K,M,and/2 = Integer
L = OCTAL
N = ASCII
Displays the information saved by FORDDT. The command

format is:

WHAT

FORDDT

E.7 ENVIRONMENT CONTROL

If a program enters an indefinite loop, you can recover by typing a
“C"C REENTER seguence. This action will cause FORDDT to simulate a
pause at the point of reentry and allow you to control your run-away
program.

Most commands can be used once the program has been reentered;
however, GOTO, STRACE, TYFE, and ACCEPT cause transfer of control to
routines external to FORDDT. No guarantee can be made to ensure that
any of these commands following a “C C REENTER sequence will not
destroy the user profile. The program must be returned to a stable
state before any of these four commands can be issued. 1In order to
restore program integrity, you should set a pause at the next label
and then CONTINUE to it. If the /DEBUG:TRACE switch was used, a NEXT
1 command can be issued to restore program integrity.

E.8 FORTRAN-10/0PTIMIZE SWITCH

You should never attempt to use FORDDT with a program that has been
compiled with the /OPTIMIZE switch. The global optimizer causes
variables to be kept in ACs. For this reason, attempts to examine or
nodify variables in optimized programs will not work. Also, since the
optimizer moves statements around in your program, attempts to trace
program flow will lead to great confusion.

n.9 FORDDT MESSAGES

FORDDT responds with two levels of messages - fatal error and warning.
Fatal error messages indicate that the processing of a given command
has been terminated. Warning messages provide helpful information.
The format of these messages is:

?FDTXXX text
or
$FDTXXX text

where
? = fatal
2 = warning
FDT = FORDDT mnemonic
XXX = 3-letter mnemonic for error message
text = explanation of error

Square brackets ([]) in this section signify variables and are not
output on the terminal.

Fatal Errors

The fatal errors in the following list are each preceded by ?FDT on
the wuser terminal and on listings. They are listed in alphabetical
order.

BDF [symbol] IS UNDEFINED OR IS MULTIPLY DEFINED

BOI BAD OCTAL OUTRUT

An illegal character was detected in an octal input wvalue.

CCN

CFO

CNU

CSH

DTO

FCX

FNI

FNR

IAF

IAT

ICC

IER

IGN

INV

FORDDT

CANNOT CONTINUE

Pause has been placed on some form of skip instruction
causing FORDDT to loop; should never be encountered in
FORTRAN-10 compiled programs.

CORE FILE OVERFLOW

The storage area for GROUP text has been exhausted.

THE COMMAND [name] IS NOT UNIQUE

More letters of the command are required to distinguish it
from the other commands.

CANNOT START HERE

The specified entry point is not an acceptable FORTRAN-10
main program entry point.

DIMENSION TABLE OVERFLOW

FORDDT does not have the space to record any more array
dimensions until some are removed.

FORMAT CAPACITY EXCEEDED

An attempt was made to specify a FORMAT statement requiring
more space than was originally allocated by FORTRAN-10.

FORMAL NOT INITIALIZED

Reference to a FORMAL parameter of some subprogram that was
never executed.

[array name] IS A FORMAL AND MAY NOT BE RE-DEFINED
FORMAL parameters may not be DIMENSICNed.
ILLEGAL ARGUMENT FORMAT

The parameters to the given command were not specified
properly. Refer to the documentation for correct format.

ILLEGAL ARGUMENT TYPE = [number)]

An unrecognized subprogram argument type was detected.
Submit an SPR if this message occurs.

COMPARE TWO CONSTANTS IS NOT ALLOWED

Conditional test involves two constants.

E (number)

Internal FORDDT error - please report via an SFR.

INVALID GROUP NUMBER

Group numbers must be integral and in the range 1 through 8.
INVALID VALUE

A syntax error was detected in the numeric parameter.

E-18

ITM

LGU

LNF

MLD

MSN

NAL

NDT

NFS

NFV

NGF

NPH

NSP

NUD

PAR

FORDDT

ILLEGAL TYPE MODIFIER - S
The mode S is only valid for ACCEPT statements.
[array name] LOWER SUBSCRIPT.GE.UPPER

The lower bound of any given dimension must be less than or
equal to the upper bound.

[label] IS5 NOT A FORMAT STATEMENT
[array name] MULTI-LEVEL ARRAY DEFINITION NOT ALLCWED

The same array cannot be dimensioned more than once (via the
[dimensions] construct) in a single command.

MORE SUBSCRIPTS NEELDED

The array is defined to have more dimensions than were
specified in the given reference.

NOT ALLOWED

An attempt has been made to modify something other than data
or a FORMAT.

NOT AFTER A RE-ENTER

The given command is not allowed until program inteqgrity has
been restored via a CONTINUE or NEXT command.

DDT NOT LOADED

CANNOT FIND FORTRAN START ADDRESS FOR [program name]
Main program symbols are not loaded.

[symbol] IS NOT A FORTRAN VARIABLE

Names must be 6-character alphanumeric strings beginning
with a letter.

CANNOT GOTO A FORMAT STATEMENT
CANNOT INSERT A PAUSE HERE

An attempt has been made to place a pause at other than an
executable statement or subprogram entry point.

[symbol] NO SUCH PAUSE

An attempt has been made to REMOVE a pause that was never
set up. .

[symbol] NOT A USER DEFINED ARRAY

An attempt has been made to remove dimension information for
an array that was never defined.

PARENTHESES REQUIRED (..)

Parentheses are reqguired for the specification of FGRMAT
statements and complex constants.

PRO

SER

STL

TMS

URC

FORDDT

TOO MANY PAUSE REQUESTS

The PAUSE table has been exhausted. The maximum limit 1is
10.

SUBSCRIPT ERROR

The subscript specified is outside the range of its defined
dimensions.

[array name] SIZE TOO LARGE

An attempt has been made to define an array larger than
256K.

TOO MANY SUBSCRIPTS

The array is defined to have fewer dimensions than are
specified in the given element reference.

UNRECOGNIZED COMMAND

Warning Messages

Each warning message in this list is preceded by %FTN on your terminal
and on listings. They are given here in alphabetical order.

ABX

CHI

NAR

NSL

NST

POV

SFA

SPO

XPA

[array name] COMPILED ARRAY BOUNDS EXCEEDEDL

FORDDT has detected another symbol defined in the specified
range of the array. Note that this will occur in certain
EQUIVALENCE cases and can be ignored at that time.
CHARACTERS IGNORED: " [text]"

The portion of the command string included in "text" was
thought to be extraneous and was ignored.

[symbol] IS NOT AN ARRAY

NO SYMBOLS LOADED

FORDDT cannot find the symbol table.
NOT STARTED

The specified command requires that a START be previously
issued to ensure that the program is preoperly initialized.

PROGRAM OVERLAYED

The symbol table is different from the last time FORDDT had
control.

SUPERSEDES F10 ARRAY

The FORTRAN-10 generated dimension is being superseded for
the given array.

VARIABLE IS SINGLE-PRECISION ONLY
ATTEMPT TO EXCEED PROGRAM AREA WITH [symbol name]
An attempt has been made to access memory outside the

currently defined program space.
E-20

decsuscemic
FILCOM
File Comparison Program

digital equipment corporation - maynard. massachusetts

79

80

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser under a license for use on a
single computer system and can be copied (with inclusion of DIGITAL’s copyright notice) only
for use in such system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software
on equipment that is not supplied by DIGITAL.

Copyright © 1975 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page. located at the back of this docu-
ment. explains the various services available to DIGITAL software users.

The postage prepaid READER'S COMMENT form on the last page of this document requests
the user’s critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation.

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KA10 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0S/8 RT-11
DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET-10

UNIBUS

FILCOM 81

FILCOM PROGRAM

FUNCTION

The FILCOM program is used to compare two versions of a file and to output any differences.
Generally, this comparison is line by line for ASCII files or word by word for binary files.
FILCOM determines the type of comparison to use by examining either switches specified in
the command string or the extension of the files. Switches always take precedence over file
extensions.

COMMAND FORMAT
.R FILCOM

*output dev:file.ext [directory] = input dev (1):file.ext[directory], input dev (2):
file.ext [directory]

output dev: = the device on which the differences are to be output.
input dev: = the device on which an input file resides.
DEFAULTS

1. If the entire output specification is omitted, the output device is assumed to be
TTY. However, the equal sign must be given to separate the input and output
specifications of the command string.

2. If an output filename is specified, the default output is DSK.

3. If the output filename is omitted, the second input filename is used, unless it is
null. In this case, the filename FILCOM is used.

4. If the output extension is omitted, .SCM is used on a source compare and .BCM
is used on a binary compare.

5. If the [directory] is omitted (input or output side), the user’s default directory
is assumed.

6. If an input device is omitted, it is assumed to be DSK.

7. If the filename and/or extension of the second input file is omitted, it is taken
from the first input file.

82

SWITCHES

FILCOM

A dot following the filename of the second input is necessary to explicitly indi-
cate a null extension, if the extension of the first input file is not null. For ex-
ample, to compare FILE.MAC and FILE. (i.e., with null extension), use the
following command string:

.R FILCOM
* = FILE.MAC,FILE.

The second input file specification cannot be null unless a binary compare is
being performed. In a binary compare, if the first input file is not followed by
a comma and a second input file descriptor, the input file is compared to a zero
file and is output in its entirety. This gives the user a method of listing a binary
file. Refer to Example 4.

The following switches can appear in the command string, depending on whether a source
compare or a binary source compare is being performed.

/H
/nL

/Q

/nU

/W

/X

/A

Binary Compare
Type list of switches available (help text from device SYS:).

Specify the lower limit for a partial binary compare (n is an octal
number). This switch, when used with the /nU switch, allows a binary
file to be compared only within the specified limits.

When the files are different, print the message ?FILES ARE DIFFER-
ENT, but do not list the differences. This switch is useful when
BATCH control files want to test for differences but do not want

the log file filled with these differences.

Specify the upper limit for a partial binary compare (n is an octal
number). This switch, when used with the /nL switch, allows a binary
file to be compared only within the specified limits.

Compare files in binary mode without expanding the files first (refer
to Appendix D of the Operating System Commands Manual). This
switch is used to compare two binary files with ASCII extensions.

Expand SAYV files before comparing them in binary mode. This action
removes differences resulting from zero compression (refer to Appen-
dix D of the Operating System Commands Manual).

Source Compare

Compare files in ASCII mode. This switch is used to force a source
compare on two ASCII files.

/B

/C

/H

/nL

/Q

/S
/U

FILCOM 83

Compare blank lines. Without this switch, blank lines are ignored.

Ignore comments (all text on a line following a semicolon) and spacing
(spaces and tabs). This switch does not cause a line consisting entirely
of a comment to become a blank line, which is normally ignored.

Type list of switches available (help text from device SYS:).

Specify the number of lines that determine a match (n is an octal num-
ber). A match means that n successive lines in each input file have
been found identical. When a match is found, all differences occurring
before the match and after the previous match are output. In addition,
the first line of the current match is output after the differences to

aid in locating the place within each file at which the differences oc-
curred. The default value for n is 3.

Print the message 7FILES ARE DIFFERENT, when tne files are dif-
ferent, but do not list the differences.

Ignore spaces and tabs.

Compare in update mode. This means that the output file consists of
the second input file with vertical bars (or back slashes for 64-character
printers) next to the lines that differ from the first input file. This
feature is useful when updating a document because the changes made
to the latest edition are flagged with change bars in the left margin.
The latest edition of the document is the second input file.

If switches are not specified in the command string, the files are compared in the mode implied
by the extension. The following extensions are recognized as binary and cause a binary com-
pare if one or both of the input files have one of the extensions.

.BAC .HGH RMT
.BIN .LOW .RTB
BUG .MSB SAV
.CAL .OVR SFD
.CHN .QUE .SHR
.DAE .QUF SVE
.DCR .REL SYS
.DMP .RIM .UFD
XPN

Binary files are compared word by word starting at word 0 except for the following two cases:

1.

Files with extensions .SHR and .HGH are assumed to be high segment files.
Since the word count starts at 400000, upper and lower limits, if used, must be
greater than (or equal to in the case of the lower limit) 400000.

Files with extension .SAV, .LOW, and .SVE are assumed to be compressed core
image files and are expanded before comparing.

84

FILCOM

Conflicts are resolved by switches or defaults. If a conflict arises in the absence of switches,
the files are assumed to be ordinary binary files.

OUTPUT

In most cases, headers consisting of the device, filename, extension, and creation date of each
input file are listed before the differences are output. However, headers do not appear on out-

put from the /U switch (update mode on source compare).

Source compare output — After the headers are listed, the following notation appears in the
left column of the output

n)m

where
n is the number of the input file, and
m is the page number of the input file

(see examples).

The right column lists the differences occurring between matches in the input files. Following
the list of differences, a line identical to each file is output for reference purposes.

The output from the /U switch differs from the above-described output in that the output file
created is the second input file with vertical bars in the left column next to the lines that are
different from the first input file.

Binary compare output — When a difference is encountered between the two input file, a
line in the following format appears on the output device:

octal loc. first file-word second file-word XOR of
both words

If the exclusive OR (XOR) of the two words differs only in the right half, the third word out-
put is the absolute value of the difference of the two right halves. This usually indicates an
address that changed.

If one input file is shorter than the other, after the end of file is encountered on the shorter
file, the remainder of the longer file is output.

CHARACTERISTICS

The R FILCOM command:

Places the terminal in user mode.

Runs the FILCOM program, thereby destroying the user’s core image.

FILCOM 85

ASSOCIATED MESSAGES
72K CORE NEEDED AND NOT AVAILABLE

FILCOM needs 2K of core to initialize I/O devices and this core is not available from
the monitor.

?BUFFER CAPACITY EXCEEDED AND NO CORE AVAILABLE

The buffer is not large enough to handle the number of lines required for looking -
ahead for matches, and additional core is not available.

?COMMAND ERROR
One of the following errors occurred in the last command string typed.

1. There is no separator (+ or =) between the output and input specifications.
2. The input specification is completely null.
3. The two input files are not separated by a comma.
4. A file descripter consists of characters other than alphanumeric characters.
5. FILCOM does not recognize the specified switch.
6. The project-programmer number is not standard format, i.e., [proj,prog].
7. The value of the specified switch is not octal.

8. The first input file is followed by a comma but the second input file is
null.

?DEVICE dev: NOT AVAILABLE
Device is assigned to another job or does not exist.

7FILE n NOT IN SAV FORMAT
The user indicated via the /X switch that the file is to be expanded but the specified
file is not compressed file format. n is either 1 or 2 indicating the first file or the
second file.

?FILE n READ ERROR
An error has occurred on either the first or second input device.

7%FILES ARE DIFFERENT

The two input files specified in the command string are different (i.e., the two files are
not two versions of the same file but are two different files).

86

FILCOM

?7INPUT ERROR - file.ext FILE NOT FOUND
The specified file could not be found on the input device.
NO DIFFERENCES ENCOUNTERED
No differences were found between the two input files.
?OUTPUT DEVICE ERROR
An error has occurred on the output device.
?0UTPUT INITIALIZATION ERROR
The output device cannot be initialized for one of the following reasons:
1. The device does not exist or is assigned to another job.
2. The device is not an output device.
3. The file cannot be placed on the output device.
Examples

1. The user has the following two ASCII files on disk:

First File Second File
FILE A FILE B T
A A
B B
c C
D G
E I: page |
G J
H i
1 2
J 3
K
L
M = N

FILCOM
First File Second File

N *N
0 0
P P
Q Q
R R
L] 8
T T
U u B
v v page 2
W 4
X 5
Y W
Z X

Y

b/

To compare the two files and output differences on the terminal, the following sequence is
used:

«R FILCOM_/ Run the FILCOM program.

= FILEA,FILEB_ / Compare the two files on disk and output the
differences on the terminal. By default. three
consecutive identical lines determine a match.

it FILE {) DSKIFILEA CREATED: 1456 17«JAN={972
o FILE 2) DSKSFILEB CREATED) 1456 {7=JANe1972
_ 191 FILE A
!me . 1) A >Firsl difference
identical L2 22
in both <231 FILE B
files 2) A
T I I T I R 2L
i) D
1) E /= Second difference
. 1) F
'I.T‘IL ' 1) (]
!denIIC(l|<****
IP l'?('!lh 2,1 G
Bles T T S]

87

88 FILCOM

1)1 K
1) L
1) M
N
line ::3; Third difference
identical 231 1
in both 2) 2
files ?) 3
212 N
22T XY
; 1)2 W
!$e-h| “hew
identica 292 4 }‘
in both =
files 2) 5
' 2) W
L XTI T2 2L RS L}

This column indicates the page number of the file.
This column indicates either the first file or the
second file.

To compare the two files and output the differences on the line printer, the following com-
mands are used. Note that in this example the number of successive lines that determine a
match has been set to 4 with the /4L switch.

WR FILCOM_/
SLPT1/4L = FILEA,FILEB_)/

FILE 1) DSKiFILEA CREATED: 1456 {7e«JANe{972
FILE 2) DSKJIFILEB CREATED1 1456 17«JAN=1972
1)1 FILE A

1) A

1) B }

:; g These lines are listed as being

1) E different because the /4L switch

1) F specifies that 4 consecutive line

1) G must be found identical in the
™ two files before thev are consid-

2)1 FILE B ered as a match.

2) A }

2) B

2) c

2) G

(12X 2T 22T 222 XY

89

FILCOM

1)1 K

1) L

1) M

132 N

ey

2)1 |

2) 2

2) 3

2)2 N
BREBRBBBRRREDY
1)2 W

BuEE

2)2 4

2) S

2) W
PRBRERBBRE RS

To compare the two files so that the second input file is output with vertical bars in the left
column next to the lines that differ from the first input file, use the following command
sequence.

+R FILCOM_/
SLPT1/U = FILEA,FILEB_/

| FILE B

The lines with vertical bars in-
dicate the differences between
the two files.

NEXENMa<CHBIDTVOZWN~LHNIQONE >

90

2

3.

4.

FILCOM

To compare two binary files on disk and output the differences on the terminal, use
the following command sequence.

sR FILCOM_/
#TTY1.DSKIDIAL,REL,DIAL2_/

FILE 1)
FILE 2)

000000
000002
000003
000004

To compare two high segment file, the command sequence below is used. Note that the

DSKIDIAL,REL
DSKIDIAL2,REL

000004 0000014
000000 054716
000006 000001
000000 000000

location begins at 400000,

R FILCOM.'/
BTTY!.SYSITABLE,SHR, TABLE,SHR.'/

FILE 1)
FILE 2)

400000
400003
400004
400005
400010
400011
400012
400013

8YS)TABLE, SHR
DSK1TABLE, SHR

400010
000000
000070
444862
000000
000000
000136
406354

001611
006675
005600
545741
634000
474000
402000
200040

CREATEDt 0000

CREATEDI

000004 000060
000314 372712
017573 510354
017573 813216

CREATED1- 2020
CREATED1 1829

4071387
407670
000113
6258700
403516
414036
000720
000472

001630
015024
004700
554143
260740
200000
202000
201000

To list a binary file, use the following command sequence.

sR FILCOM_/
¥TTY1.SY8IDOT,REL,/

000000
000004
000002
000003
000004
000005
000006
000007
[]

000004
000000
000000
000006
000000
000007
000001
000000

000001
000000
054716
000001
000000
517716
0000002
000000

10

23=DEC=1971
0000 {2=AUG=1971

000087
000311 326004
017875 8510385
017573 513216

24=JAN={972
J0=NOV=1974

007147
407670
000163
261262
403516
414036
000676
406726

0ooo021
013651
001100
011602
454740
674000
600000
001040

FILCOM

5. To compare two binary files between locations 150-160 (octal).

R FILCOM
¥TTY1/150/160ULSYS1SYSTAT,SAV,SYS18YSDPY, SAV
FILE 1) SYSISYSTAT,SAV CREATEDI 0818 30=NOVel971
FILE 2) SYSISYSDPY,SAV CREATEDI 1642 29=NOVe1971

000150 200400 000137 200740 003217 000340 003320
000151 260740 004226 404500 004242 664240 000064
0001%2 260740 004253 66 002000 401240 006283

000153 200040 005011 260740 002723 060700 007732
000154 260740 004063 200040 004243 060700 000220
000155 201041 777777 202040 003241 003001 7748136
000156 047040 000042 200040 004241 247000 004203
000157 254000 000174 251040 004142 003040 004036
000160 476000 006774 211040 000144 667040 006630

6. To compare two .SAV files. Note that the files are expanded before the comparison.

.R FILCOM
®TTY1.SYSITRY!,SAV,SYSITRY,SAV

FILE {) SYS$TRY1,SAV CREATED: 2043 0S5=JAN=1972
FILE 2) SYSITRY,SAV CREATED: 0818 30=NOVe{$71

000114 004000 000140 000000 000000 004000 000140
000116 777536 005536 000000 000000 777536 005336

000117 000000 005536 000000 000000 005836
000120 006000 000140 007222 000140 001222 000000
000121 000000 006000 000000 007222 001222

000130 010000 000005 000000 000000 010000 000005
000133 003727 008777 006643 007777 005164 002000
000137 003400 000070 046700 000004 045300 000074
000140 264000 0014%4 047000 000000 223000 004454
000141 260040 001773 200040 005075 060000 004706
000142 201240 001447 402000 006644 603240 007203
000143 542240 001634 251040 007224 713200 006446
000144 260040 002774 403000 000015 663040 00276}
000145 621000 000010 476000 006715 257000 006708
000146 200240 003504 200740 006606 000500 008302
000147 251240 000012 051440 003076 200300 0085064
000150 402000 003613 200400 000137 602400 003724
000151 201040 003730 260740 004226 061700 007516
000152 200260 003632 260740 004253 060520 007464
000183 321240 000164 200400 005084 121200 0085178

11

QeCSUSCENIC
FILEX
File Transfer Program

digital equipment corporation - maynard. massachusetts

93

94

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser under a license for use on a
single computer system and can be copied (with inclusion of DIGITAL’s copyright notice) only
for use in such system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software
on equipment that is not supplied by DIGITAL.

Copyright © 1975 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page. located at the back of this docu-
ment. explains the various services availabhle to DIGITAL software users.

The postage prepaid READER'S COMMENT form on the last page of this document requests
the user’s critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation.

CDP DIGITAL INDAC Ps/8
COMPUTER LAB DNC KA10 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0s/8 RT-11
DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET-10

UNIBUS

FILEX 95

FILEX

1.0 INTRODUCTION

FILEX is a general file transfer program intended to convert between various core image for-
mats, and to read and write various DECtape directory formats as well as standard disk files.

The commands to FILEX are similar to those in a PIP command string. Files are transformed
as 36-bit binary data. No processing is done on the data itself except that necessary to con-
vert between various core image representations.

Rapid tape processing via a disk scratch file is available.

“Wild-card” filenames (*) are permitted.

2.0 DEVICE FORMATS AVAILABLE

Non-DECtape devices are read and written in binary. Device, filename, extension, project-
programmer number, and protection are supplied in the usual way.

DECtapes in the usual PDP-10 directory format may be read or written in binary in the usual
way. They may also be read via a disk scratch file, which is much faster for either a tape with
many files, or a tape which has been written by TENDMP (with consecutive blocks allocated

to the same file).

Similarly, DECtapes may be read (with or without use of a scratch file) and written in either
the old DEC PDP-6 DECtape format, or the MIT project MAC PDP-6/10 DECtape format.

For both of these formats, the monitor’s DECtape service routine cannot be made to run
efficiently, so the scratch file technique is advised. The /O (old) and /M (mac) switches specify
these formats. /T (ten) returns to PDP-10 format tapes.

3.0 DATA FORMATS AVAILABLE

Unless one of the following special formats applies, all files are transferred unmodified as
36-bit binary data.

Core image files are the special cases handled. Processing is available to convert from any of
the following formats to any other of them. If the input and output formats are identical,
the file is simply copied.

Each of the following core image formats is indicated by specific extensions, all of which may
be overridden by switches.

96

FILEX

3.1 Save-file Format
This format is assumed for files with extensions .SAV, .LOW, and .SVE, and can be forced

by the /C switch (compressed core image). The default output extension for a /C file is
SAV.

3.2 Expanded Core Image File (as used by FILDDT)

This format is assumed for files with the extension .XPN, and can be forced by the /E switch
(expanded). The default output extension for a [E file is .XPN.

3.3 Dump Format (old PDP-6 version of save)

This format is assumed for files with extension .DMP, and can be forced by the /D switch.

3.4 SBLK Format (simple block)

This is Project MAC’s equivalent ot DEC’s .SAV format. It is not assumed for any extension,
but is forced by the /S switch. The default output extension for a /S file is .BIN.

3.5 Binary Processing

The /B switch causes binary processing even though a file has one of the above special exten-
sions.

4.0 COMMAND FORMAT
A FILEX command is of the form:

* output specifier + input specifier(s)
or
* output specifier = input specifier(s)

.R FILEX
*dev:ofile.ext[directory] <nnn>/switches=
dev:file.ext[directory] /[switches

‘If the project-programmer number and/or a switch appear after a device, they apply to all
following files. If they appear after a filename, they apply only to that file.

The input name or extension may be an asterisk (*), in which case the usual wild-card proc-
essing occurs.

The output name or extension may be an asterisk (*), in which case the name or extension of
the input file is copied.

FILEX

If the output name or extension is missing, almost the same processing occurs as for an aster-
isk (*), except that all core image files will be written with the default extension and format
appropriate to the output device (unless overridden by switches). That is,

*DSK:<DTA1:FOO.DMP/O

would cause the DMP format file to be compressed (/C) and written as FOO.SAV. If protec-
tion <nnn> is not specified, files are written with the system standard protection unless the
files are being written on SYS. On SYS, files are written with <155>, except for files with
extension .SYS. These files have the default protection of <157>.

5.0 DECTAPE PROCESSING SWITCHES

To cause an input DECtape to be processed quickly via a scratch file, use the /Q (quick)
switch.

To cause the /Q processing and preserve the scratch file after processing for use by another
command, use the /P (preserved quick) switch.

To reuse a scratch file preserved by /P in a previous command, use the /R (reuse) switch.
To ignore read errors on the input device, use the /G (go on) switch.

FILEX checks the always-bad-checksum bit in the level D disk format, so /G is not needed
for those files with .RPABC on (e.g., CRASH.SAV).

To copy a CRASH.SAV file to an expanded format file for FILDDT to examine, type (for
example):

DSK:SER106.SAV[10,10]/E<~DSKC:CRASH.SAV[1,4]

while logged in as [1,2] (to be able to read CRASH.SAV, which is read-protected by the
refresher).

The /Z switch on an output file, if it is on a DECtape, causes the appropriate format of the
zeroed directory to be written on the tape. If the string

tTAPEID

appears in the output specifier, then TAPEID is written as the tape identifier in the directory.
TAPEID may be 6 characters on a PD-10 tape, 3 characters on a Project MAC tape, and is not
present on a PDP-6 tape.

The /L switch on an input DECtape file causes the tape directory to be typed on the TTY.
Do not put TTY: in the output file specifier. That would try to write files on the TTY in
binary.

97

98

FILEX

6.0 SUMMARY OF FILEX SWITCHES

Meaning of Switches:

Help text

[H

to obtain an explanation of the command string and individual switches.

6.1 DECtape Format Specifiers

fE
M
/O
/T

IV

PDP-15 DECtape format

MIT project MAC PDP-6/10 DECtape format
Old DEC PDP-6 DECtape format

normal PDP-10 directory format

PDP-11 DECtape format (Note that PDP-11 contiguous files are not sup-
ported by FILEX.)

6.2 File Format Specifiers

/A
/B

/C

/D
/E

/1
/S

ASCII processing; meaningful only for PDP-11 and PDP-15 tapes.

binary processing; overrides default extension. Files read from a PDP-11
format tape with this switch contain four 8-bit bytes in each 36-bit word
(1st byte in bits 10-17, 2nd byte in bits 2-9, 3rd byte in bits 28-35, and
4th byte in bits 20-27). Files written on a PDR-11 format tape with this
switch are assumed to have the same format.

compressed; save file format. This format is assumed for files with exten-
sions .SAV, .LOW, .SVE. The default output extension is .SAV unless the
input extension is .LOW or .SVE, in which case the extension remains
unchanged.

dump format. This format is assumed for files with extension .DMP.

expanded core image files (used by FILDDT). This format is assumed for
files with extension .XPN. The default output extension is .XPN.

Image processing; meaningful only for PDP-11 and PDP-15 tapes.

simple block (SBLK) format, project MAC’s equivalent of .SAV format.
The default output extension is .BIN.

FILEX

6.3 DECtape Processing Specifiers

/G

/L

/P

/Q

/R
/Z

Characteristics

(go on), ignores read errors on input device. FILEX checks the always-bad-
checksum bit in the S-series monitor, so this switch is not needed for files
with .RPAC on (e.g., CRASH.SAV).

(list), causes a directory on an input DECtape file to be typed on the termi-
nal, or causes a directory listing of the output DECtape at the end (i.e.,
after the output).

(preserved), causes quick processing (/Q) and preserves the scratch file after
processing for use by another command.

(quick), causes an input or output DECtape to be processed quickly by
creating a scratch file on disk. This file is deleted after processing is com-
pleted.

(reuse), reuses a scratch file preserved by a /P in a previous command.

(zero), causes the appropriate format of a zero directory to be written on

a DECtape output file. (Zeroing a DECtape directory is equivalent to
deleting all the files on the tape.) If TAPEID appears in the output speci-
fier, then TAPEID is written as the tape identifier in the directory. TAPEID
is preceded by an up arrow (1) and may be 6 characters on a PDP-10 tape,
3 characters on a project MAC tape, and is not present on a PDP-6 tape.

The R FILEX command:

Runs the FILEX program, thereby destroying the user’s core image.

Examples
aR FILEX ! The dump format file is compressed
#DSK1. DTAL:TEST,DMP/C and written as TEST.SAV.
Copy CRASH.SAV to an expanded
format file for FILDDT to examine.
sR FILEX </

¥DSK1SER10%5,XPN{10,1).DSKCICRASH,SAV([1,4)

29

101

decsyscenmio

GLOB
Global Symbol Listing

digital equipment corporation - maynard. massachusetts

102

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser under a license for use on a
single computer system and can be copied (with inclusion of DIGITAL’s copyright notice) only
for use in such system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software
on equipment that is not supplied by DIGITAL.

Copyright © 1975 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page. located at the back of this docu-
ment. explains the various services available to DIGITAL software users.

The postage prepaid READER'S COMMENT form on the last page of this document requests
the user’s critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation.

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KA10 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0S/8 RT-11
DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET-10

UNIBUS

GLOB 103

GLOB PROGRAM

FUNCTION

The GLOB program reads multiple binary program files and produces an alphabetical cross-
referenced list of all the global symbols (symbols accessible to other programs) encountered.
This program also searches files in library search mode, checking for globals, if the program
file was loaded by the LOADER in library search mode.

The GLOBAL program has two phases of operation; the first phase is to scan the input files
and build an internal symbol table, and the second, to produce output based on the symbol
table. Because of these phases, the user can input commands to GLOB in one of two ways.
The first way is to specify one command string containing both the output and input specifi-
cations. (This is the command string format most system programs accept.) The second is
to separate the command string into a series of input commands and output commands.

COMMAND FORMATS
1. RGLOB
outdev:file.ext[directory]=input dev:file.ext[directory]
file.ext, . . . ,dev:file.ext[directory]
2. R GLOB
followed by one or more input commands in the form
dev:file.ext[directory] ,file.ext[directory], . . .,
dev:file.ext[directory], . ..
and then one or more output commands in the form
outdev:file.ext[directory|=
When the user separates his input to GLOB into input commands and output commands.
(Command Format #2), the input commands contain only input specifications and the out-
put commands, only output specifications. Each output command causes a listing to be
generated; any number of listings can be printed from the symbol table generated from the
current input files as long as no input commands occur after the first output command.

When an input command is encountered after output has been generated, the current symbol
table is destroyed and a new one begun.

104 GLOB

DEFAULTS

1. If the device is omitted, it is assumed to be DSK. However, if the entire output
specification is omitted, the output device is TTY.

2. If'the output filename is omitted, it is the name of the last input file on the line
(Command Format #1) or is GLOB if the line contains only output commands
(Command Format #2). The input filenames are required.

3. If the output extension is omitted, .GLB is used. If the input extension is omit-
ted, it is assumed to be .REL unless the null extension is explicitly specified by
a dot following the filename.

4. If the project-programmer number [ppn] is omitted, the user’s default
directory is used.

5. An ALTmode terminates the command input and signals GLOB to output the
cross-referenced listing. In other words, a listing is not output until GLOB en-
counters an ALTmode. The ALTmode appears at the end of the command
string shown in Command Format #1 or at the end of each output command
shown in Command Format #2.

SWITCHES

Switches control the type of global listing to be output. Each switch can be preceded by a
slash, or several switches can be enclosed in parentheses. Only the most frequently specified
switch (except for L, M, P, Q, and X, which are always in effect) is in effect at any given time.
If no switches are specified, all global symbols are output. The following switches are avail-

able.
/A Output all global symbols. This is the default if no switches are specified.
/E List only erroneous (multiple defined or undefined) symbols.
/F List nonrelocatable (fixed) symbols only.
/H List the switches available (help text) from SYS:GLOB.HLP.
/L Scan programs only if they contain globals previously defined and not yet

satisfied (library search mode).

M Turn off library search mode scanning resulting from a /L switch.
/N List only symbols which are never referenced.
/P List all routines that define a symbol to have the same value. The routine

that defines the symbol first is listed followed by a plus (+) sign. Subse-
quent routines that define the symbol are listed preceded by a plus sign.

/Q
/R
/S

/X

GLOB 105

Suppress the listing of subsequent definers that result from the /P switch.
List only relocatable symbols.

List symbols with non-conflicting values that are defined in more than one
program.

Do not print listing header when output device is not the terminal, and
include listing header when it is the terminal. Without this switch, the
header is printed on all devices except the terminal. The listing header is
in the following format:

FLAGS SYMBOL OCTAL VALUE DEFINED IN REFERENCED IN

Symbols listed are in alphabetical order according to their ASCII code
values. The octal value is followed by a prime (') if the symbol is relocat-
able. The value is then relative to the beginning of the program in which
the symbol is defined. Flags preceding the symbol are shown below.

M Multiply defined symbol (all values are shown).

N Never referred to (i.e., was not declared external in any of
the binary programs).

S Multiply specified symbol (i.e., defined in more than one pro-
gram but with non-conflicting values). The name of the first
program in which the symbol was encountered is followed by
a plus sign.

U Undefined symbol.

CHARACTERISTICS

The R GLOB command:

Places the terminal in user mode.

Runs the GLOB program, thereby destroying the user’s core image.

ASSOCIATED MESSAGES

7COMMAND SYNTAX ERROR
TYPE/H FOR HELP

An illegal command string was entered.

?DESTINATION DEVICE ERROR

An I/O error occurred on the output device.

106

GLOB
?ENTER ERROR n
’DIRECTORY FULL

No additional files can be added to the directory of the output device; n is the disk
error code.

?7ILLEGAL SWITCH
A non-recognizable switch was used in the command string.

?LOOKUP ERROR n
?file.ext FILE NOT FOUND -

The named file cannot be found in the directory on the specified device.
?dev NOT AVAILABLE

The requested device does not exist or is assigned to another job.
?TABLE OVERFLOW — CORE UUO FAILED TRYING TO EXPAND TO xxx

The GLOB program requested additional core from the monitor, but none was avail-
able.

Examples

4R GLOB_

SLPTISMAIN,DTA218UB40,SUBSO®

#DTA41BATCH,REL,DTA,DTA6 {NUMBER ,REL,CLASS _/
¥DSKIMATH,REL,LIBARY,

SLPTi1=/FD

#DSK1SYMBOL®/RP

#TTY1=/E@
U EXTSYM SUBRTE

#"C

GLOB

107

109

gecsystenmic
OPSER
Operator Service Program

digital equipment corporation - maynard. massachusetts

110

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser under a license for use on a
single computer system and can be copied (with inclusion of DIGITAL’s copyright notice) only
for use in such system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software
on equipment that is not supplied by DIGITAL.

Copyright © 1975 by Digital Equipment Corporation

OPSER 111

OPSER

1.0 FUNCTION

OPSER facilitates multiple job control for the operator by running jobs on a sublevel over
pseudo-teletypes (mnemonic PTY). Previous to OPSER, when the operator had to run more
than one job at one time, he either had to run some detached, or use several terminals. In
the former case, no I/O link existed between the running job and the operator, and if he was
not watching, it would go by without notice. Using several terminals was problematic since
the operator had to run from console to console to service the programs. By running these
system jobs over PTY’s, OPSER maintains an excellent I/O link, and concentrates in one
console the entire control center of the system. It need not run only as an operator job,
regular users can employ OPSER to fan out multiple jobs.

2.0 INTERACTIVE COMMANDS

OPSER signifies its readiness to process any of the following commands by typing * or ! at
the start of the line. * will be typed if no subjobs are in use, or to indicate subjobs that are
in terminal input wait. Thus, when OPSER types * to signal command wait, nothing will
happen until the operator acts. The commands must be typed to sufficient length to make
them unique. All are prefixed by a colon (:).

T A (ctrl-A) Send tC(ctrl-C) to the subjob.

:AUTO /hh:mm filename Process the named file as a list of interactive com-
mands; the AUTO file is terminated by the end-
of-file or by the typing of a line on the console
by the operator; AUTO files may call other files,
including themselves. /hh:mm is optional; if it
is included, the auto file will not be run until that
time. If that time has passed, the auto file is run
immediately.

:AUTO /+hh:mm filename Process after the amount of time specified by the
+hh:mm has elapsed.

:AUTO />hh:mm filename Process at the next occurrence of hh:mm.

:AUTO /<hh:mm filename Do not process if time has already past hh:mm.

B Send 1 O(ctrl-0) to the subjob.

i & Same as :EXIT.

:.CLOSE Close the log file without opening a new one.

Version SA OPSER 1 February 1975

112

:CONTINUE

:CURRENT

:DAYTIME

:DEFINE xx=n

:DEVICE nam:logn:n

:ERROR n,m,p

:EXIT

:FREE

‘HELP

:JCONT nn

:KJOB n,m,p

:KILL n,m,p

:KSYS hhmm

:LOGIN p,pn

OPSER

Continue processing an auto file that was inter-
rupted by control-C. This allows the operator to
gain control of a subjob during auto file process-
ing.

Type the number of the current subjob (the last
one referenced).

List today’s date and current time.

Define xx as the mnemonic for subjob n. (Subjob
specification is explained in Section 3.0.)

Reassign the device with the physical name nam,
and the logical name logn to subjob n. The logical
name need not be present, but a null field must
be typed, e.g.. to reassign the CDR to subjob 3,
one must type :DEVICE CDR::3.

Ignore all non-error messages from the specified
subjobs. An error message is any line beginning
with a question mark (7) or percent sign (%). Re-
set by :REVIVE.

Exit to the monitor if no subjobs are in use;
otherwise give a list of those that are running.

Type the number of the first unused subjob.

Type a text which briefly explains the commands
and how to communicate with subjobs.

Continue a job waiting for operator action.

Kill the specified subjobs saving all files. Causes
[Z.:0 to be sent to KJOB so spooled files are not
queued.

Same as KJOB.

Stop timesharing at the time specified by hhmm.
If +hhmm is used, it means the number of hours
and/or (minimum of 5 minutes if + form is used)
minutes from the current time.

Send the LOGIN line over the first free subjob;
if no project-programmer number is typed, assume
OPSER’s project-programmer number.

:MONITOR

:MSGLEVEL 0

:QUEUE <line>

:RESOURCES

:RESTRICT devl:,
dev2:, ... devn:

:REVIVE n

:SEND <line>

:SET BATMAX n
:SET BATMIN n
:SET CORMAX n
:SET CORMIN n
:SET DATE mmddyy
:SET DAYTIME hhmm
:SET LOGMAX n
:SETOPRTTY n
:SET RUN CPxn
:SET RUN NO CPxn

:SET RUN ONLY CPxn
:SET RUN ALL

Version SA OPSER

OPSER 113

Return to monitor level.

Add JOBSTS bits to the typed response to the
:WHAT command. (default)

Initiate the first free subjob and send that line to
the system queue manager.

List the available resources of the system.
Restricts the specified device to the operator’s use.
The operator can assign the device to a user, but
the user cannot reassign it to anyone but the
operator. (The colon after the device name is
optional.)

Resume normal echoing of output from subjob n.
Simulate the monitor command SEND.

Restricts BATCON to run only in jobs.

Reserves n job slots for BATCON subjobs.
Simulate the monitor command SET CORMAX.
Simulate the monitor command SET CORMIN.
Simulate the monitor command SET DATE.
Simulate the monitor command SET DAYTIME.
Restrict the system to run only n jobs.

Simulate the monitor command SET OPR.
Allows the operator of a multiprocessor system
to turn processors on and off line. X can be A
for KA10, I for KI10, or U for either. N is the
CPU number. :SET RUN adds the named proc-
essor to the system pool of running CPU’s. SET
RUN NO removes the named CPU from the sys-
tem pool. SET RUN ONLY allows only the
named CPU to run. SET RUN ALL puts all the
CPU’s available into the system pool. The SET

RUN command requires a 5.05 or later monitor
and multiprocessors.

3 February 1975

OPSER

:SET SCHEDULE n Simulate the monitor command SET SCHEDULE.

:SET TTY arg Simulate the SET TTY monitor command.

:SILENCE n Ignore all output from subjob n. Reset by
:REVIVE.

:SLOGIN ppn Same as :LOGIN except suppress all the LOGIN
chatter.

:STOP n Put subjob n into monitor mode immediately by

sending up to three CONTROL-C’s.

:SYSTAT xx Run SYSTAT with optional argument(s) xx over
the first free subjob.

:TLOG filename.ext Create a log file with the specified name. If the
file’s device 1s a directory one, check if the file
exists already; if so, notify the operator and ask
whether it should be superseded. If the answer
is negative, the file will be appended to the pre-
vious file. The default filename and extension

are OPSER.LOG.
:TSILENCE n Ignore all output from subjob n (same as :SILENCE
command) but place entries into the log file.
TTYTST Test the terminal by typing all of the ASCII char-
acters between octal 40 and 174, inclusive.
:UNRESTRICT devl :, Returns to the free user resource pocl a device
dev2:;...,devn: that had been restricted. Complement of RE-
STRICT. (The colon after the device name is
optional.)
:WHAT n,m.,p List the status of the specified subjobs on the

console. The status includes a SYSTAT includ-
ing the time, the time of the last input and last
output, a linear listing of the JOBSTS bits, and
the time of the next times auto file.

2.1 Special Syntax

ALL may be used as the subjob specification in any command string where a subjob specifi-
cation is needed; all active subjobs are implied as objects of the command.

Version 5SA OPSER 4 February 1975

OPSER 115

If BATCON is running under OPSER, it should be assigned the mnemonic B. If one wishes
to send text to BATCON subjob 2, he can type B2- <line> to OPSER and OPSER will send
the entire line to BATCON (which will then send the part of the line after the dash to its

own subjob 2). The operator can also suffix the B with any length of ALL. Refer to Chapter
4 for a further description of sending text to subjobs.

2.2 Defaults

If a subjob specification is needed but one is not present, the last subjob referenced is pre-
sumed. The use of ALL does not alter this last reference.

In the TLOG file specification, the default string is
DSK:0OPSER.LOG

Absence of any field results in substitution of the default for that item. In particular, if a
null extension is desired, a period, then a project-programmer specification ot <CR> must
be typed.

In the AUTO file specification, the default string is
DSK:OPSER.ATO
The same default rules apply to this file specification as apply to the TLOG file specification.

If an input line does not start with a dash or colon, and the first non-alphanumeric character
is not a dash, that entire line is sent to the last subjob referenced.

2.3 Special Entries

The REENTER command acts exactly as a START or RUN command except that the subjob
activity situation is untouched, and the low segment is not zeroed. This means the AUTO
mode, if in progress, is ended, and the LOG file, if opened, is closed.

If OPSER is started at its starting Address plus one (CCL start), it looks for an auto file. The
name of the auto file depends on the terminal on which OPSER is started. If it is started on
the local operator’s console it looks for “SYS:OPR.ATO”. If OPSER is started on a remote
operator’s console, it looks for “SYS:OPRn.ATO” (where n is the number of the remote sta-
tion). If OPSER is not started on an operator’s console, it looks for “SYS:TTYn.ATO”
(where n is the number of the terminal to be used to run OPSER).

116

OPSER

3.0 SUBJOB SPECIFICATION

A subjob can be specified in any one of four ways. It can be left out entirely, in which case
the last subjob referenced is presumed. One can use ALL, in which case all active subjobs
are implied. One can type a decimal number from zero to the limit OPSER was generated
for, or a mnemonic can be assigned to the subjob by the :DEFINE command.

4.0 SUBJOB COMMUNICATION
4.1 Input to a Subjob

The operator can send text to a subjob by typing the subjob specification, delimited by a
dash, followed by the line of text. All text following the dash up to and including the break
character is sent unmodified to the subjob. For example,

3-R MACRO<CR>

would result in R MACRO<CR> being sent to subjob 3. In some cases it is desirable to send
many lines at once to a subjob. One should type a double dash after the subjob specification,
then a delimiter, the lines, and the delimiter again. For example,

X--“R PIP<CR>
DSK:/X/B«<DTAl:*.*<CR>
1A DIRECT<CR>

“<CR>

would send all of the text between the quotes to subjob X.
3- foo

would send foo to subjob 3.

4.2 Output From a Subjob

Any output from a subjob is headed by the time of day, the subjob’s name and a carriage
return. Then the output is typed on the terminal.

5.0 CORE LAYOUT

With normal assembly options, OPSER is assembled in two segments; a 2K high segment, and
a 1K low segment data base. All buffers except those of the AUTO device are preallocated
their sizes are subject to further assembly switches. The buffers for the AUTO device are ex-
panded dynamically, pushing OPSER’s low segment over the 1K mark. The low segment is
purely block storage assignments, so no low file is written out on SAVE.

OPSER 117

6.0 CODING CONVENTIONS
6.1 Register Assignments

OPSER’s accumulators are assigned by the following set of symbols:

F=0 ; ¢ (Ih) = program bits

; ¢ (rh) = subjob usage bits
Ti=1 ; general scratch
T2=2
T3=3
T4=4
T5=5
LASU=10 : last subjob used
MJOB=12 : monitor job number
CMD=13 : word input register
SIB=14 :PTY subjob (channel) ref
PTI1=15 ; byte pointer
DATA=16 : ASCII I/O register
P=17 : pushdown pointer

Registers T1 through T5 are for general scratch, to be used for LOOKUP, ENTER or other
UUO’s. The only time they should be preserved is in the /O subroutines, since these routines
are called so often and from so many contexts. Register PT1 must also be saved in I/O rou-
tines. During I/O error recovery routines, the ASCII byte register, DATA, must also be
pushed.

6.2 Assembly Switches

MOSTBF symbolizes the maximum number of times a PTY’s output buffers are transmitted
before control is returned to the operator. This is to prevent loud-mouthed subjobs from
taking a stranglehold on OPSER’s attention.

PDLSIZ specifies how large the pushdown list should be.

SNOOZT specifies how long OPSER should sleep when there’s nothing to do, or when it’s in
some kind of wait.

CHANCE sets the number of times OPSER will sleep waiting for a previously active subjob
to resume output.

HGHPTY sets the upper subjob limit, i.e., OPSER will be generated for HGHPTY+1 subjobs,
numbered from zero to HGHPTY.

FTAUTO, if non-zero, implies the assembly of the AUTO feature.

FFTLOG, if non-zero, implies the assembly of the log file feature.

118

OPSER

DSKSIZ specifies the size of a standard disk buffer.
TTYSIZ sets the standard size of a teletype buffer.

LOGNB sets the number of pre-allocated buffers for the log file.

decsustemic
PIP
Peripheral Interchange Program

Order No. DEC-10-UPIPA-A-D

digital equipment corporation - maynard. massachusetts

119

120

Ist Edition, October 1967

2nd Edition (Rev), May 1968

3rd Edition (Rev), November 1968
4th Edition (Rev), November 1969
5th Edition (Rev), June 1970

6th Edition (Rev), March 1972

7th Edition, February 1975

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser under a license for use on a
single computer system and can be copied (with inclusion of DIGITAL’s copyright notice) only
for use in such system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software
on equipment that is not supplied by DIGITAL.

Copyright © 1967, 1968, 1969, 1970, 1972, 1975 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page. located at the back of this docu-
ment. explains the various services available to DIGITAL software users.

The postage prepaid READER'S COMMENT form on the last page of this document requests
the user’s critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation.

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAI10 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0s/8 RT-11
DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET-10

UNIBUS

PIP 121

PREFACE

The functions provided the user by the DECsystem-10 Peripheral Interchange Program (PIP)
and their use are described in this manual.

NOTE

Monitor commands are available which perform the
common PIP functions of copying, renaming, pro-
tecting and deleting files.

It was assumed in the preparation of this manual that the reader is familiar with or has access
to the DECsystem-10 Monitor Calls manual and the DECsystem-10 Operating System Com-
mands manual. These manuals as well as the PIP manual are available in the DECsystem-10

Software Notebooks.

iii

CHAPTER

CHAPTER

CHAPTER

PIP
CONTENTS

Page
INTRODUETION: <o woms smmn sos woane wimis s sikos o o s 1-1
CONTROLLINGPIP INDIRECTLY 1-1
WRITING CONVENTIONS oo 1-2

PIP COMMAND STRING AND ITS BASIC
BEEMENTS. = 52 van mai o086 of o0ds S 5a wie st ¥ oa 2-1
COMMAND FOBMAT o oo o6 e el 08 see v o i 2-1
Pile Specifieation: ..o vie vid 5% 5.0% w58 885 0 0 o 2-2
Command String Delimiters oo cv v vvivas oo v o 2-4
DEVICENAMES ittt it e e e 2-5
Physical Device Names en ... 2-5
Logical Device Names 2-6
FILENAMES e e e 2-7
Naming Files with Octal Constants 2-8
Wildcard CHATAGEETS wou cvve v s wons wans ea s e s 5 s 2-8
The Asterisle SYMBOL . con wame o wuss swm e 45 % an 5 o 2-8
The Question Matk Symbol cow an s wom sow wi s ws @ o 2-9
Combining * and ? Wildcard Symbols 2-9
DIRECTORY IDENTIFIER: . © v 2o v vas v w 5 ¥ 65 2-9
UFD-Only Identifiers 2-10
SFD (Full Directory Path) Identifiers. 2-10

Specifying Default and Current [Directory]
Identifiers. e 2-11
FILE ACCESSPROTECTIONCODES. 2-12
- Digit Numeric Protection Code Values. 2-13
UFD AND SFD PROTECTIONCODES 2-13
STANDARDPIPSWITCHES 3-1
ADDING SWITCHES TO PIP COMMANDS 3-1
BASIC TRANSEFER FUNCTION . o e swn wwwae s o 3-1
X-Switch Copy Files Without Combining 3-2
Non-Directory to Directory Copy Operation 3-3
Assigning Names to DECtape Tapes. 3-4
DX-Switch, Copy All but Specified Files 35
Transfer Without X-Switch (Combine Files) 3-5
U-Switch, Copy DECtape Blocks O, 1,and 2 3-6

123

124

CHAPTER

3.3.1
3332

3.33
3.34
3.3.3
3.3.6

3.3.7

3.3.8
3.3.9
3.3.10
3.3.11
3.4
3.5
3.5.1
352
3.5.3
3.3.:3.1

3532
35.4
3.5.5
3.5.6
3.6

4.1
4.1.1

4.1.2
4.1.2.1
4.1.2.2
4.2

4.3

PIP

CONTENTS (Cont)

A-Switch, Integral Output Lines (Line Blocking)
C-Switch, Delete Trailing Spaces and Convert

Miiltiple Spaces to Tabs: v v wawam ams san e o6 s
E-Switch, Ignore Card Sequence Numbers.
N-Switch, Delete Sequence Number.
S-Switch, Insert Sequence Numbers.
O-Switch, Insert Sequence Numbers and Increment

by:Dme: o v Lok Bk Sed de B ReW P VEE IRY 8 Y
P-Switch, Prepare FORTRAN Output for Line

Printer Listing e
T-Switch, Delete Trailing Spaces
W-Switch, Converts Tabsto Spaces
V-Switch, Match Angle Brackets
Y-Switch, DECtape to Paper Tape.
SET DATA MODE, SWITCHES BBHANDI...........
FILE DIRECTORY SWITCHES« cv vvi vncvn s
L-Switch, List Source Device Directory
F-Switch, List Limited Source Directory
R-Switch, Rename Source Files¢v...:0..
Changing Source UFD or SFD Protection Code

Using the Rename (R) Function
Changing Directory Using R-Switch.
D-Switch, Delete Files c.oo....
LSWIteh, Zeth DIFEEOIN . 100 son mimes s simte soiim w5908 2
Q-Switch, Print Summary of PIP Functions.
PERMITTED SWITCH COMBINATIONS

SPECIALPIPSWITCHESciivininnnnn
MAGNETIC TAPE SWITCHES.
Switches for Setting Density and Parity

Pararieters « ou wen oy 6500 00 T DT Can S0 9% ok 3
Switches for Positioning Magnetic Tape
Backspace to Start of Current File.
Advance to End of Current File
G-SWITCH, ERROR RECOVERY.
JSWITCH,CARDPUNCH

Vi

CHAPTER 5

5
5.2
5.3
5.4
5.5
5.6

APPENDIX A

PIP

CONTENTS (Cont)

Page

PIP ERROR REPORTING AND ERROR
MESSAGES . o oon s snos moecmos S smems wiess nf i 5 5-1
O ERROR MESSAGES v is v v suwss wose 608 & #oe grons s 5-1
FILE REFERENGE ERRORS: . : .o wovce wos s s wis avwss ase 5-2
PIP COMMANDERRORS. i i oot 5-3
Y-SWITCH BRRORS .« voon v v o siow wmns eve s i avase w 5-4
GENERAL ERRORMESSAGES 5-4
TMPCOR (DEVICE TMP) ERROR MESSAGES 5-6

STANDARD FILENAME EXTENSIONS A-1

vil

125

PIP 127

CHAPTER 1

INTRODUCTION

PIP (Peripheral Interchange Program) transfers files between standard 1/O devices and can
be used to perform simple editing and magnetic tape control operations during those transfer
operations.

To call PIP into core from monitor level, the user types the command
.RPIP <CR>

When PIP is loaded and ready for input, it prints the character * at the terminal. The user
may then enter the command string needed to perform the desired operations followed by a
carriage return. On completion of the operation or operations requested in a command string,
PIP again prints the character * to indicate that it is ready for the next command string input.
To exit from PIP, the user types a Control C (1 C) command.

1.1 CONTROLLING PIP INDIRECTLY

PIP is normally controlled by commands entered via the terminal keyboard. PIP, however,

is also capable of reading commands from a prepared file and executing these commands as
if they had just been entered via the input console. PIP command files which are to be proc-
essed indirectly are identified by the addition of the symbol @ after the identifying file speci-
fication (see paragraph 2.1.1 for a description of file specifications). For example, the file
specification FOO.CCL®@ identifies the file FOO.CCL as an indirect command file. Any file-
name extension may be used in specifying an indirect command file. If none is given, how-
ever, the default extension .CCL is assumed.

An indirect PIP command file consists of one or more PIP commands structured as described
in Section 2.

Once PIP is in core, the user passes control of PIP to an indirect command file by entering the
file’s filename. For example, the input command sequence

.RPIP <CR>
*FOO.CCL@ <CR>

loads PIP and initiates the execution of the indirect PIP command file FOOQ.CCL.

1-1

128 PIP

1.2 WRITING CONVENTIONS

The following symbols and abbreviations are used throughout this manual:

Symbaol or
Abbreviation Meaning

dev: . Any logical or physical device name. The colon must be included
when the device name is used as part of a PIP command.

file.ext Any filename and filename extension.

[directory] Identifies the directory of a specific file storage area within the
system; it may also specify the location of a file within the identi-
fied storage area. (See paragraph 2.4 for a detailed description
of [directory].)

When the input terminal used is either a Model 33 or 35 Teletype
unit, the right and left brackets are input in the following manner:

To Obtain a: Type:

a) left bracket [SHIFT K
b) right bracket 7 SHIFT M

tch A control character (* represents the CTRL key; ch represents
a character). A control character is obtained by pressing the
CTRL key while typing the selected character key. A frequently
used control character, for example, is T C, which requests that
control be returned to the monitor.

= An equals character, used in the PIP command to separate the
destination and source sections.
NOTE
PIP will also accept the back arrow (SHIFT-O) entry.
A SHIFT-O entry is echoed on the terminal printer

as the symbol «.

* PIP’s response to a command string to indicate that it is ready
for the next input string.

' The Monitor’s response to a command string to indicate that it
is ready for the next command.

<CR>

PIP 128

This symbol represents a carriage return, linefeed operation. It
is initiated by the entry of a RETURN keyboard input. A RE-
TURN input is normally used to terminate each PIP input com-
mand.

A number, either octal or decimal.

This up-arrow symbol indicates the use of a CTRL key entry (see
tch above). Up-arrows are also used to enclose identifiers which
may be assigned to DECtapes using the facilities provided by PIP
(see 3.2.1.2).

PIP

CHAPTER 2

PIP COMMAND STRING AND ITS BASIC ELEMENTS

PIP command strings may be of any length; both upper and lower case characters may be
used. PIP commands are normally terminated and the request operation initiated by a
RETURN keyboard entry (i.e., <CR>). However, an ALT MODE (also known as ESC),
line feed, vertical TAB or form feed keyboard entry can also be used as a command termi-
nator.

2.1 COMMAND FORMAT

All PIP commands which involve the interchange (transfer) of data must have the following
format:

DESTINATION=SOURCE <Terminator>
where:

1. The DESTINATION portion of a PIP command describes the device and file(s)
which are to receive the transferred data. This portion of a command consists
of one file specification.

2. The equals sign is a required delimiter in all PIP commands to separate the DES-
TINATION and SOURCE portions of the command.

3. The SOURCE side of the command describes the device from which the trans-

ferred data is to be taken. This portion of a command may contain one or more
file specifications.

4. A Terminator is required to end each PIP command. A RETURN entry (symbol-
ized as <CR>) is normally used. However, any other paper-motion command
may be used as a terminator.

PIP commands which do not require the transfer of information may be written using the
form

DESTINATION=<Terminator>

The equals delimiter and a terminator are still required in commands formatted in this manner
despite the fact that only the destination portion of the command is used.

21

131

132 PIP

2.1.1 File Specification

A file specification contains all of the information needed to identify a file involved in a PIP
function. It may consist of:

1. a device name;
2. afilename;
3. adirectory identifier;

4. a protection code which is to be assigned to either a specified file, a User File
Directory (UFD), or a Subfile Directory (SFD):

5. and an identifier to be assigned to the tape mounted on a specific DECtape unit.
The format of a PIP command containing all possible items of a file specification is:
dev:name.ext[directory | <nnn>tidentt=dev:name.ext[directory] <CR>

where:

1. DEV is either a physical device name (e.g., DSK, DTAI, etc.) or a logical device
name (refer to paragraph 2.2).

2. NAMEisa 1 to 6 character alphanumeric identification which is either to be
assigned to a new file (NAME is on the destination side of the command) or
which identifies an existing file (NAME is on the source side of the command).
(Refer to paragraph 2.3 for a description of filenames.)

3. EXTisal to 3 character alphanumeric extension assigned to the name of a file
either by the user or by the system. (Refer to paragraph 2.3 for a description
of filename extensions.)

4. [DIRECTORY!] is the identifier of a specific directory (i.e., UFD or MFD) within
the system. This identifier may consist of a project, programmer number pair
and Sub File Directory (SFD) names. (See paragraph 2.4 for details.)

5. <nnn> is a 3-digit protection code which is to be assigned to either one or more
destination files or to a specified User File Directory.! (See paragraph 2.5 for a
description of protection codes.)

6. TIDENT? isa 1 to 6 character name which is to be given to the contents of a
DECtape reel mounted on a specified DECtape unit. (See paragraph 3.2.1.2 for
details.)

L A User File Directory (UFD) is provided by the system for each user permitted access to it. A user’s UFD is identified by
his project, programmer number; it contains the names of all files belonging to the user together with pointers to the actual
location of each file.

2-2

PIP

The manner in which each of the possible elements of a file specification may be used in
either the destination or source portions of a PIP command is described in the following

table:

ELEMENT DESTINATION SOURCES

dev: Name of device onto which Name of device on which
the specified file is to be the specified file resides.
written.

name Name to be assigned to the Name of the file to be
copied file. copied.

ext User-specified filename Current filename extension.
extension.

[directory] Identification of the disk Identification of the disk
storage area which is to storage area which contains
receive the file to be trans- the file to be copied.
ferred.

NOTE
The [directory] identifier must include a full directory path
specification whenever sub-file directories are involved. For
example, [proj,prog,SFDA, . ,SFDn|. (See paragraph 2.4
for more details.)

<nnn> Protection code to be assigned NOT PERMITTED IN
to either a copied file or a SOURCE PORTION OF
specified UFD. PIP COMMANDS.

tident? Name to be assigned to the NOT PERMITTED IN

tape mounted on a specified
DECtape unit.

SOURCE PORTION OF
PIP COMMANDS.

File specifications may be delimited by:

1.

NOTE

2-3

an equals character (=) if the specification is on the destination side of the com-
mand string (e.g., dev:name.ext=. . .<CR>).

"PIP will accept a back-arrow entry (<) in place of
the equals character (=).

133

134

PIP

2. acomma (,) if the specification is on the source side of the command string and
is one of a series of file specifications. For example

dev=devl:name.ext,dev2:name.ext,name.ext, . .name.ext<CR>

3. a RETURN <CR> entry if it is the last item on the source side of a command.

For example

dev=devl:name.ext,dev2:name.ext, . .devn:name.ext<CR>

2.1.2 Command String Delimiters

The delimiters which may be used to separate the elements of a PIP command string are de-
scribed in the following table.

PIP Command String Delimiters

DELIMITER

USE AND DESCRIPTION

<>

1

The colon delimiter follows and identifies a device name. For example,
the device DTAL is specified as DTA1: in PIP commands.

Square brackets are used to enclose the user DIRECTORY numbers and
SFD names (if SFDs are used). For example, [40,633] or [40,633,SFD1,
SFD2, .. .SFDn] represent the manner in which DIRECTORY numbers
can be written.

Angle brackets must be used to enclose a protection code (e.g., <057>)
which is to be assigned to either a file or a user file directory (UFD) or sub-
file directory (SFD).

Commas are used to separate user project and programmer numbers, SFD
names, and file specification groups. For example

dev:[40,633] =dev:name.ext,name.ext<CR>

A name to be assigned as an identifier to a DECtape is enclosed within a set
of up-arrows (e.g., .TMACFLST).

A period delimiter must be the first character of a filename extension. The
form of an extension is .ext.

A number symbol is used as a flag to indicate the presence of an octal con-
stant in a filename or a filename extension.

24

PIP

PIP Command String Delimiters (Cont.)

DELIMITER

USE AND DESCRIPTION

()

An exclamation symbol may be used to delimit a file specification.
When used, the ! symbol causes control to be returned to the monitor
from PIP and the specified file (or program) to be loaded and run. This
function is provided as a user convenience to eliminate the need for
several control entries.

The equals character must be used to separate the destination and
source portions of a PIP command.

Parentheses are used to enclose magnetic tape options, PIP control
switches, and one or more PIP function switches. The form of a com-
mand employing parentheses to enclose a series of switches is:

dev:name.ext(/sw(1)/sw(2), ./sw(n)=...<CR>
The slash is used to indicate and to separate switch designations.
When there are many program names and switches, the at sign is used

to put them into a file so that the user does not have to type them
for each compilation.

2.2 DEVICE NAMES

Both physical and logical device names may be used in PIP commands. The user must remem-
ber that a logical name takes precedence over a physical name which is the same as the logical

name.

2.2.1 Physical Device Names

Each standard DECsystem-10 peripheral device is assigned a specific device name consisting

of a 3-character generic name plus a unit number (0 to 777) or:

1. 3 characters,

2. 3 characters and a station number,

3. an abbreviated disk name, or

4. the name or a disk file structure.

2-5

135

136

PIP

A list of the generic physical device names is given below:

Peripheral Devices

DEVICE GENERIC PHYSICAL DEVICE NAME

Card Punch CDp
Card Reader CDR
Console TTY CTY
DECtape DTX
Disk DSK

Packs DPX

Fixed-Head FHX
Display DIS
Line Printer LPT
Magnetic Tape MTX
Operator Terminal OPR
Paper-tape Punch PTP
Paper-tape Reader PTR
Plotter PLT
Pseudo-TTY PTY
System Library SYS
Terminal TTY
Pseudo-device TMPCOR T™P

2.2.2 Logical Device Names

A logical device name is a user-assigned designation which is employed in the preparation of
a program in place of a specific physical device name. The use of logical device names permits
the programmer to write programs which do not specify one particular device but may use,
at run time, any available device which can perform the required function.

A logical device name may consist of from one to six alphanumeric characters of the user’s

2-6

PIP 137

2.3 FILENAMES

Filenames are file identifiers assigned either by the system (for system programs) or by the
user. A filename may consist of a name field and an extension field but only a name field

is required. Whenever both fields are used in a filename, it has the form name.ext. A period
delimiter is required as the first character of the extension. Filename fields are defined as:

1. Name Field. Names of files may consist of from one to six alphanumeric char-
acters or octal constants; in user-assigned names the characters may be arbitrarily
selected by the user. Names generated by the user must be unique at least within
the file structure and directory number in which the file is located.

2. Extension Field. Filename extensions may consist of up to three alphanumeric
characters. Extensions are normally used to specify the type of data contained
by the file identified by the filename field. Filename extensions which are
recognized by the system, and the type of data each specifies are given in Appen-
dix A. In filenames, a user may specify a standard extension (one recognized by
the system), one which he has devised, or none at all.

PIP utilizes the filename extension given in a file specification to determine
whether the file is to be transferred in a binary or ASCII mode. If it is at all
possible, PIP will transfer files in a binary mode since it is faster.

In dealing with filename extensions, PIP performs a specific series of tests in
order to determine the mode which should be used during a requested transfer
operation. The following mode determination tests are performed in succession
until PIP obtains a firm indication as to the type of mode required:

a. PIP tests for the presence of a data mode switch (see paragraph 3.4). If no
switch is found, PIP goes to the next test.

b. PIP tests for the presence of a known (standard) filename extension which
specifies a binary mode of transfer (see Appendix A). If no binary exten-
sions are found, PIP goes to the next test.

¢. PIP tests both the input and the output devices specified to determine if
they are both capable of handling binary data. If either or both of the
devices cannot handle binary, the transfer is made in the ASCII mode. If
both devices can handle binary data, PIP goes to the next test.

d. PIP tests for the presence of an X option switch (/X) in the command
string; if it is found, the transfer is made in the binary mode. If an X option
is not found, PIP goes to the next test.

e. PIP tests for the presence of commas (non-delimiters) in the command
string: if commas are found an ASCII mode is indicated. If no commas
are found, the transfer is made in the binary mode.

138

PIP

2.3.1 Naming Files with Octal Constants

Octal constants may be used as either a part of or all of a filename. In either of the foregoing
cases, each octal constant which appears in a filename must be preceded by the symbol #, and
each group is delimited by a non-octal digit or a character. For example, the filenames:

1. #124ABC.ext (constants are used as part of a filename)

2. #12AB#34.ext (constants are intermixed with other char-
acters)

3. #124670672346.#123737 (constants from the whole filename)

are all acceptable to PIP.

The symbol # is not regarded by PIP as part of the filename but is used only to indicate an
octal constant.

The number of octal digits used in a filename or an extension should be even since two octal
digits may be stored in a SIXBIT character. If an odd number of octal digits is given, PIP
will add an extra O to the filename or extension. For example, the constant #123 would be
expanded to #1230 by PIP.

Names comprised of octal constants are left-justified by PIP. The following is an example of
the use of octal filenames:

DTAO1:#124670.BIN=DSK:#100000.BIN<CR>

2.3.2 Wildcard Characters
The two symbols * and ? may be used in PIP to represent, respectively, complete fields and

single characters. These symbols are referred to as wildcard characters; their use is described
in the following paragraphs.

2.3.2.1 The Asterisk Symbol — The asterisk symbol * may be used to replace a filename or
extension:

1. name field (e.g., *.ext),

2. extension field (e.g., name.*),

3. Dboth filename fields (e.g., *.¥).

PIP 139

For example, the filename FILEA.MAC, which specifies the MACRO source language file
named FILEA, may be altered by the use of the asterisk in the following manner:

1. *MAC specifies all files with the extension .MAC.

2. FILEA.* specifies all files with the name FILEA, and,

3. *.* gpecifies all files.
2.3.2.2 The Question Mark Symbol — The character ? may be used to indicate a wild char-
acter in file names and extensions. A ? in a file name allows any character (or none, if 7 is
the last character in a field) to match or be inserted for the ? when the file name is used.
This masking capability enables the user to specify, with one command, groups of files whose
filenames have common characters, identically positioned. For example, assume that the de-
vice DTA1 contains the files TEST1.BIN, TEST2.BIN, TEST3.BIN, and TEST4.BIN; the
user can specify all of these files with one file specification:

DTAI1:TEST?.BIN
2.3.2.3 Combining * and ? Wildcard Symbols — The symbols * and ? can be combined in
filenames to specify groups of files which have common characters in either or both of their
names or extensions. For example, the file specification

ABC?7? *

specifies all files having the character group ABC as the first three characters of their filenames.
. Again, the file specification

* A
specifies all files having an extension whose third character is A.
In combining the * and ? symbols, the user should remember:

1. for filenames, * is equivalent to 777?27, and
s q

2.4 DIRECTORY IDENTIFIER

The [directory] identifier is used in PIP commands to identify a specific:
1. User File Directory (UFD),
2. Sub File Directory (SFD), or
3. aspecific UFD-SFED directory path.

29

140 PIP

The item identified by a given [directory] identifier can be a directory or an item located
within a directory which belongs to either the current user or, when the protection code
scheme permits, to another user. (See paragraph 2.5 for a description of protection codes.)

A [directory] identifier can consist of a project,programmer number pair (abbreviated as
proj,prog) and the names of SFDs. The most expanded form of the [directory] identifer is:

[proj,prog,SFD1,SFD2, .. .SFDn]

As shown, a [directory] identifier is always enclosed within square brackets and its elements
are delimited by commas,

2.4.1 UFD-Only Identifiers

Each UFD is identified in the system by the project,programmer number pair assigned to the
user for whom the UFD was created. A [directory] identifier for a UFD has the form

[proj,prog]

UFD [directory] identifiers may be written without either one or both of the project,pro-
grammer numbers. In such cases, PIP assumes either a previously specified default number
or the number assigned to the current user. For example, assume that the current user is
logged in under the number pair [57,124] and that no default identifier has been specified.
The current user can use [directory] identifiers having any of the following formats:

The Format: Which is Interpreted by PIP as:
L. [sl [57,124]
2. [57,] [57,124]
3. [,124] [57,124]

2.4.2 SFD (Full Directory Path) Identifiers
A Sub File Directory (SFD) is identified by its user-assigned name plus the project,programmer
number pair which identifies the UFD in which it is located. A [directory] identifier for an
SFD then has the form

[proj,prog,SFDname]
Whenever an SFD is located in a UFD which has a multi-level directory arrangement, the UFD
containing the desired SFD must be included in the [directory] identifier for the desired SFD.
A [directory] identifier for an SFD in a multi-directory level UFD has the form

[proj,prog,SFD1,SFD2, . . .SFDn]

PIP 141

and is referred to as a full directory path identifier. For example, assuming that the current
UFD is identified by the proj,prog number pair 57,124 and has the following directory organ-
ization:

Level 1 UFD

Level 2 SFDA

Level 3 SFDI SFDB
Level 4 SFD2 SFDC

the [directory] identifier for SFD2 is written as
[57,124,SFDA,SFD1,SFD2]
The proj,prog number pairs in full directory path identifiers may be written using the format

variations described in paragraph 2.4.2. However, when no proj,prog numbers are specified
by the user, two commas must be used in the identifier in the following manner

[, ,SFDI,...SFDn]
The first comma represents the delimiter between the proj,prog numbers; the second repre-
sents the delimiter between the last number (prog) and the first SED name.
2.4.3 Specifying Default and Current [Directory| Identifiers of Source Files
The position in which a [directory] identifier is given in a PIP command determines if it is
viewed as a default-identifier for all subsequent file specifications given in that command or
is the current identifier for an individual file specification.
If a [directory] identifier is given before one or more file specifications of a command, it is
regarded as the DEFAULT identifier for those specifications. For example, in a command
segment having the form:
[directory A] File Specification 1,File Specification 2
the identifier [directory A] is the default for both File Specifications 1 and 2.
If a [directory] identifier is given after the filename within a File Specification, it is viewed
as the current identifier for that file specification and will override any given default [direc-
tory]. The form of a file specification with the current identifier specified is:
dev:filename.ext[directory]

L8

Both default and current [directory] identifiers can be specified in the same PIP command.
For example, the PIP command source segment:

=dev:[directoryA] filename.ext,dev:filename.ext[directory B] <CR>

2-11

142 PIP

isvalid. In the foregoing example, the identifier [directory A] is the default identifier for
the first file specification, and will act as the default identifier for the second file specifica-
tion. If [directory B] is not given. When [directory B] is given, it overrides the default
identifier and is accepted as the identifier for the second file specification.

2.5 FILE ACCESS PROTECTION CODES

Three-digit (octal) protection codes which specify the degree of access that each of three
possible types of users may gain to a file can be specified in the destination side of a PIP
command string. File access protection codes are written within angle brackets and must
contain three digit positions (e.g., <nnn>). Each digit within a protection code specifies
the type of access a specific type of user may have to the file or files involved. Considering
the protection code <nln2n3> the digits give the file access code for the following types

of users:
1. nl = File OWNER,
2. n2 = project MEMBER, and
3. n3 = OTHER system users.

The user types are defined as follows:
1. FILE OWNERS. Users who are logged in under either:

a. the same programmer number as that of the UFD which contains the file:
or,

b. the same project and programmer number as associated with the UFD
which contains the file.

The decision as to which of the above items defines an OWNER is made at
Monitor Generation time.

2. PROJECT MEMBER. Users who are logged in under the same project number
as that which identifies the UFD containing the file.

3. OTHER USERS. Any user of the system whose project and programmer num-
ber do not match those of the UFD containing the file in question.

File access protection codes are placed in PIP commands after the destination filename of the
file involved. For example, the command:

DPA3:FILEA.BIN<nnn>=DSK:SOURCE.BIN<CR>

copies the contents of file SOURCE.BIN onto disk pack DPA3 under the name FILEA.BIN
with an assigned file protection code of nnn.

2-12

PIP 143

2.5.1 Digit Numeric Protection Code Values

Each of the digits in a 3-digit file protection code may be assigned an encoded numeric value
ranging from 0 to 7. The meaning of each octal value is:

CODE VALUE PERMITTED OPERATIONS
7 No access privileges. File may be looked up if the UFD permits.
6 Execute only,
5 Read, execute.
4 Append, read, execute.
3 Update, append, read, execute.
2 Write, update, append, read, execute.
1 Rename, write, update, append, read, execute.
0 Change protection, rename, write, update, append, read, execute.

Files are afforded the greatest protection by the code value 7; the least protection by 0. It is
always possible for the owner of a file to change the access protection associated with that
file even if the owner-protection field is not set to 0; thus, the value 0 and 1 are equivalent
for the owner. Files with their owner-protection field set to 1 are preserved (i.e., saved by
.KJOB/K).

It is recommended that important files such as source files be assigned an owner-protection
code of 2. This level of protection will prevent the files from being accidentally deleted while

permitting them to be edited.

2.6 UFD AND SFD PROTECTION CODES

When a user directory (UFD or SFD) is created, it is assigned a 3-digit octal access protection
code by either the owner of the file or, by default, the system. The 3-digit code specifies the
type of access permitted to the directory by each of the three possible classes of users (i.e.,
OWNER, MEMBER, or OTHER). (See paragraph 2.5 for a description of user classes.)

Once assigned, a directory access protection code may be changed by the owner and, if the
protection code permits (i.e., CREATES allowed), by users other than the owner. (See the
description of the PIP rename option given in paragraph 3.5.3.1 for the procedure required
to change directory protection codes.)

2-13

144 PIP

The access protection code assigned each user class may range from 0 through 7; the following
table lists the codes and the operations which each permits.

CODE PERMITTED OPERATIONS (S)
0 Access not permitted,
1 The directory may be read as a file.
2 CREATES are permitted.
3 The directory may be read as a file and CREATEs are permitted.
4 LOOKUPs are permitted.
5 The directory may be read as a file and LOOKUPs are permitted.
6 CREATEs and LOOKUPs are both permitted.
7 The directory may be read as a file and both CREATEs and LOOK-
UPs are permitted.

2-14

FiP

CHAPTER 3

STANDARD PIP SWITCHES

PIP provides the user with a group of optional functions which can be executed during the
performance of the primary PIP transfer function.

Each optional function is assigned an identifier which, when added as a *‘switch” to a PIP
command, initiates the execution of the identified function.

For the purposes of this manual, the PIP optional functions are divided into standard and
special groups. The standard group of options described in this section consist of switches
which:

1. determine which files are transferred;

2. edit all the data contained by each source file;

3. define the mode of transfer;

4. manipulate the directory of a directory-type device.
All optional functions which deal with non-directory devices and which perform functions

other than those listed above are considered special and are described in Section 4.

3.1 ADDING SWITCHES TO PIP COMMANDS

All switches in PIP commands must be preceded by a slash (i.e., /sw) or enclosed within paren-

theses (i.e., (sw)); for example, the optional function identified by the letter W is added to a
PIP command:

*DTA1:DESTFL.BIN/W=DSK:FILEA.BIN,FILEB.BINKCR>

When more than one switch is to be added to a command, they may be listed either separated
by slashes (e.g., /B/X....) or enclosed in parentheses (e.g., (BX)).

3.2 BASIC TRANSFER FUNCTION

The basic function performed by PIP is the interchange (i.e., read/write transfer) of files or
data blocks between devices. There are two types of transfer operations:

1. An optional X-switch transfer in which the source files or blocks are transferred
as separate files to the destination device.

3-1

145

146

PIP

2. A non-X type in which all files or blocks transferred from the source device are
combined (i.e., concatenated) into a single file on the destination device.

3.2.1 X-Switch Copy Files Without Combining

The use of the X-switch enables the user to move (copy) a group of source files onto the
destination device as individual files without changing their creation dates, creation times,
filenames and filename extensions. The following are examples of how the X-switch is used
in PIP:

1. To transfer all the user’s disk files to a DECtape, type:
DTA1:/X=DSK:* *<CR>

Assuming that there are three files on the user’s disk area named FILEA, FILEB,
FILEC.REL, these files will be transferred to DTA1 and can be referenced on
DTA1 by those names.

One significant difference between the disk and all other devices is file protection.
If the disk is the source device, PIP will by-pass those protected files to which the
current user is not permitted access. A suitable message is then issued by PIP if
the rest of the command string is successfully executed. Similar processing is
described later for the L, Z and D switches. If none of these switches is given, a
requested DSK file which is protected will cause termination of the request.

2. To transfer all the files from card reader to disk, type:
DSK:/X=CDR:*<CR>

When files are transferred from the card reader with the * command, the input
files must either be wholly ASCII or wholly binary.

3. To transfer two specific files from user [11,7]’s disk area to a DECtape, type:
DTA2:/X=DSK:[11,7] FILEA.REL,FILEA.MAC<CR>

4. To copy files from a paper tape onto a directory-type device, the user may employ
either:

a. A copy command in which the number of files to be read is specified by add-
ing a series of commas to the command after the source device name (i.e.,
PTR:..,,,,). The number of commas required is always one less than the total
number of files to be transferred. For example, the command:

DSK:/X=PTR:,,,,<CR>

PIP 147

specifies that five (5) files are to be copied from paper tape and written,
individually, into the current user’s disk area.

b. A copy command in which the file on a paper tape is to be copied onto a
specific device. For example, the command

DSK:/X=PTR:<CR>

specifies that the file on the paper tape in the PTR is to be copied into the
current user’s disk area. Whenever a command of this type is used, the last
file on the paper tape must be followed by two consecutive end-of-file
codes.

NOTE

In both the foregoing examples, PIP will generate any
needed destination filenames. This function is described
in paragraph 3.2.1.1.

Whenever the X-switch is used and is not combined with an editing option, PIP transfers any
file involved as it appeared on the source device. X-switch operations are copy operations and
are referred to as such.

3.2.1.1 Non-Directory to Directory Copy Operation — In copying files from a non-directory
device onto a directory-type device, PIP must perform special operations in naming the desti-
nation files. For example, a special case of source and destination filenames arises in the
command:

DTA2:FNME.EXT/X=MTAQ:*<CR>
Here, every file is to be copied from a non-directory device (MTAO) to a directory device
(DTA?2) without combining files (/X). Only one destination filename is given (i.e., FNME.EXT)
but the source device (MTAQ) may contain more than one file. If more than one file is trans-
ferred, it is necessary for PIP to generate a unique filename for each copied file. PIP generates
filenames by developing a 6-character name field in which the first three characters are either:

1. the first three characters of a given destination filename, or

2. the characters “XXX" if no destination filename is given in the command.

The second portion of the PIP-generated name field consists of the decimal numbers 001 through
999 which are added, in sequence, to each filename developed during the /X copy operation.

For filename extensions, PIP uses either the extension of a given destination filename or a null
field if no filename is given in the command.

3-3

148

PIP

For example, assuming that three files are present on MTAO, the command:
DTA2:FNME.EXT/X=MTAQ:*<CR>

transfers the files to DTA2 and establishes the following names in the DECtape directory for
the files copied:

1. FNMOO1.EXT,
2. FNMOO02.EXT,
3. FNMOO03.EXT.

If, in the above example, the command given did not include a destination filename (i.e.,
DTA2:/X=MTAO: «<CR>) the copied files would have been named:

1. XXXO001
2. XXX002
3. XXXO003

The use of the 3-digit decimal number for the last three characters of the filename name gives
the user 999 possible input files from non-directory devices. If PIP finds more than 999 files
on the source device, it will terminate the transfer operation after the 999th file is copied and
will issue the error message

?TERMINATE/X MAX OF 999 FILES PROCESSED.

Any error message referring to individual files named by PIP (either input or output) will use
the generated filename.

3.2.1.2 Assigning Names to DECtape Tapes — A tape mounted on a specified DECtape unit
can be assigned a label during copy operations. A labels are from 1 to 6 character names (any
SIXBIT character — except — within the code range 40-137 can be used) which are added

to the DECtape’s directory (128th word). DECtape identifiers can be read by the PIP, FILEX
and DIRECT programs; the monitor does not read identifiers. A DECtape identifier is assigned
by adding the selected name to a PIP command when the DECtape to be named is mounted on
the specified destination device.

The format required for a DECtape identifier is
tnamet

A DECtape identifier is inserted into a PIP command following the given destination device
name:

dev:T namet=source file specification(s)

34

PIP 149

For example, the command

*DTA3:tMYFILEt /X=DTAl:%.%
specifies that the DECtape on device DTA3 be given the identifier “MYFILE” and receive
copies of all the files contained by the tape on device DTAL.
3.2.2 (DX) Copy All But Specified Files
When the (DX) is added to a PIP command it causes all the files to be copied from the source
device to the destination device except those files which are named in the command string.
If the source device is DSK, a maximum of 10 source-file specifications is allowed. Only
directory-type devices are allowed as source devices; no check is made on the existence of
the files which are not to be copied. Only one source device is permitted; for example, the
command

DTA1:(ZDX)=DSK:*.LST,*.SAV,CREF.CRF<CR>
zeroes out the directory of DTAI1 and transfers to DTAI, from the disk, all files except
CREF.CRF and all files with an extension of .LST or .SAV.
3.2.3 Transfer Without X-Switch (Combine Files)

When the X-switch is not included in a PIP command all files or blocks transferred from the
source device are combined into a single file on the destination device. For example:

1. To combine three paper tape files into one, type
PTP:=PTR:,,<CR>

2. To combine two files on DECtape into one on another DECtape, type
DTA3:FILCOM=DTA2:FILA ,FILBKCR>

3. To combine files from two DECtapes into one on the user’s disk area, type
DSK:DSKFIL=DTA2:ONE,DTA4: TWOMAC<CR>

4. To combine all the files on MTAO into one file on the user’s disk area, type

DSK:TAPE.MAC=MTAOQ:+<CR>

(This assumes that MTAO is positioned at the Load Point.)

3-5

150

PIP

3.2.4 U-Switch, Copy DECtape Blocks 0, 1 and 2

The U-switch is used during DECtape-to-DECtape copy operation to specify that blocks 0, 1
and 2 of the source tape are to be copied onto the destination tape.

This switch is commonly used to transfer DTBOOT from one tape to another. For example,
the command:

DTA1:/U=DTAS5:<CR>

transfers blocks 0 through 2 of DTAS to DTAL.

3.3.1 A-Switch, Integral Output Lines (Line Blocking)

The use of the A-switch (/A) in a PIP command specifies that each output buffer is to contain
an integral number of lines: no lines are to be split between physical output buffers. Line
blocking is required for FORTRAN ASCII Input. Each line starts with a new word.

3.3.2 C-Switch, Delete Trailing Spaces and Convert Multiple Spaces to Tabs

The addition of a C-switch (/C) to a PIP command causes groups of multiple spaces in the
material being copied to be replaced by one or more TAB codes; trailing spaces are deleted.

The conversion of the spaces to TAB codes is performed in relation to the standard line TAB
“stop” positions located at 8-character intervals throughout the line. Only those groups of
multiple spaces which precede a TAB “‘stop” will produce a TAB code. For example:

I. [space][stop] [text of line]-will not produce a TAB code.

2. [spacel [space]'[stop] [text of line]-will produce [TAB].

3. [space][space] [stop] [space] [space] [text of line]-will produce [TAB]
[space] [space] [text of line]

A totally blank input is replaced by one space when this switch is used. The C-switch is used
to save space when storing card images in DSK file structures. The conversion of spaces to
tabs must be done with care since it could alter Hollerith text.

3.3.3 E-Switch, Ignore Card Sequence Numbers

This switch, normally used when a card reader is the source device, causes characters (i.e.,
columns) 73 through 80 of each input line to be replaced by spaces.

3-6

PIP L

3.3.4 N-Switch, Delete Sequence Number

This switch causes line sequence numbers to be deleted from any ASCII file being transferred.
Line sequence numbers are recognized as any word in the file in which bit 35 is a binary 1
and follows a carriage return, vertical TAB, form feed for start-of-file identification. Nulls
used to fill the last word(s) of a line are ignored. If a line sequence number is followed by a
TAB, the TAB is also deleted.

3.3.5 S-Switch, Insert Sequence Numbers

This switch causes a line sequence number to be computed and inserted in the output buffer
at the start of each line. Sequence numbers are indicated by a 1 in bit 35 of a word following
a carriage return, a vertical TAB or start-of-file indicator. A TAB is added as the first character
following the line sequence number. Any previous line sequence numbers and their TAB’s are
removed.

Sequence numbers assigned by PIP take the form nnnnn, starting at 00010 and ranging through
99990 in increments of 10. Approximately one-third of each output buffer is left blank to
facilitate editing operations on the file (DTA only).

3.3.6 O-Switch, Insert Sequence Numbers and Increment By 1

This switch causes the same operations to be performed as those for switch S, (see 3.3.5)
except that the assigned sequence numbers are incremented by 1 instead of 10.

3.3.7 P-Switch, Prepare FORTRAN Output for Line Printer Listing

This switch causes PIP to take output generated by a FORTRAN program, which was output
on a device other than the line printer (LPT), for which it was intended, and performs the

carriage control character interpretations needed when the data is sent to the LPT. The first
character in each input line is interpreted by PIP according to the following table.

FORTRAN Carriage Control Character Interpretation

CARRIAGE CONTROL
CHARACTER PRODUCED ASCII CHARACTER(S)
BY FORTRAN PROGRAM SUBSTITUTED LINE PRINTER ACTION
space Skips to next line (single space)
with a FORM FEED after every
60 lines.
* 023 Skips to next line no FORM

FEED.

152 PIP

FORTRAN Carriage Control Character Interpretation (Cont’d)

CARRIAGE CONTROL
CHARACTER PRODUCED ASCII CHARACTER(S)
BY FORTRAN PROGRAM SUBSTITUTED LINE PRINTER ACTION
+ 015 Precede line with a carriage return
only (i.e., over-print previous
line).
, (comma) 021 Skips to next 1/30th of page.
- 015,012,012 Skips two lines.
022 Skips to next 1/20th of page.
/ 024 Skips to next 1/6th of page.
0 015,012 Skips 1 line (double space).
1 014 Skips to top of next page (page
gject).
2 020 Skips to next 1/2 page.
3 013 Skips to next 1/3 page (also
vertical tab).

3.3.8 T-Switch, Delete Trailing Spaces

This switch causes all trailing spaces to be deleted from the file being transferred. If a transfer
line consists of nothing but spaces, then a single space and a line terminator will be retained in
its place in the copied file.

3.3.9 W-Switch, Convert Tabs to Spaces

The addition of a W-switch (/W) to a PIP command causes each TAB code contained by the
material being copied to be converted to one or more sequential spaces.

The number of spaces produced when a TAB code is converted is determined by the position
of the TAB in relation to the standard line TAB “‘stops.”” Each line has TAB stops positioned
at 8-character intervals throughout the length of the line. When a TAB is converted in a /W
switch operation, only enough spaces are produced to reach the next sequential line TAB
stop position. For example, the series

[stop] ABCD[TAB]

3-8

PIP 153

is converted to

[stop] ABCDspspspsp|[stop]
where:

sp = space.

The use of the W-switch causes files previously edited by a C-switch to be restored to their
original form (less the deleted trailing spaces and any TAB’s which were in the original file).

3.3.10 V-Switch, Match Angle Brackets

This switch is not a true edit switch, because the input file is not edited. The use of this
switch generates an output file which contains the results of cumulative matching of angle
brackets located in the input file. If a line in the input file contains brackets which are not
needed to match earlier brackets and which match each other, no output occurs. In all

other cases where brackets occur, a cumulative total and the line currently considered are
printed. The symbol > scores a negative count; the symbol < scores a positive count. A
typical use for this switch is to check source input to the MACRO-10 Assembler; for example,
assuming that the file A contains:

ONE<<>
TWO<
THREE>
FOUR<>>
FIVE<>
SIX>

The request
LPT:=DTA2:A/V<CR>
results in the Line Printer output:

1 ONE<<>
2 TWO<

1 THREE>
0 FOUR<>>
-1 SIX>

From this general example, the most likely conclusion is that there is either a < missing or

an extra > in this file. Line five (i.e., FIVE <>) was not printed because the brackets which
it contained were matched.

39

154

PIP

3.3.11 Y-Switch, DECtape to Paper Tape

The Y-switch enables the user to transfer DECtape files having the filename extension .RMT,
.RTB or .SAV onto SAVE-formatted RIM10 or RIM10B paper tapes. The type and contents

of the paper tape produced in a Y-transfer are determined by the source file filename exten-
sion. If the extension is:

I. .RMT, — A RIMI0 paper tape (with terminating transfer word) is produced;

-

2. .RTB, — A RIM10B paper tape (with RIM loader and terminating transfer word)
is produced;

3. .SAV, - A RIMIOB paper tape is produced (with neither RIM loader nor termi-
nating transfer word).

For example, the command
PTP:/Y=DTA2:TEST1.RTB<CR>

will punch a RIM10B tape as described in item 2 of the foregoing description from DECtape
file TEST1.RTB.

Switches D and X may be used in conjunction with the Y-switch.

It is assumed that .RTB, .RMT and .SAV files are all in the standard “save” file format. In
particular, it is assumed that no block of an .RMT saved file overlaps a preceding one.

NOTE

Optional switch Y is obtained by setting RIMSW=1 at
assembly time (see source file PIP.MAC.).

The functions performed by PIP during /Y transfers in response to each possible type of
source file filename extension are as follows:

1. An .RTB file causes PIP to:
a. Punch a RIM loader.

b. Punch an I/O word (-n,x) at the start of each data block. The variable n
is the number of data words punched in each block and has the octal value
17, or less. The variable x is the starting address-1 for loading the following
data. Successive values of x are derived from the pointer words in the
DECtape blocks. The first value of x is the value of the right side of the
first pointer word in the DECtape file.

¢. The complete DECtape file is punched as described in Item b.

PIP

d. The final block punched is followed by a block containing a transfer word.
If the right half of .JBSA contains O then a halt is punched. If the right
half of .JBSA contains a non-zero value, a jump to that address is punched.

2. A .SAV file is treated in the same way as one having an .RTB extension except
that no RIM loader and no transfer word are punched.

3. An.RMT file initiates PIP functions which are similar to those described for
.RTB files but which have the following differences:

a. Only one IOWD is produced, (-n,x) where (n-1) data words and a transfer
instruction follow.

b. The first of the (n-1) data words punched from the saved file is the first
word of the logical block which contains location .JBDA (i.e., the first
location after the end of the JOBDATA area).

¢. The variable x is then set to the starting address (address-1) of the first data
word found. The effective program length is determined by the relationship
n=(.JBFF)-x. Data is now transferred from (x+1) until (n-1) words have
been punched.

d. Zero fill is used if a pointer word in a source block indicates noncontiguous
data. The transfer word, calculated as described for .RTB files, terminates
the output file.

3.4 SET DATA MODE, SWITCHES B, H AND I

The addition of optional data mode switches to a PIP command specifies the mode in which
the file(s) involved must be transferred.

Data modes are device dependent; complete descriptions of their use and effect on different
devices are given in the DECsystem-10 Monitor Calls manual.

In both input and output devices can do binary I/O, no editing switches are in force, and no
concatenation is required, then all files are transferred in binary mode (36-bit bytes). If an
editing switch that requires PIP to do character processing is used, ASCII mode is used. The
data mode switches are:

1. /B — Initializes the input and output devices in binary mode.

NOTES

Since PIP recognizes the following as binary extensions,
/B is not required when these extensions are used in the
PIP command.

155

156 PIP

Binary Extensions Recognized by PIP

.BAC LOW .RTB
.BIN .MSB SAV
.BUG .OVR .SFD
.CAL .QUC .SHR
.CHN .QUE SVE
.DAE .REL SYS
.DCR .RIM UFD
.HGH RMT XPN

2. [H — Initializes the input and output devices in image binary mode.

3. /1 — Initializes the input and output devices in image mode.

3.5 FILE DIRECTORY SWITCHES
Optional PIP switches whose functions affect user file directories are described in paragraphs
3.5.1 through 3.5.6.

3.5.1 L-Switch, List Source Device Directory

NOTE

The Monitor command DIRECT provides the user with
more facilities for obtaining directory-type information
than the PIP L-Switch option. (See the DECsystem-10
Operating System Commands Manual for details.)

This switch enables the user to obtain a listing of the source device directory. The type of
output device used affects the directory as follows:

1. If the output device is TTY, the directory listing formats for directory-type
devices are:

a. For DTA source (e.g., TTY:=DTA4:/L<CR)
TAPE ID:

FREE: n BLKS, m FILES
filename.ext no. of blocks creation date

3-12

PIP 157

b. For DSK source (e.g., TTY:=DSK:/L<CR>)

filename.ext no. of blocks <protection> creation date

Total Blks n

Asterisk or question mark wildcard symbols (see paragraph 2.3.2.2) can be used
in either the specified filename or extension fields to cause only those files in
the disk directory of a particular filename or extension to be listed. Thus, the
command TTY:/L=DSK:%.RELKCR> causes only those files with extension
.REL to be printed in the directory listing.

2. If the output is not TTY, the directory listing is printed in one of the following
formats:

a. For DTA source, format is as in paragraph 1.(a)

b. For DSK source, format is as in paragraph 1.(b) but includes access date
and mode as well as the creation time and access date. If any disk file is
protected, as much information as possible is given about it.

3.5.2 F-Switch, List Limited Source Directory
This switch performs essentially the same function as the L-Switch; however, only the file-
names and extensions of the files in the specified disk or DECtape directory are listed.
NOTE
The Monitor command DIRECT provides the user with
more facilities for obtaining directory-type information
than the PIP F-switch option. (See the DECsystem-10

Operating System Commands Manual for details.)

Only disks and DECtapes are permitted as source devices; if no source device is given, DSK
or TMP is assumed.

For example, the command
TTY:/F=<CR>

lists the directory of the user’s disk area as described. The /F switch may work in cases where
/L will not because of file access protection.

3-13

158

PIP

3.5.3 R-Switch, Rename Source Files

The use of this switch causes PIP to rename the source file to the name given as the destina-
tion file name. Only one source file specification can be given. If more than one is given,
the error message 7PIP COMMAND ERROR is printed and no action is taken. Wildcard
characters are valid in destination file specifications. Protection codes <protection> can
always be specified; in fact, the wildcard request #.* has no effect without <protection>.
If no protection is specified, the current file protection is not altered.

During a rename operation on device DSK, if PIP finds that the filename to be changed exists
on more than one file structure, PIP will output the following message to the user’s terminal:

TAMBIGUOUS file structure list] [filename.ext]
The following are examples of the proper use of the R-switch:
. DSK:MONILF4/R=MONI.MAC<CR>
Rename the file MONL.MAC as MONLF4.
2. DSK:MON2.x/R=MONA.*<CR>

Rename all files of name MONA and any extension to retain the extensions but
take the new name MON2.

3. DSK:#.EXT/R=+ MACKCR>

Rename all files of extension MAC to retain their own names but take the
extension EXT.

4. DSK:x.x<077>/R=+.SAV<CR>
Give all files of extension SAV the protection <077>.
5. DTA1:MON2/R=MONA.REL<CR>

Rename the file MONA.REL to have the name MON2 and the null extension.

3.5.3.1 Changing Source UFD or SFD Protection Code Using the Rename (R) Function —
The access protection codes assigned to UFDs or SFDs can be changed using the PIP rename
switch (/R) if the privileges assigned the current user permit the operation. (For the details
of user UFD and SFD access privileges, see 2.4 and 2.6; see also the DECsystem-10 Monitor
Calls Manual.) The owner of a directory is always permitted the use of the PIP rename
function.

PIP 159

The command format required to change a directory access protection code is
xdev:[directory] .UFD<nnn>/R=[directory] .UFD<CR>
where:
I. <nnn> represents the desired (new) protection code.
2. [directory] must be the same on both sides of the command.
3. The user indicates to PIP that the protection code of the identified directory
(UFD or SFD) is to be changed by specifying the extension .UFD without a
filename. Note that the same extension, .UFD, is used when changing the ac-

cess protection of an SFD as well as for changing the protection of a UFD.

The following examples illustrate the use of the R-switch in changing the access protection
codes of directories.

1. The command:
DSKA:[57,123].UFD<222>/R=[57,123] . UFD<CR>

changes the access code of the UFD identified by the number pair 57,123 to
222,

2. The command:
DSKA:<222>/R=111.SFD[57,123,AAA ,BBB]<CR>
changes the access code of the SFD named 111 to the value 222. Note that
111.SFD is a file contained in [57, 123, AAA, BBB].

3.5.3.2 Changing Directory Using R-Switch — A directory specification in a rename command
is an exception to command scanning conventions. If one directory specification is given, it

is used for both source and destination. To change the directory, both source and destination
specifications must be given. This exception prevents undesired directory changes.

3.5.4 D-Switch, Delete Files
This switch causes PIP to delete one or more specified files from the device given in the destina-
tion side of the PIP command. Only a destination device can be specified in a delete command;

it is assumed that the source and destination devices are the same device.

For example, the following command

DSK:/D=FILEA FILEB,FILEC MAC,*. REL<CR>

3-15

160

PIP

causes PIP to delete from the user’s disk area files FILEA, FILEB, FILEC.MAC and all files
having the extension .REL.

If a nonexistent file is specified in a delete command, PIP prints the error message
%filename.ext FILE WAS NOT FOUND

and continues to process deletions of the existing specified files. If an existing file is found
to be protected it is skipped and the message

ilename.ext (2) PROTECTION FAILURE

is printed. If a user has the correct privileges he can delete files from other users’ areas.

NOTE

An attempt to delete files from a DECtape that is write-
locked results in the error message

DEVICE dev.name OPR operator
ACTION REQUESTED

being printed at the user’s terminal. When the system
operator has write-enabled the DECtape unit involved,
he will start the requested action and cause the message

CONT BY OPER
to be printed at the user’s terminal.

During the delete operation, PIP lists the names of the files deleted and the total number of
blocks freed by the deletion. The names are typed before the files are actually deleted.

For example, assume that a file three blocks in length and named FILEA.MAC exists in the
current UFD. The command for its deletion and the subsequent messages printed by PIP
would appear as:

*DSK:/D=FILEA.MAC <CR> (user command)
FILES DELETED: (PIP response)
FILEA.MAC (PIP response)
3 BLOCKS FREED (PIP response)

&

3-16

PIP 161

3.5.5 Z Switch, Zero Directory
The use of this switch causes PIP to zero out the directory of the destination’s device; a
source device does not have to be specified in the command. A Z-switch request is imple-

mented before any other operation specified in the command string in which it occurs.
Thus,

DTA2:CARDS/Z=CDR:<CR>

zeroes out the directory of DTA2 before transferring one file from CDR onto DTA2. The
command

DTA?2:/Z=<CR>
zeroes out the directory of DTAZ2.
If the destination device is the disk, an attempt is made to delete all the files whose names
are found in the directory specified. If protection codes prohibit the deletion of some of

the files, the request will terminate after as many files as possible have been deleted, and
the message

?filename.ext(2)PROTECTION FAILURE

is printed. The user should then change the protection of the protected files and repeat his
request if he wants all files deleted. For example, the command

DSK:FLOUT/Z=DTA2:CARY<CR>
zeroes out the directory of the user’s disk area, transfers file CARY from DTAZ2 to the disk,
and names the disk file FLOUT.
3.5.6 Q-Switch, Print Summary of PIP Functions

This switch causes PIP to print on a specified device the help file SYS:PIP.HLP. This file
contains an alphabetical list of all PIP switches and functions. For example, the command

LPT:/Q=<CR>

causes the following summary to be listed on the line printer:

PIP Switches (Alphabetic order) Summary

A Line Blocking

B Binary Processing (Mode)

(& Suppress Trailing Spaces, Convert Multiple Spaces to TABs
D Delete File

E Treat (Card) Columns 73-80 as Spaces

162 PIP

s
=

Switches (Alphabetic order) Summary

List Disk or DTA Directory (Filenames and Ext. only)

Ignore 1/O Errors

Image Binary Processing (Mode)

Image Processing (Mode)

Punch Cards in ASCII (Output Device must be CDP)

List Directory

See MTA Switches Below

Delete Sequence Numbers

Same as /S Switch, except increment is by 1

FORTRAN output Conversion assumed. Convert format control character
for LPT listing. /B/P FORTRAN Binary

Print (this) List of Switches and Meanings

Rename File

Resequence, or Add Sequence Number to File; increment is by 10

Suppress Trailing Spaces Only

Copy Block 0 (DTA)

Match parentheses (<>)

Convert TABs to Multiple Spaces

Copy Specified Files

RIM, DTA to PTP if source extension is RTB Destination format is RIM Loader,
RIM 10B transfer word. If source extension is SAV destination format is as
RTB — RIM 10B file only. If source extension is RMT destination format is
RIM10.

Z Zero Out Directory

TozZzECO=Tmaom™

IXE<SCH®LRO

MTA switches:
Enclose in parentheses ().

M followed by 8 means select 800 B.P.1. Density

556 B.P.1. Density

200 B.P.1. Density

Even Parity

Advance MTA1 File
Advance MTA1 Record
Backspace MTA1 File
Backsapce MTA1 Record
Rewind MTA or DTA
Skip to Logical EOT
Rewind and Unload MTA or DTA
Mark EOF

MOHEYEOR DRV

(M#NA), (M#NB), (M#ND), (M#NP) means advance or backspace MTAn files, or records.

*This is an optional switch obtained by setting RIMSW=1 at assembly time.

PIP

3.6 PERMITTED SWITCH COMBINATIONS

The combinations of PIP’s standard and special option switches which are permitted in PIP

commands are illustrated in the following matrix.

HnE<gaowxm o T oz = CR=T DO Mmoo we
H#H M F A R

N =<

ABCDE
#x #x
#
#x
#
#x #
#H#HEH

HHBFHEHETD

b

* oy U ™
FH oA H >
PR PR
H o

PR TR
HHoH
Homom

H
H
H

X XX #x #

X #x #x
X #x #x

#*
H o KR

X X %X X

T H#?#
#x

X X X ® X

o oH HOH W

HHEH H#
X X x #x

LEGEND:

® oM oM o0

oM

b

b

w

X

##

X X X

x x ?

Symbol

e e K

Blank

KLMNOPQRSTUVWXYZ

#x x x
#x ##
X X X
###
X X X

##

it NS

X
#
#
9

-

X #x ? #
*x #HEH H#H#x #
X #x x 7T x x #

o
x #x x #
HHEHBEHBEHAEH

X X X

X

#H## X

X

#

X #x X

X # X

X

x

x

X
X
#
X X

Meaning

A permitted combination

A permitted but unlikely combination

Not permitted

Special purpose combination

XX X FEXTXXXTX XX

Untested or unused combination

3-19

X

X
#
X

o MW M

E T

CEE N A

NOTES
ASCII mode
binary mode
ASCII mode
Delete only
ASCII mode
List Directory
only
Always legal
Binary mode
Binary mode
ASCII mode
Unused
List Directory
only
Magnetic Tape
only
ASCII mode
ASCII
FORTRAN
Prints file
PIP.HLP
Rename only
ASCII mode
ASCII mode
DTA only
ASCII mode
ASCII mode
ASCII or binary
mode
Binary mode
Output only

163

PIP

CHAPTER 4

SPECIAL PIP SWITCHES

This section contains descriptions of optional PIP functions used in magnetic tape, error
recovery and card punch operations.

4.1 MAGNETIC TAPE SWITCHES

When magnetic tape is used in a file transfer, PIP can set the tape parity and density param-
eters and position the tape reels. In PIP commands, magnetic tape switches apply to only
one particular magnetic tape unit or file specification.

The optional PIP magnetic tape (MTA) switches are written enclosed in parentheses; the letter
M is used as the first character of all optional switches or series of switches (e.g., (MSW) or
(MSWISW2..).

MTA switches must appear within the command file specifications of the particular file to
which they refer. Thus, MTA switches refer to a particular device and, except for density
and parity selections, to a particular file specification of that device.

4.1.1 Switches for Setting Density and Parity Parameters
The default Monitor density of 800 bits-per-inch (bpi) and odd parity are assumed unless

either the Monitor SET DENSITY command was given or one of the following switches is
included in the PIP command file specifications:

Switch Meaning

(M8) 800 bpi density (default value)
(M5) 556 bpi density

(M2) 200 bpi density

(ME) Even parity (odd parity is default)

The following command string causes PIP to transfer a file from MTA1 to MTA2 at 200 bpi,
with even parity (and in ASCII line mode)

MTA2:(M2E)=MTA1:(ME2) <CR>

4-1

165

166 PIP

4.1.2 Switches for Positioning Magnetic Tape

The following switches are used in PIP command strings for magnetic tape handling:

Switch Function Performed

(MA) Advance tape reel one file.

(MB) Backspace tape reel one file.

(MD) Advance tape reel one record.

(MP) Backspace tape reel one record.

(MW) Rewind tape reel (works for DECtape also).
(MT) Skip to logical End-of-Tape.

MU) Rewind and unload (works for DECtape also).
(MF) Mark End-of-File.

In PIP MTA commands, the source device need not be given. For example, to rewind MTAI:,
type

MTA1:(MW)=<CR>

If a source device is specified in the command string, information transfer will occur, except
when PIP is requested to rewind and unload a magnetic tape.

Several magnetic tape functions may be specified in a single command string. Density or
parity, when changed, will appear in the file specification. In the following example, density
is set to 200 bpi, parity is even, the tape is to be rewound and the first, third, fourth and
fifth files on that reel are to be printed on the line printer.

LPT:=MTA1:(M2EW),(MA), ,<CR>

If multiple backspace, advance file or record movements are needed, the number of move-
ments required is specified by #n (interpreted as decimal). All positioning switches are imple-
mented before any related file transfers are made; thus MTA1:(M#3A)=PTR: will advance
MTAT by three files before transferring a paper tape file to it.

1. If a backspace file request (M#nB) is given, PIP backspaces over “n+1” files,
then advances over one file — unless the tape is at Load Point. In this way the
tape is always initially positioned at the beginning of a file. Thus, the command:
MTAOQO:(MB)=<CR>
will backspace MTAO to the start of the previous file.
2. If the Load Point is reached before a backspace file or record request is com-
pleted, an error diagnostic will terminate the run and the following error message

is printed

?LOAD POINT BEFORE END OF BACKSPACE REQUEST?

4-2

PIP 167

3. Only one MTA movement per file specification is allowed in a command string.
Thus:

MTAO:(MT#28)=...<CR>

is illegal since it requests two distinct types of MTA movement.

4.1.2.1 Backspace to Start of Current File — The specification of 0 as the value of nin a
multiple backspace command (e.g., M#0B) causes the tape to be backspaced to the start of
the current file. The use of M#0B is not the same as MB; switch MB is equivalent to M#1B.

4.1.2.2 Advance to End of Current File — The specification of 0 as the value of n in a mul-
tiple advance command (e.g., M#0A) causes the tape to be moved to a point just before the
EOF marker of the current file. The use of M#0A is not the same as MA; switch MA is
equivalent to M#1A.

NOTE

The advance and backspace record requests are avail-
able as a convenience for the knowledgeable user, and
should be approached with caution. Always remem-
ber that PIP typically has multiple input and output
buffers and the physical position of the tape need not
correspond to the physical position of the record
currently being processed.

4.2 G-SWITCH, ERROR RECOVERY

If the error recovery switch /G is present in a command string, a specific set of 1/O errors
will be acknowledged by error messages. The 1/O errors affected by the presence or absence
of /G are listed in Section 5, paragraph 5.2, item 3 of the error messages, and are flagged by
an asterisk (*). Processing will continue after the error message is printed as though no error
had occurred. Thus, most I/O errors occurring within a file may be overridden. However,

if the same error condition occurs in each buffer of the file, the error message is repeated for
each buffer until either the end of file occurs or the error condition disappears. A disk direc-
tory is used as an input file if it is read to be either listed or searched and is obtained as a
core image from the monitor; therefore, it is not subject to the input errors which may be
diagnosed by PIP. However, 1/O errors can occur for DECtape directories and are diagnosed
at the monitor level when a directory is read or written. This occurs, typically, on a LOOK-
UP or RELEAS request. If the G-switch is not used, any I/O error will close the current file
and, after printing a suitable message, will terminate the current request to PIP.

4.3 J-SWITCH, CARD PUNCH

The J-switch causes cards to be punched in ASCII mode. The output device specified by the
command string must be the card punch (CDP).

43

PIP

CHAPTER 5

PIP ERROR REPORTING AND ERROR MESSAGES

This section describes the various types of error conditions and error messages that can occur
during PIP operations.

Also described is the special treatment of recoverable error messages, which prevent the pre-
mature termination of a job running under the Batch Processor.

When an error message terminates a PIP run, both the input and output devices are released.
This means that all files, fully or partly created, are available on the destination device.

NOTE

A question mark (7) preceding an error message
indicates that the error is fatal (non-recoverable).

5.1 1/O ERROR MESSAGES
1/O error messages are opened with a description of the relevant device and file; for example,

1. INPUT DEVICE DTA3.FILE filename.ext. ..
2. OUTPUT DEVICE DTA3:FILE filename.ext. ..
3. disk directory read . ..

Device Message

DTA,DSK.MTA WRITE (LOCK) ERROR

*CDR 7-9 PUNCH MISSING

*OTHER BINARY DATA INCOMPLETE
*ALL DEVICES DEVICE ERROR

*ALL DEVICES CHECKSUM OR PARITY ERROR

DTA BLOCK OR BLOCK NUMBER
TOO LARGE

*OTHER INPUT BUFFER OVERFLOW

*MTA PHYSICAL EOT

Thus, for the command DTA4:CON.REL=DTA3:CON.REL, if DTA4 is WRITE LOCKed,
PIP prints the error message:

?0UTPUT DEVICE DTA4:FILE CON.REL WRITE(LOCK)ERROR

*Recoverable error if a G-switch is used; read paragraph 4.3 for a description of /G.

5-1

169

170

PIP

Other messages for devices are:
1. ?DEVICE dev DOES NOT EXIST (DEVCHR request)

2. ?DEVICE dev NOT AVAILABLE (INIT request)

5.2 FILE REFERENCE ERRORS

The following error messages can occur during a LOOKUP, RENAME or ENTER request on
disk.

MESSAGE:? (FILENAME.EXT) THEN ONE OF THE FOLLOWING:

(0) FILE WAS NOT FOUND or (0) ILLEGAL FILE NAME
(used for enter errors only)
(1) NO DIRECTORY FOR PROJECT-PROGRAMMER NUMBER
(2) PROTECTION FAILURE
(3) FILE WAS BEING MODIFIED
(4) RENAME FILE NAME ALREADY EXISTS
(5) ILLEGAL SEQUENCE OF UUOS
(6) BAD UFD OR BAD RIB
(7) NOT A SAV FILE
(10) NOT ENOUGH CORE
(11) DEVICE NOT AVAILABLE
(12) NO SUCH DEVICE
(13) NOT TWO RELOC REG. CAPABILITY
(14) NO ROOM OR QUOTA EXCEEDED
(15) WRITE LOCK ERROR
(16) NOT ENOUGH MONITOR TABLE SPACE
(17) PARTIAL ALLOCATION ONLY
(20) BLOCK NOT FREE ON ALLOCATION
(21) CAN'T SUPERSEDE (ENTER) AN EXISTING DIRECTORY
(22) CAN’T DELETE (RENAME) A NON-EMPTY DIRECTORY
(23) SFD NOT FOUND
(24) SEARCH LIST EMPTY
(25) SFD NESTED TOO DEEPLY
(26) NO-CREATE ON FOR SPECIFIED SFD PATH

If the error code (V) is greater than 26(8), the error message:
7(V) LOOKUP,ENTER, OR RENAME ERRQR

is printed.

Error values are used by the UUO’s LOOKUP, ENTER and RENAME. Refer to the DECsystem-
10 Monitor Calls Manual for complete descriptions of these UUO’s.

PIP 171

The following error messages may be given on a reject to an ENTER request on DECtape.

1.

The error message printed if there is no room for an entry in a DECtape directory
is

?DIRECTORY FULL:

The error message printed if a zero filename is given for a DECtape output file
is

?ILLEGAL FILE NAME:

The following message is given if a filename is not found in a directory search or disk or DEC-

tape:

NO

FILE NAMED filename.ext

5.3 PIP COMMAND ERRORS

The following error messages are output by PIP on the detection of errors in the user com-

mand string:

I

?PIP COMMAND ERROR
Some of the possible causes of this type of error are:
a. anillegal format for a command string,
b. a nonexistent switch was requested,
¢. afilename other than * or *.* was given for a non-directory (source) device.
?7INCORRECT PROJECT-PROGRAMMER NUMBER:
The project-programmer number must be in the form
[number,number]

where number is an octal number from 1 through 377777, a full path specifica-
tion must be made if SFD’s are involved.

?SFD LIST TOO LONG:

Too many SFD’s were listed in the full directory path. A maximum of five levels
(not including the UFD) is permitted in a directory path specification.

ILLEGAL PROTECTION:

The protection number must be in the form <number>, where number is an
octal number from 0 through 777.

5-3

172 PIP

5. INO BLOCK 0 COPY
The /Urswitch was specified, but PIP was not assembled to allow this.
6. 7TOO MANY REQUESTS FOR ... (magnetic tape)

Conflicting density and/or parity requests were given.

5.4 Y-SWITCH ERRORS

The following error messages occur only when the Y-switch is included in the PIP command
string:

1. 7DTA to PTP ONLY*

Only DECtape input and paper tape output are permitted.
2. 7Y SWITCH NOT AVAILABLE THIS ASSEMBLY::

The /Y switch was specified, but PIP was not assembled to allow this.
3. FILE filename.ext ILLEGAL EXTENSION:

The extensions of the filenames given must be .RMT. .RTB or .SAV.
4. Filename.ext ILLEGAL FORMAT:

The reasons for getting the diagnostic ILLEGAL FORMAT are:

a. azero length file was found,

b. the required job data information was not available,

c. ablock overlapped a previous block (RIM 10),

d. an EOF was found when data was expected,

e. a pointer word was expected but not found in the source file.

5.5 GENERAL ERROR MESSAGES

The following is a list of the PIP error messages which are not included in any of the preceding
categories:

1. ?DISK OR DECTAPE INPUT REQUIRED:

This message is printed when a non-directory source device is specified for a PIP
function which requires a directory-type source device.

5-4

10.

PIP 173

ilename.ext ILLEGAL FILE NAME:

This message is output if an attempt is made to ENTER without giving a filename.
Errors found during /X, /Z, /D, and /R operations result in error messages which
pertain to the specific error found. Error messages for these operations are
printed only if no other fatal error occurs before the command string is proc-
essed. If another error does occur, its diagnostic takes precedence over the diag-
nostics for the above switch functions.

74K NEEDED:

4K not currently available but is needed (for non-reentrant disk system).
?DECTAPE I/O ONLY:

The 1/O device for a block 0 copy (/U switch) must be a DECtape.
TERMINATE /X.MAX. OF 999 FILES PROCESSED:

PIP, during a /X copy function from a non-directory device, has processed 999
files. This is the maximum number of files which such a /X request can handle.

7TOO MANY INPUT DEVICES:

This error is for the /D and /DX functions; only one input device is allowed when
these switches are used. If more than one device is specified in a /D command
and the first device given is DSK, the disk files are deleted when this diagnostic

is given.

?NO FILE NAMED PIP.HLP:

The data file requested by a PIP Q-switch is not available on the system device.
?7LINE TOO LONG:

During an ASCII mode file transfer a line containing more than 180 characters
was detected. This oceurs only when switches entailing line processing are

given (i.e., /A or /S).

7LOAD POINT BEFORE END OF BACKSPACE REQUEST:

This diagnostic occurs only if either the MTA (M#nB) or (M#nP) switch is used.

If the Load Point is sensed before the “‘n’” backspace files or records function is
completed, an error is assumed to have been made by the user.

5-5

174

PIP

5.6 TMPCOR ERROR MESSAGES

If the temporary storage facilities provided by the UUO TMPCOR are used or are attempted
to be used during PIP operations, the following error messages can occur:

1. ?TMPCOR NOT AVAILABLE:
2. ’NOT ENOUGH ROOM IN TMPCOR:
3. ?COMMAND NOT YET SUPPORTED FOR TMPCOR:
Wild cards, /X, and /R are not supported.
4. nn TMPCOR WORDS FREE
Number of word locations free in the TMPCOR storage area.

Refer to the DECsystem-10 Monitor Calls Manual for a description of the UUO TMPCOR.

5-6

FILENAME
EXTENSION

ABS
AID
ALG
ALP
ATO
AWT
B10
Bl1l
BAC
BAK
BAS
BCM
BCP
BIN
BLB

BLI

TYPE OF

FILE

Object
Source
Source
ASCII

ASCII

Binary
Source
Source
Object
Source
Source
ASCII

Source
Object
ASCII

Source

PIP

APPENDIX A

STANDARD FILENAME EXTENSIONS

Table A-1

Filename Extensions

MEANING

Absolute (nonrelocatable) program.
Source file in AID language.

Source file in ALGOL language.
Printer forms alignment.

OPSER automatic command file.
Data for automatic wire tester.
Source file in BLISS-10.

Source file in BLISS-11.

Qutput from the BASIC Compiler.
Backup file from TECO or LINED.
Source file in BASIC language.
Listing file created by FILCOM (binary compare).
Source file in BCPL language.
Binary file.

Blurb file.

Source file in BLISS language.

175

176 - PIP

Table A-1 (Cont.)
Filename Extensions

FILENAME TYPE OF
EXTENSION FILE MEANING

BUG Object Saved to show a program error.

BWR ASCII Beware file listing warnings about a file or program.

BNC ASCII BINCOM output.

CAL - Object CAL data and program files.

CBL Source Source file in COBOL language.

CCL ASCII Alternate convention for command file (@ construction
for programs other than COMPIL).

cco ASCII Listing of modifications to non-resident software.

CDP ASCII, Spooled output for card punch.

Binary

CFC ASCII Compressed file compare. Group of .SCM files com-
bined with PIP.

CKP Binary Checkpoint core image file created by COBOL oper-
ating system.

CHN Object CHAIN file.

CMD ASCII Command file for indirect commands (@ construction
for COMPIL).

CMP ASCII Complaint file by GRIPE.

COR ASCII Correction file for SOUP.

CRF ASCII CREF (cross-reference) input file.

CTL ASCII MP batch control file.

DAE Binary Default output for DAEMON-taken core dump.

DAT ASCII, Data (FORTRAN) file.

Binary

FILENAME
EXTENSION

DCR
DCT
DDT
DIR

DMP
DOC

DRW
DSE
DSF
ERR
F4
FAI
FCL
FFS
FLO
FOR
FRM
FTP
FUD

GND

TYPE OF

FILE

Binary
ASCII
ASCII
ASCII
PDP-6

ASCII

Binary
ASCII
ASCII
ASCII
Source
Source
Source
ASCII
ASCII
Source
ASCII
Source
ASCII
ASCII

PIP 171

Table A-1 (Cont.)

Filename Extensions

MEANING

Core image save (DCORE).

Dictionary of words.

Input file to FILDDT.

Directory from FILE command or DIRECT program.
PDP-6 format for a file created by a SAVE command.

Listing of modifications to the most recent version of
the software.

Drawing for VB10C drawing system.
Directory sorted by extension.
Directory sorted by filename.

Error message file.

Source file in FORTRAN IV language.
Source file in FAIL language.

Source file in FOCAL language.

Fast FORTRAN stream.

English language flowchart.

Source file in FORTRAN 10 language.
Form.

FORTRAN test programs.

FUDGE?2 listing output.

List of ground pins for automatic wire wrap.

178 PIP

Table A-1 (Cont.)
Filename Extensions

FILENAME TYPE OF
EXTENSION FILE MEANING
HGH Object Nonsharable high segment of a two-segment program.
HLP ASCII Help files containing switch explanations, etc.
IDA ASCII, COBOL ISAM data file.
Binary
IDX ASCII, Index file of a COBOL ISAM file.
SIXBIT
INI ASCII Initialization file.
Binary
LAP ASCII Qutput from the LISP compiler.
LIB ASCII COBOL source library.
LOG ASCII MP batch log file.
LOW Object Low segment of a two-segment program.
LPT ASCII LISTING DATA.
LSD ASCII Default output for DUMP program.
LSP Source Source file in LISP language.
LSQ ASCII Queue listing.
LST ASCII Listing data.
MAC Source Source file in MACRO language.
MAN ASCII Manual (documentation) file.
MAP ASCII Loader map file.
MEM ASCII Memorandum file, typically output from RUN-

OFF.

A-4

PIP 179

Table A-1 (Cont.)
Filename Extensions

FILENAME TYPE OF
EXTENSION FILE MEANING
MID Source Source file in MIDAS (MIT Assembler) language.
MIM Binary Snapshot of MIMIC simulator.
MSB Object Music compiler binary output.
MUS Source Music compiler input.
N Source Source file in NELIAC language.
NEW All New version of a program or file.
OBJ Object PDP-11 relocatable binary file.
OLD Source Backup source program.
OPR ASCII Installation and assembly instructions.
OVR Object COBOL overlay file.
P11 Source Source file for PDP-11.
PAK Source Files compressed by PACK.TEC to save disk space.
PAL Source Source file in PAL 10 (PDP-8 assembler).
PBT ASCII P-batch control file.
PL1 Source Source file in PL1 language.
PLG ASCII P-batch log file.
PLM ASCII Program Logic Manual.
PLO Binary Compressed plot output.
PLT ASCII Spooled output for plotter.
PPL Source Source file in PPL language.
PRO Object Program (save file).

180

FILENAME
EXTENSION

PTP

Qxx

QUC
QUD

QUE
QUF
REL

RIM

RNC
RND
RNH
RNL
RNO
RNP
RSP

RSX
RTB

SAI

TYPE OF

FILE

ASCII,
Binary

ASCII

Binary

ASCII
Binary

Binary
Binary
Object
Object
Object
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
All

Object

Source

PIpP

Table A-1 (Cont.)

Filename Extensions

MEANING

Spooled output for paper-tape punch.
Edit backup file, like

.BAK (all xx).

Queue change request file.

Queued data file.

Queue request file.

Master queue and request file.

Relocatable binary file.

RIM loader file.

Read-In mode (RIM) format file (PIP).
RUNOFF input for producing a .CCO file.
RUNOFF input for producing a .DOC file.
RUNOFF input for producing an .HLP file.
RUNOFF input for producing a .PLM file.
Programming specifications in RUNOFF input.
RUNOFF input for producing a .OPR file.
Script response time log file.

Files for RSX-11D.

Read-In mode (RIM10B) format file (PIP).

Source file in SAIL language.

A-6

PIP

Table A-1 (Cont.)
Filename Extensions

FILENAME TYPE OF
EXTENSION FILE MEANING
SAV Object Low segment from a one-segment program.
SCD ASCII Differences in directory.
SCM ASCII Filcom output.
SCP ASCII SCRIPT control file.
SEQ ASCII Sequential COBOL data file, input to ISAM program.
SFD Binary Sub-file directory (restricted usage).
SHR Object Sharable high segment file of a two-segment program.
SMP Source Source file in SIMPLE language.
SNO Source Source file in SNOBOL language.
- SNP ASCII Snapshot of disk by DSKLST.
SPT ASCII SPRINT - created files.
SRC ASCII SRCCOM output.
SVE Object .SAVed file from a single user Monitor.
SYM Binary LINK-10 symbol file.
SYS Binary Special System files.
TEC ASCII TECO macro.
TEM ASCII, Temporary files.
Binary
T™MP ASCII, Temporary files.
Binary
TPC ASCII TYPESET input for producing a .CCO file.
TPD ASCII TYPESET input for producing a .DOC file.

A-T

182

FILENAME
EXTENSION

TPH
TPL
TPO
TPP
TST
TXT
UFD
UPD

VMX

WCH
WRL
XOR
XPN

TYPE OF

FILE

ASCII
ASCII
ASCII

ASCII

ASCII
Binary
ASCII

Object

ASCII
ASCII
Binary

Object

PIP

Table A-1 (Cont.)

Filename Extensions

MEANING

TYPESET input for producing an .HLP file.
TYPESET input for producing a .PLM file.
Programming specification in TYPESET input.
TYPESET input for producing an .OPR file.

Test data.

Text file.

User file directory (restricted usage).

Updates flagged in margin (SRCCOM).

Expanded save file starting at a location greater than
zero and used as a special support program for virtual
memory.

SCRIPT Monitor (WATCH) file.

Wire list.

Module data for XOR tester.

Expanded save file (FILEX).

PIP

INDEX

A switch, 3-6

Advance command, 4-3

Angle bracket matching, V switch, 3-9
Angle brackets, 2-4

Assigning names to DECtape, 3-3
Asterisk (*) symbol usage, 1-1, 2-8, 3-14
At (@) symbol usage, 1-1

B switch, 3-11

Back-arrow (SHIFT-0), 1-2
Backspace file request, 4-2, 4-3
Binary mode switch (/B), 3-11

C switch, 3-6
Card punch, J-switch, 4-3
Changing UFD or SFD protection code,
3-14
Colon (:) usage, 1-2, 2-4
Combinations of switches, 3-19
Combine files, transfer without X-switch,
3-5
Combining * and ? wildcard symbols, 2-9
Comma usage, 2-4
Command errors, 5-3
Command string, 2-1
delimiters, 2-4
format, 2-1
Control
direct, 1-1
indirect, 1-1
Conventions, writing, 1-2
Copy
all but specified files
(DX switch), 3-5
files without combining
(X switch), 3-2
Copying, 3-3
<CR> carriage return usage, 1-3

D switch, 3-10, 3-15

DX switch, copy all but specified files,
3-5

Data mode switches, 3-11

DECtape tape names, 3-5

DECtape to paper tape copy, Y switch, 3-10

Delete disk, 3-16

Delete files (D) switch, 3-15

Delete sequence number (N switch), 3-7

Delete trailing spaces, T switch, 3-8

Delimiters, command string, 2-4

Density and parity parameters, 4-1
switches for setting, 4-1

Device names, 2-5

Digit numeric protection code values, 2-13

Direct control, 1-1
Directory identifier, 2-9, 2-11
Disk deletion, 3-18

E switch, 3-6
Equals (=) symbol delimiter, 1-2, 2-1, 2-5
Error messages, 5-1

general, 5-4

TMPCOR (device TMP), 5-6
Error recovery, G-switch, 4-3
Errors

file reference, 5-2

[/O, 4-3

Y-switch, 5-4
Exclamation symbol (!), 2-5
Exiting from PIP, 1-1

F-switch, 3-13
Fields, filename, 2-7

File access protection codes, 2-5, 2-12, 2-13

File directory switches, 3-12
File protection codes, 3-15
changing of, 3-14
UFD and SFD, 2-13
File reference errors, 5-2
File request, backspace, 4-2
File specification, 2-2, 2-3
delimiters, 2-4
File transfer, 3-2

nondirectory device to directory device,

3-3
Filename fields, 2-7

Index-1

183

184

Filenames, 2-7
generation of, 3-4

FORTRAN carriage control character
interpretation, 3-7

Functions, optional, 3-1

G switch, error recovery, 4-3
General error messages, 5-4

H switch, 3-11
Hardware requirements, 1-1

I switch, 3-11
Identifier
DECtape, 3-4
directory, 2-9
Ignore card sequence numbers,
(E switch), 3-6
Indirect control, 1-1
I/O0
errors, 4-3
messages, 5-1
Insert sequence numbers, S-switch, 3-7

J-switch, card punch, 4-3

L-switch, 3-12

Line printer listing, FORTRAN,
(P switch), 3-7

List limited source directory,
F-switch, 3-13

List source device directory,
L switch, 3-12

Loading PIP, 1-1

Logical device names, 2-6

Magnetic tape switches, 4-1, 4-2

N-switch, delete sequence number, 3-7

Naming files with octal constants, 2-8

Non-directory to Directory copy
operation, 3-3

symbol, 2-8

PIP

O-switch, insert sequence numbers and
increment by one, 3-7

Octal constants as filename, 2-8

Optional functions, 3-1

Optional PIP functions, 4-1

P switch, prepare FORTRAN output for
Line Printer Listing, 3-7
Parentheses usage, 2-5, 4-1
Period (.) usage, 1-2, 2-4
Peripheral devices, 2-5
Physical device names, 2-5
PIP command errors, 5-3
Print summary of PIP functions,
Q switch, 3-17
Proj,prog number pairs, 2-11
Protection codes, 2-12, 2-13
changing of, 3-14
digit numeric values, 2-13

Q switch, print summary of PIP functions,
3-17
Question mark (?) symbol, 29, 3-14

R-switch, Rename Source Files, 3-14
Rename (R) function, 3-14

S-switch, insert sequence numbers, 3-7
SFD (full directory path) identifiers, 2-10
Sequence number, delete (N switch), 3-7
Sequence number, ignore card (E switch),
3-7
Sequence number and increment by one,
O switch insert, 3-7
Sequence numbers, S-switch, insert, 3-7
Set data mode switches, B, H and I, 3-11
Special functions, 4-1
Square brackets, 2-4
Standard optional functions, 3-1
Standard PIP switches, 3-1
SubFile Directory (SFD), 2-10
Switch combinations, 3-19
Switch summary, 3-17
Switches, 3-1
magnetic tape, 4-1, 4-2
for setting density and parity
parameters, 4-1

Index-2

185

PIP
T-switch, delete trailing spaces, 3-8 V switch, match angle brackets, 3-9
TAB codes, 3-6
Tab to space conversion, W-switch, 3-8
Terminator, 2-1 W-switch, convert tabs to spaces, 3-8
TMPCOR (device TMP) error messages, Wildcard characters, 2-8
5-6 Writing conventions, 1-2
Trailing spaces, 3-8
Transfer function, 3-1
Transfer without X-switch (combine X-switch, copy files without combining,
files), 3-5 3-2, 3-10
U-switch, copy DECtape blocks 0, 1 Y-switch, DECtape to paper tape
and 2, 3-6 copy, 3-10
UFD and SFD File protection codes, errors, 5-4
2-13
UFD-only identifiers, 2-10
Up-arrow (1) symbol usage, 1-3 7 switch, 3-17

User File Directory (UFD), 2-3

Index-3

187

decsustemic
GETTING STARTED WITH RUNOFF
Text Formatting Program

Order No. DEC-10-URUNA-A-D

digital equipment corporation - maynard. massachusetts

188

1st Edition February 1975

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this manual,

The software described in this document is furnished to the purchaser under a license for useon a
single computer system and can be copied (with inclusion of DIGITAL'’s copyright notice) only
for use in such system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software
on equipment that is not supplied by DIGITAL.

Copyright © 1975 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of this docu-
ment. explains the various services available to DIGITAL software users.

The postage prepaid READER'S COMMENT form on the last page of this document requests
the user’s critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation.

CDpP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAIO QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0S/8 RT-11
DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET-10

UNIBUS

RUNOFF 189

PREFACE

This manual is for the person who knows how to create a document with a text editor or
Batch system but knows nothing about the RUNOFF program. The reader need not have
any programming or mathematical skills. The descriptions of the most commonly used
commands provide a tutorial on how to format documents the easiest and most efficient
way. The entire list of commands and their meanings can be found in the Appendix.

This document reflects the software as of version 10.

iii

1.0
2.0
2.1
2.2
3.0
3.1
3.2
3.3
3.4
4.0
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.2
4.3
4.4
4.5
4.6
5.0
6.0
7.0
APPENDIX

CONTENTS

Page
INTRODUCTION . : . isissmei s ssataensnsis 1
PRODUCING ASOURCEFILE 2
Settingthe Format . o o o v 5w o mow e o v w5 % e o w0 8 5 8 & 2
Typingthe Text v v s s 9 ah e dodqaFaieesssves 4
COMMANDS e e e e e e e e 4
TeXt FOUMAtINE: ovvw v o o w om 5 wowra o o a @ % @ s o w8 % s 5
Page Fofmatting oo v 5o 0 o5 mimn o 0 @ % 5 6 Gomia & o & 5 @ 5 9
Mode Setting: . . oo oo oo v b 5w #0065 50 5 e 8 38w 11
Parameter Setting e e e 12
SPECIAL:CHARACTERS .« onve v 5w i % 0 e w o0 & e e 14
CaeShiftng: s wom S0 S5 i 3 B LV IS BRI E RS B3 14
UpperCase v v v v e i e e e e e e e e e e e e 14
UpPEF SR EOTK vvws oo w0 om0 o 0 comtin i 8 o @ e 6 8 W 8 8 15
EOWEECASE 4 5 s S S S v 5 5 BN @ 5 8 5 W 5 B oma 8 6 8 W e S 15
LowerCase Lock & i i o 15
Underlining 0 o i e e e e e e e e 15
QUOLEA SPACE = & wonis v v & v % 5 woddl @ & % & 5 5 S @ @ 8 ¢ @ 16
TheCapitalize:Flag . . . v i bav eai i i ise dassns 16
ThelIndex Flag i v it e e e e e e 16
Printing Special Characters« o v v v b v v v v e e e 17
HOWTORUNRUNOFE :: i cid a6 o u b b w ol oo sss 17
EXAMPLES . . . o e e e e e e e e e e e e e 19
SUMMARY OF MESSAGES v vt i i v v v 27
SUMMARY OF RUNOFF INPUT FILE COMMANDS 31

191

ARGUMENT

ASCII

BUFFER

CHARACTER

DEFAULT

FORMAT
INDEX BUFFER
JUSTIFICATION
MODE

n

QUEUE

RAGGED RIGHT

SOURCE FILE
or

SOURCE TEXT

TAB STOPS

RUNOFF 193

GLOSSARY

A variable whose value determines the value of a function.

American Standard Code for Information Interchange. A 7-bit
code in which textual information is recorded. The ASCII code
can represent 128 distinct characters. These characters are the
upper and lower case letters, numbers, common punctuation
marks, and special control characters.

A special register or a designated area of internal storage.

One symbol of a set of elementary symbols such as those cor-
responding to the keys on a typewriter. The symbols usually
include the decimal digits O through 9, a space, the letters A
through Z, operation symbols, and any other special symbols
which a computer reads, stores, or writes.

The value, name, or argument used unless you specify an alter-
native to override it.

The arrangement and organization of your document.
The internal storage area for words indexed during input.
The adjusting of spaces between words to align margins.
The current style or method of output.

A number which you must supply. It can contain as many
digits as necessary.

A list of items waiting to be scheduled or processed according
to system, operator, or user-assigned priorities.

An uneven right margin.

The document you input intermingled with RUNOFF com-
mands.

Tabbing on a terminal is like tabbing on a typewriter. When
you press the tab button on a terminal, you move the printing
element 8 spaces to the right. The next character you type
appears on the 9th space. If you tab again, the element moves
7 more spaces to the right, placing the next character you type
on the 17th space. Every time you tab you move the element
up to 8 spaces or columns to the right, depending on how many
characters you have typed.

vii

194 RUNOFF

CONVENTIONS USED IN THIS MANUAL

‘) This indicates a carriage return.
text You must supply a word or words.
(text) You have the option of supplying a word or words but it is

not necessary. You do not type the parentheses.

viii

RUNOFF 195

1.0 INTRODUCTION

RUNOFF is a DECsystem-10 program that enables you to prepare documents easily in con-
junction with a text editor or Batch system. By inserting RUNOFF commands and special
characters with your text, you can format your material with a minimum of effort.

You can use any editor you are familiar with such as TECO or LINED to input your docu-
ments. During input you need not worry about spacing between words, justifying lines, case
shifting, page numbering, and other formatting considerations. RUNOFF does all these things
for you. Because you add certain commands with your text, RUNOFF can take your file and
reproduce it according to your specifications.

If you must make changes to your file, you do so with the text editor. After you make your
corrections, you run your file through RUNOFF, and your document is again in the proper
format. Once your document is ready, you can reproduce it either

1. Into another file,

2. On your terminal, or

3. On a line-printer.

By using RUNOFF you can update your documentation and make it look presentable with-
out extensive retyping.

196

RUNOFF

2.0 PRODUCING A SOURCE FILE

Your source file is the text you input plus the formatting and mode instructions you add for
RUNOFF. The first thing you must do to produce a source file is to locate a terminal and
log-in. Next create a file as you normally do by typing the text with a text editor. The dif-
ference is that while you are inputting your text, you also include special RUNOFF com-
mands and special characters to be interpreted by RUNOFF during its execution.

As described later in section 3.0, all RUNOFF commands begin with a period (.) in column 1.
Therefore, all of the material you type into your source file is taken to be source text by
RUNOFF except for those words beginning with a period. These commands do not appear
in your output. Because you can set left and right margins with RUNOFF commands, you
can type your text freely without worrying about the width of the lines or the spacing be-
tween words. (However, you must type at least one space between words to indicate the

end of a word.)

RUNOFTF fills and justifies the text as it is processed. The FILLing is accomplished by add-
ing successive words from the source text until the adding of one more word will exceed the
right margin. RUNOFF stops before putting that last word in and JUSTIFIes the line by
increasing the space between words until the last word in the line exactly meets the right
margin.

2.1 Setting the Format

Certain modes and formatting instructions are already set up by RUNOFF before you even
begin your input. These defaults are

1. Page numbers on every page except the first,

2. Spacing 1 between lines,

3. Fill and justify,

4. Tabstops 9,17, 25,33,41,49,57, 65,

5. Left margin 0,

6. Right margin 60,.

7. Page size - Width 60 characters, Length 58 lines.
However, there are RUNOFF commands that you must input at the beginning of your source
file to set other format and mode operations. You decide how you want your document to
look. Then, if you do not want the standard left and right margins of 0 and 60 and the stand-
ard page size 58/60, you begin your file by typing commands for

I. Left and right margins, and

2. Width and length of the page

RUNOFF

NOTE
If your left and right margins are the same as the
page size, you need only specify the page size.

You can also add various optional commands at the beginning or any other point of your
source file to produce the following:

1. Title on every page,

2. Subtitle on every page,

3. Automatic paragraphing,

4. Ragged right,

5. Upper/lower case,

6. Change tab stops,

7. No page numbers,

8. Enable Capitalize Flag,

9. Enable Index Flag, and

10. Change horizontal spacing between sentences.

RUNOFF initially outputs in the same case as the input. If you only have an upper case ter-
minal and you want your document to output in upper/lower case, you must set the mode
at the very beginning of your source file to lower case. You do this by typing the command
.LOWER CASE (see sections 3.4 and 4.1.4).
Ordinarily, RUNOFF treats spaces and carriage returns only as word separators. However, if
you want to have a ragged right instead of an even right margin, you type the command
NOFILL at the beginning of the text. Then a carriage return will BREAK the line instead
of just acting as a word separator.
If you are inputting a table, you must remember to type .

.NOFILL ‘)
before you type your table, and then you must type

FILL, ‘)

after your table. If you do not do fhis, your table will not appear in column form after you
run your file through RUNOFF.

Version 10 RUNOFF 3 February 1975

197

198

RUNOFF

Because you set the format in advance, RUNOFF calls for new pages when necessary. You
can also explicitly call for a page advance where desired by typing the PAGE command.

NOTE

You can specify the normal settings with the
.STANDARD n command.

Refer to section 3.0 for a full explanation of the commands discussed in this section.

2.2 Typing the Text

While you are inputting the source text, you have the option of inserting various RUNOFF
commands. You type the command immediately before the text you want to format. Then
you type one semicolon and then the text. For instance, if you want to center the word
“MEMO” on a page, you type

CENTERMEMO ./
The word “MEMO” will appear like this
MEMO

after you run your file through RUNOFF.

3.0 COMMANDS

All RUNOFF commands begin with a period (.). You can abbreviate all commands according
to the standard abbreviations listed in this section. You can also abbreviate a long command
by leaving off letters at the end of the command making sure this command remains unique
from the others. However, you should not make extensive use of your own abbreviations,
since they are not guaranteed unique for future versions of RUNOFF.

Some commands require arguments of one or more decimal numbers. Other commands re-
quire text arguments. In both instances, you type the command, one space, and then the
argument. When you have several commands to be input, one after another, you can list all
on one line separating them from each other with a period (command indicator). For ex-
ample,

.LOWER CASE.NONUMBER.FLAG CAPITALIZE.FLAG INDEX 3
However, if the first command has a comment or takes text as its argument, you cannot use
the period as a separator. You can use a semicolon to separate multiple commands and com-

ments on the same line. Comments must be preceded by an exclamation point (!).

.LEFT MARGIN 10 !comment; .TAB STOPS 15, 20, 30 'comment

Version 10 RUNOFF 4 February 1975

RUNOFF

In commands which take text strings as text, a period (.) and an exclamation point (!) are
considered part of the text. You can only terminate these commands by typing a semicolon
(;) or by typing a line terminator such as a carriage return or line feed.
NOTE
The only commands which cannot have another
command on the same line are .TITLE, .SUBTITLE,

and .INDEX because all characters are made part of
the text.

While you are inputting your text, do not type a command in the middle of a line. You must
start a new line placing the command at the beginning and the period in column one.
For example,

“This is the last sentence in my paragraph.” _)
SKIP2)
“This is the first sentence in the next paragraph.” ‘)

This input skips two lines before starting the next paragraph.
The following commands are listed in four categories:

1. Text Formatting,

2. Page Formatting,

3. Mode Setting, and

4. Parameter Setting.

Standard abbreviations are given with the commands.
3.1 Text Formatting

BREAK .BREAK or .BR

causes the current line to be output with no justifica-
tion and places the next word of the source text at the
beginning of the next line.

199

200

.INDENT

PARAGRAPH

JFIGURE

SKIP

.BLANK

RUNOFF

UNDENTn or In

causes a BREAK and sets the next line to begin n
spaces to the right of the left margin. The n can be
negative. This allows you to begin a line to the left
of the left margin. However, you cannot specify n
to the left of 0.

PARAGRAPH n,v,t or .Pn,v.t

causes a BREAK and formats the output paragraphs.
n is optional and, if present, sets the number of spaces
the paragraph is to be indented. The default for n is
5. (n can also have a negative value.) v is the vertical
spacing between paragraphs. v can be from 1 to 5.

(1 is single spacing, 2 is double spacing, etc.) t causes
an automatic . TEST PAGE. (See the .TEST PAGE
command.)

FIGURE n or .FGn

leaves n lines blank to make room for a figure or dia-
gram. If fewer than n lines remain on the current page,
text continues to fill this page. Then the page is ad-
vanced and n blank lines are left at the top of the new

page.

SKIPn or .Sn

causes a BREAK after which n is multiplied by the
number of spaces between lines. The result is the num-
ber of lines skipped. Output is advanced to the top

of the next page if there is no room on the current page.
The n can also have a negative value. Thus, a final foot-
note can be set by a command such as .SKIP -5.

.BLANK n or .Bn

causes the current line to be output with no justifica-
tion, skips n line spaces, and then starts output of the
source text at this point. n can be negative to move
the line to n lines from the end of the page.

.CENTER

FOOTNOTE

.END FOOTNOTE

.NOTE

Version 10 RUNOFF

RUNOFF 201

.CENTER n:text or .C n;text ((CENTRE n;text)

causes a BREAK and centers the following text in the
source file. The centering is over column n/2 independ-
ent of the setting of the left and right margins. If nis
not given, it is assumed to be the page width.

JFOOTNOTE n or .FNn

saves n lines at the bottom of the current page for a
footnote. The n you specify with this command is
multiplied by the number of spaces you previously set
with the .SPACING command. If insufficient room
remains on the current page, space is allocated at the
bottom of the following page. You type the text of
the footnote on the line following the command.

Indentation, case lock, justify, margins, spacing, and
fill are preserved around footnotes. You can include
commands within your footnote; however, commands
which affect page formatting are illegal in a footnote.
Tab stops are illegal because they are not preserved.

A footnote within a footnote is also illegal.

The actual space taken by a footnote can be more or
less than what you specify by n. You can adjust n
after examining a first draft printout.

You must remember to end your footnote by typing
an .END FOOTNOTE command.

.END FOOTNOTE

terminates the footnote and signals the return to pre-
served formatting instructions.

NOTE (text) or .NT (text)

starts an indented note. This command .BLANKSs 2,
reduces both margins by 15, centers the text (if no
text is given, it centers the word “NOTE”), and then

BLANKs 1. At this point you type the text of the
note. (You do not type the parentheses.)

7 February 1975

02

.END NOTE

LIST

.LIST ELEMENT

.END LIST

Version 10 RUNOFF

RUNOFF

.END NOTE or .EN

terminates the NOTE command, .BLANKSs 2, and
reverts the margins and spacing modes to their settings
before the last NOTE command.

LISTn or .LSn

starts an indented list with n spacing, moves the left
margin 9 spaces to the right for the first .LIST com-
mand, and 4 more spaces to the right for each subse-
quent nested .LIST. The normal FILL and JUSTIFY
modes remain in effect; therefore, you must disengage
them just after the .LS command if you want a ragged
right.

LIST ELEMENT: text or .LE; text

starts an item in the list, used in conjunction with the
.LIST command. The elements are numbered sequen-
tially and the number is given a negative indent so the
list lines up. The number is followed by a period and
two spaces (.##) so the indent will be -4. The list
elements are separated by the standard paragraph spac-
ing and .TEST PAGE. If you want to type the text on
the same line as the command you must separate them
with a semicolon. (See section 6.0 for an example of
this command.)

.END LIST or .ELS

terminates the .LIST command and returns to settings
before the last .LIST command.

8 February 1975

3.2 Page Formatting

I .CHAPTER

I .HEADER LEVEL

.NUMBER

.NONUMBER

Version 10 RUNOFF

RUNOFF 203

.CHAPTER text or .CH text

starts a new chapter using the text you input as the
title of the chapter. This command acts as if you
typed in

BREAK.PAGE.BLANK 12;.CENTER “CHAPTER n”
The n is incremented by 1 automatically. After the
“CHAPTER n” is typed on the page,

.BLANK 2; .CENTER itext; .BLANK 3
occurs. This command then resets the case, margins,
spacing, and justify/fill modes. It also clears any sub-
titles and sets the chapter name as the title.

HEADER LEVEL n text or .HL n text

starts a section at the level specified and takes the fol-
lowing text as the header. n can be in the range from

1 to 5. The sections are incremented by 1 automatically,
and the number is output in the form i,j.k.L.Lm. If this

is a chapter oriented document, the i is the chapter n
number; otherwise, it is the number of the .HL 1 level.

This command acts as a

.BREAK.TEST PAGE 9; .BLANK 3
followed by the section number, two spaces, and the
section name. HEADER LEVELS 1 and 2 end with a
.BREAK. HEADER LEVELS 3, 4, and 5 end with a
space dash space combination (#-#).

.NUMBER n or .NM n

starts page numbering. This is the default so there is
no reason for you to issue this command unless you
disengage page numbers. If you want to resume at a
certain page, you specify n.

.NONUMBER or .NNM
disengages page numbering; however, pages continue
to be counted so the normal page number can appear

if you re-enable page numbers with the NUMBER
command.

9 February 1975

204

TITLE

SUBTITLE

.DO INDEX

PAGE

Version 10 RUNOFF

RUNOFF

TITLE text or .T text

takes the remaining text as the title and outputs it on
every page at line 0. The default is no title. If you
want a title you must type this command into your
source file.

SUBTITLE text or .ST text

takes the remaining text as the subtitle and outputs
it on every page. It appears directly under the title.
The subtitle is not indented but you can achieve the
same results by typing leading spaces.

.DO INDEX (text) or .DX (text)

forces a new page, centers the text, if given, otherwise
it centers the word “INDEX™. (A period (.) terminates
this command unless the period is quoted.) (You do
not type the parentheses.)

This command causes a BREAK and then prints the
entire contents of the index buffer. Entries are printed
in alphabetic order and are set against the left margin.
Regular line spacing is used, except that a blank line is
left between entries of different first letters. The page
number of each entry is placed on the same line as the
entry and in the middle of the page. Additional page
numbers for multiple entries follow, separated by
commas. The index buffer is left empty.

PAGE or PG

causes & BREAK and an advance to a new page. If the
current page is empty, this command does not advance
the page. Just like the automatic page advance, this
command adds the title (if given) and page numbers on
every page.

10 February 1975

.TEST PAGE

3.3 Mode Setting

AUTOPARAGRAPH

NOAUTOPARAGRAPH

JFILL

JUSTIFY

Version 10 RUNOFF

RUNOFF 205

.TESTPAGE n or .TPn

causes a BREAK followed by a conditional page ad-
vance. It skips to the next page if fewer than n lines
are left on the page. This capability is to ensure that
the following n lines are all output on the same page.
This command has the form t as an optional argument
to the PARAGRAPH command.

.AUTOPARAGRAPH or .AP

causes any blank line or any line starting with a space
to be considered as the start of a new paragraph. This
command allows normally typed text to be justified
without special commands. It does not cause a para-
graph if blank lines are followed by a command.

.NOAUTOPARAGRAPH or .NAP

disengages the . AUTOPARAGRAPH mode.

.FILL or .F

adds successive words from the source text until the
adding of one more word will exceed the right margin.
It stops before putting that last word in. FILL is the
default mode. (.FILL also restores .JUSTIFY.)
.NOFILL or .NF

disengages the .FILL and .JUSTIFY modes. You use
this command when you are typing a table.

JUSTIFY or J

increases spaces between words until the last word

exactly meets the right margin. This is the default
mode.

11 February 1975

206

NOJUSTIFY

.UPPER CASE

.LOWER CASE

.FLAG CAPITALIZE

.FLAG INDEX

3.4 Parameter Setting

.LEFT MARGIN

Version 10 RUNOFF

RUNOFF

.NOJUSTIFY or .NJ

stops justification of lines to make a ragged right mar-
gin.

.UPPER CASE or .UC

sets the output mode to upper case. This command
acts the same as typing two circumflexes (A). This
mode is the default. There is no need for you to type
in this command unless you previously altered the
mode to lower case.

.LOWER CASE or .LC

sets the mode of typeout to lower case. This command
acts the same as typing two backslashes (\\).

FLAG CAPITALIZE

enables the less-than (<) character to capitalize the
entire word it precedes. It then returns the file to the
current case mode. This special character is initially

off. You must type this command at the very beginning
of your source text if you want to enable this character.
Typing a space or another less-than (<) returns the file
to the current case lock.

.FLAG INDEX

enables the greater-than (>) character to place the
word it precedes into an index buffer. You must type
this command at the beginning of your text if you
want to enable this character. Then when you type
the .DO INDEX before you close your source file,
RUNOFF outputs a ready-made index for your docu-
ment.

.LEFTMARGIN n or .LM n
sets the left margin to n. The n must be less than the

right margin but not less than 0. The default setting
is 0.

12 February 1975

RIGHT MARGIN

PAPER SIZE

SPACING

STANDARD

.TAB STOPS

Version 10 RUNOFF

RUNOFF

.RIGHT MARGIN n or .RM n

sets the right margin n. The n must be greater than
the left margin. The default setting is 60.

PAPER SIZE nm or .PAGE SIZE nm or .PSnm

sets the size of the page n lines by m columns. The
default setting is 58, 60.

.SPACING n or .SPn

sets the number of spaces you want between lines.
The n can be from 1 to 5. The default setting is 1.
SPACING 1 is like single spacing on a typewriter and
.SPACING 2 is like double spacing on a typewriter.
.SPACING 2 puts one blank line between sentences.

STANDARD n or .SDn

returns all settings to the standard defaults. If you
specify .STANDARD 60, you reset margins to LM O
RM 60, page size to 60, 58, .SPACING 1 between lines,
and paragraph indent to 0. .STANDARD 70 sets your
right margin to 70 and your page size to 70, 64. (Page
length is directly related to the page width.) This com-
mand is useful if you change your settings, and you
want to reinitialize the standard block format. (It does
not alter tabs or paragraph numbering.)

TAB STOPS 1, ;v ‘or T8 n fi;. o

sets tabs. The n must be greater than 0 and listed in
ascending order. Tabs can only be used in lines that
are unjustified and unfilled. If tabs already exist, the
issuing of another .TAB STOPS command clears all
previous tabs before setting the new ones. The default
tabs are set at eight-column intervals just like the hard-
ware standard on your terminal. These tabs are at
columns 9, 17, 25, 33, 41,49, 57, 65.

If you forget to disable FILL and JUSTIFY, your tabs
will not work in your output file.

13 February 1975

207

208 RUNOFF

4.0 SPECIAL CHARACTERS

While inputting your text, you have the option of including special characters to alter the
case and mode operations. You type these characters immediately before the word or group
of words you want to arrange. Just like RUNOFF commands, these special characters do not
appear in your output after running RUNOFF. Special text characters include

1. Underscore () takes next character as text.

2. Circumflex (n) upper case next character.

3. Back-slash \) lower case next character.

4. Number sign (#) expandable space.

5. Ampersand (&) underline next character.

6. Less-than (<) capitalize the following word.

7. Greater-than (>) index the following word.

8. Exclamation point N end footnote or begin a comment.

9. Period (.) indicates a RUNOFF command.
10. Semicolon (1) separates multiple commands.

4.1 Case Shifting
Because some terminals only type in upper case mode, RUNOFF has special characters you
can input to change the mode to lower case and back to upper case. These characters are

echoed on your terminal during input so you can see exactly what you are doing to your
source file, but they do not appear in your output file after executing RUNOFF.

4.1.1 Upper Case — The upper case character is the circumflex (n). If you want a particular
letter of a word to be capitalized, you type a circumflex (») immediately before the letter.
After executing RUNOFF, the letter will be output in upper case, and the circumflex will not
be output. For example, if you want the first letter of the word “computer™ to be capitalized,

you type
A computer

This word will be output as
Computer

You type a circumflex (~) for the same reason you use the shift key on a typewriter.

Version 10 RUNOFF 14 February 1975

RUNOFF 209

4.1.2 Upper Case Lock — Initially RUNOFF outputs in upper case mode when you use an
upper case only terminal for your input. But if you change the mode to lower case (see 4.1.3)
and you want to return to upper case, type two circumflexes (7). Two circumflexes (M)
lock the mode in upper case just like the shift lock on a typewriter. Everything you input
after you type A is output in the same case as the input.

4.1.3 Lower Case — The lower case character is the back-slash (\). If you type a back-slash
(\) immediately before a letter, it outputs in lower case mode. For example, the word “com-
puter” typed

\COM\PU\TER
outputs as

cOMpUtER
4.1.4 Lower Case Lock — Some terminals input in upper case only. In this instance, begin
your file with two back-slashes (\\). (You can also use the .LOWER CASE command.) You
can then indicate the words you want capitalized by typing a circumflex (*). The following

example shows the use of the case control characters. (The current mode is lower case.)

~HERE IS A ASAMPLE »SENTENCE IN ~UPPER CASE
WAND LOWER CASE.

After running this sentence through RUNOFF, it looks like this.
Here is a Sample Sentence in UPPER CASE
and lower case.
4.2 Underlining
The underlining character in RUNOFF is the ampersand (&). If you want a character to be
underlined in your output, you type an ampersand (&) immediately before the letter. For
example, (mode is lower case)
&T&Y&P&E
outputs as
type
If you want to lock the underline character on so that you can underline an entire sentence

you type circumflex ampersand (~&). This combination of characters underlines all charac-
ters except space. If you want to disengage this mode, you type backslash ampersand (\&).

15

RUNOFF

4.3 Quoted Space

If you want to include a space without having the FILL and JUSTIFY expand it to the right
margin, type a number sign (#) for every space you want. This number sign (#) is not treated
as just a word separator. It explicitly calls for a space right where you request it.

4.4 The Capitalize Flag

The less-than character (<) typed before a word capitalizes the entire word and then returns
the file to the current mode. Less-than (<) has the same effect as typing two circumflexes
(~~) before a word and then two backslashes (\\) after the word. However using this char-
acter prevents you from forgetting to return to the current mode.

You must remember that, unlike the preceding characters, the less-than (<) is not initially
turned on. If you do not enable it by typing the command .FLAG CAPITALIZE at the
beginning of your source file (see section 3.3) you will only succeed in typing out a less-than
(<) at the beginning of your source file if you plan to use it in your source text.

You can terminate this character by typing a space after the word or by typing another less-
than (<).

<dec<system-10
outputs as

DECsystem-10

4.5 The Index Flag

The character greater-than (>) typed before a word automatically puts that word in an index
buffer. You end the index entry with the first space, a new line, or the second occurrence

of the index flag character >. You must type this character immediately before the word
you want indexed (except when including the capitalize flag). By typing <> before a word,
you can place a fully capitalized word into an index. Otherwise, the default index case mode
prevails. This mode automatically capitalizes the first letter of the index entry, for example,

for >example this >par-3-Foo bar
causes index entries

“Example” and “Par-3-Foo.”
This special character is initially off just like the capitalize flag <. Therefore, you must enable
it at the beginning of your source file (see section 3.1). If you do not enable this character,

your output file will contain greater-than (>) signs, and you will not have an index to output
with the .DO INDEX command (see section 3.2).

Version 10 RUNOFF 16 February 1975

RUNOFF 211

4.6 Printing Special Characters

Sometimes you may want special characters to be output in your final document just as they
appear in your source file. If your document discusses a circumflex (), you may want your
final output to print a A without changing anything to upper case. The special character (under-
score (_) typed immediately before the character allows you to output these special charac-

ters just as they are in the source text without transmitting formatting instructions. For ex-
ample,

_ " outputs as

If you want the underscore character to output in your document you also quote it by typing
another underscore immediately before it in your source text.

5.0 HOW TO RUN RUNOFF

Now that you have completed your source text, you are ready to use the RUNOFF program.
The first thing you do is to call RUNOFF by typing

.R RUNOFF _/

RUNOFF responds with an asterisk (*) to tell you it is ready for your input. The next thing
you do is type your filename. You can add the extension .RNO to your filename if you want
to. Do not worry if you leave it off.

*filename.RNO /)

Your file is processed through RUNOFF, and the system responds with the filename, the num-
ber of pages contained in the resulting output file, any errors which have occurred in process-
ing, and the input pages and output pages where your errors occurred, if any. For example,
with a filename of TEST your dialogue looks like

R RUNOFF +/
*TEST.RNO

TEST 2 PAGES
*

This response tells you that you have no errors and your output is two pages long. The aster-
isk (*) indicates that RUNOFF is waiting for another file to process. At this point you type
a CONTROL-C (~C) to exit back to monitor mode. You now have an output file in your
area with the extension MEM. Now you can see what your output looks like by

1. Having it typeout on your terminal, or

2. Queue it to a line-printer.

The output file for the previous example is TEST.MEM.

Version 10 RUNOFF 17 February 1975

212 RUNOFF

If you have made errors, your dialogue with RUNOFF may look like this

R RUNOFF ./
*TEST.RNO

TEST
%RNFJEC JUNK AT END OF COMMAND: “.”
ON OUTPUT PAGE 1; ON INPUT LINE 8 of PAGE 1

TOTAL 2 PAGES

*

You correct your errors with your text editor and then run your file through RUNOFF
again. You need not retype the entire document to change an error.

For a complete list of error messages and explanations, turn to section 7.0

Version 10 RUNOFF 18 February 1975

RUNOFF 213

6.0 EXAMPLES
This section contains various examples of procedures you may like to use with RUNOFF.

Here is the source file for the introduction of this manual, section 1.0.

EXAMPLE 1

.LOWFR CASE,FLAG CAPITALTIZF
1. 08#<TNTRCDUCTINN
«SKIP 2
CPUNOFF IS A <DNEC<SYSTEM=10 PROGRAM™ THAT ENARLES YNU TO PREPARE
DOCUMENTS FASIIY IN CCNJUNCTION WITH A TEXT ERITCR OR "BATCH
SYSTEY ,#4"RY INSFRTING <RUNOFF CGNMANDS ANR SPECTAL CHARACTERS
WITH YHUP TEXT, YCU CAN FQRMAT YOUP MATERIAL WITH A MINIMUM CF
EFFORT,
.SKIP 2
*YOU CAM USF ANY EDITCR YCU ARE FAMILIAR WTTH SUCH AS <TECD CR
<LIMNEL TO TNPUT YCUR DOCUMENTS, ##"DURING INPUT YCU NEED NOT WORRY
ABOUT SPACING PETWFEN WaRDS, JUSTIFYING LINES, CASE SHIFTING, PAGE
NUMRFRTNG, AND OTHFR FORMATTING CNNSIDFRATTONS , #8<RIUNCFF DNES ALL
THESF THINGS FCR YNU,44=RECAUSFE ynU ADD CERTAIN COMMANDS WITE YCQUR
TEXT, “RUNCFF CAMN TAKF yOUF FILE AND REPRONUCFE IT ACCCORDING
TO YNUR SPECTIFICATTYONS,
*IF YC" MUST MAKE CHANGES TO YOUR FILE, YOU DO SC WITH THE TEXT
ERITORE . #4*AFTER Y(QI' MAKR YCUR CORRECTIONS, YNU PUN YRUR FILE
THROUC“ <RUM#FF. AND YOuUR DOCUMENT IS AGAIN TN THE PRCPER FORMAT,
®ONCE YOUR DCCUMFENT IS READY, YNU CAN REPRNADUCE IT ETTHER
«SKIP 23 ,NOFTLL
1. =INTD ANCTHER FILE,
2. “ON YCUR TERMIMAL, OR
3, “CN A LINE=PRINTER,
JBEIR Ti.FILL
"By USTNC <RUMNCFF YoU CAN UPDATE YNUR DOCUMENTATION AND MAKE IT
LOUK PRESENTARIF wTTHCUT EXTENSIVF RETYPING,

Version 10 RUNOFF 19 February 1975

214

RUNOFF

This is how it looks after running the file through RUNOFF.

1,0 INTRODUCTION

RUNOFF is 3 NPECsvster-ln pronrar that enables vou to prepare
documents easilv in corfurction with a rext editer cr Ratch
system, By insertima PUINCFF cormands and special characters
with ‘tour text, veou cAr ferrat vaur raterial with A ripimum
of effnrt,

You can use any editor you are familiar with such as TFCH or
LIHFD to {irput_ wvour aocurents, OGurina {rnut vou reed not
worrv about snAacino retweer words, d1ustifvino 1lines, case
shifting, DAGP rirkering, and atrer forratting
considerations, FUNCEFF dnes all thege trings for
vou. BRecause vnu ad¢d certain corrands with vyour text,
RUNCFF can taxe vecur file ard renroduce it accordina te vour
specificatiors,

If vouy must make charceg te vour file, vou dn sc¢ vith thke
text =diter., &After yoOp rake vour corrections, vou rupn vour
file throuah PUinFF, &n<A vyenyr Aecurent 15 acain {n tre
proper format, Nrce veur docyrert 1is readv, vou can
reproduce it eithker

1, 1Intc ancther file,
» n vour terrminal, or
3, rn 2 lire=printer,

By usina KUNCEF wyeu €an upéate your decumentaticr anc make
it loo¥ presentahle witrout extensive retyninc,

Version 10 RUNOFF 20 February 1975

RUNOFF 215

This is an example of how you input a list using the .LIST and .LIST ELEMENT commands.
(.LS and .LE)

EXAMPLE 2

«LC.NF LS

JLE:"PAGE NUMBERS NN EVFRY PAGF FEXCEPT THE FTRST,
JLE:"SPACING 1| RETWEFN [TNFS,

+LE:"FILL aND JUSTIFY,

LLEs"TAB STOPS 9,17,25,33,41,49,57,65,

.LEJ"LEFT MARGIHN ¢,

CLE:"RIGHT MARGIN 60,

LE3s"PAGE SIZF = "WIDTH RO CHARACTFRS, “LENGTH 58 LINES,
«ELS

After using RUNOFF it looks like this

1: Page nymkhers on every paqge éexcent the first,
2. Gpacirc 1 hetween lines,

3, Fill and dustitv,

4., Tab stons 9,17,25,33,41,49,57,65,

5, Left margin 0,

6. Rianht marair 60,

7, Pace size « sidth A0 characters, Tengtr 5R lines,

Version 10 RUNOFF 21 February 1975

216

RUNQOFF

This .NOTE command does all the centering for you.

EXAMPLE 3

LLOWFR CASF,FLAG CAPTTALTZF

WNOTE

"TyEr OMLY COMMAEDS WHTCE CALNGQT HAVE ANOTHRER COMMAND
O THE SAMF [INFE AKF ,<TITLE, L<SURTITLE, ANMD
ALL CHADACTRRS ARFE wAUF PAFT QOF THF TEXT,

JE4D HNTE

This is how it appears after RUNOFF executes the commands.

Version 10 RUNOFF

NOTE

The enly corrands which canrot
have another comrand onN the
sape 1ire are JTITILE,
LSURTITLE, arnd ,THNDEX kRecCeyse
all craracters are made part
0f tre text,

22

«<INNEX BECAUSE

February 1975

RUNOFF 217

The following is an example of using the .CHAPTER command. The source file is made up of
only this one command to illustrate its effect.

EXAMPLE 4
.MAKE CHAP
*I .CHAPTER RUNOFF SOURCE FILE
$%
*EX$%
R RUNOFF RUNNING THROUGH RUNOFF
*CHAP
CHAP | PAGE NO ERRORS
*1C
.JY CHAP,MEM REQUESTING TYPE OUT ON THE TERMINAL.
CHAPTER I
OUTPUT
R UNOFF

Version 10 RUNOFF 23 February 1975

218

RUNOFF

Example 5 shows you how .HEADER LEVELs work with a chapter oriented document.

EXAMPLE 5

+LOWER CASF ,F[,AG CAPTTAr I2F
«CHARTFR EXAMPLE &
eHL 1 FIRST LEVEL NnF SECTIOM 1
"THF COMMAND ,<HFAPER <IFVFL STARTS A SECTTON AT THF LFVFL
SPECTFTYED BnuR TAKES THF FOLLOWTNG TEXT A& THE HEAGDER , 8" THF
N Cak RE IN THE RANGE FrO™ 1| Tn 5,
«HL 1 SECOND LEVEL nF SFCTTION {
“TdE SECTICHS ARE JuCRFMENTFR RY {, AND THF NUMREF T§
QUTPUT IM THF FORF T,J,K,L M, #8"TF THIS 1S A CHAETIFR
ORIF&TED DACUMENT, THE T 18 THF CHAPTER NUMRFESSCTHEEWISFE, THE
I IS THE MUMRER NF THE _<H] 1 LEVFL,
«HL 1 THIRD LFVFT nf SECTICN
"THIS FOMMARD BCTS A8
«SKIP 23 NOFTLL

fSBRRFAK _<TEST <PACE Y, ¢RI ANK 3
«SKTE Ty L FTLT
FOLLOUED BY THE SFCTIC™ MUNMEFR,#8¢HEARFR <TLEVFLCS 1 ANR 2
END WITH 3 _<RREAK,2#<HEACFR <LFVFL<S 3, 4, ANMD 5 EHND WITH
4 SRACF DASH SPACE CCNRINATIMN (_s=_#),

Version 10 RUNOFF 24 February 1975

RUNOFF

CHAFTEFR 1

EXAMPLE S

1.1 FTRST LFVEL CF SECTICN 1

The cormmand ,HEADFP TEVFL starts a

specified and takes fthe followina text as the header,

can he in the rance from 1 teo S,

1.2 SECUND TFVRETL NF SECTICA 1

The sentions are incremerted by 1, and the nurher fis
cracter criented
the 1 1is

in thn fore 1.,1.kalems 1If fthis

docurent, the 1 is tFre chapter number;

the numher of the _HL 1 level,

1.3 1TYWIRD LEVEL CF SECTICK 1

This cnmmand acts as

JBEKAK ,TEST BAGE 93 ,RLANK 3

foljowed bv the secticn rurkher, HEADKR LEVFI S

with 5 ,BRFAK, MHEADFR LEVR(s 3, 4,
dash snace cembinaticn (#=%),

Version 10 RUNOFF 25

otherwise,

the level
The n

1 and 2?7 end
and 5§ epd with a snace

February 1975

output

219

RUNOFF 221

7.0 SUMMARY OF MESSAGES

RUNOFF conforms to the DECsystem-10 standard for system diagnostic messages and error
codes. The following conventions are used in describing these messages:

CONVENTION MEANING
dev a legal device name.
file structure name a legal file structure name.
file.ext a legal filename and extension.
adr a user address.
n a number.
abc a disk unit or drive.
X an alphabetic character.
switch a switch.

The formats of the messages are

? RNFXXX text
% RNFXXX text
[RNFXXX text

where
? = fatal error message.
% = warning or advisory message.
[= comment line.
RNF = RUNOFF mnemonic.
XXX = 3 letter mnemonic for the message.
text = explanation of the message.

If you input RUNOFF commands incorrectly into your source file, you can receive one or
several of the messages in the following list:

Version 10 RUNOFF 27 February 1975

222

RUNOFF

?RNFCJL CAN’T JUSTIFY LINE
The string of input between spaces (and end of line) is greater than the separation
between left and right margins and therefore does not fit in the output even before
any attempt to expand spaces.

7RNFDVN DUPLICATE VARIABLE NAME: “.command”
This variable command is attempting to declare a variable which has already been de-
clared. This declaration will be ignored.

?RNFEFD END FOOTNOTE DOESN’T FOLLOW FOOTNOTE: *“.command”
This end footnote command appears at a place in the file which is not immediately
following a footnote command and the corresponding footnote data.

?RNFELD END LITERAL DOESN'T FOLLOW LITERAL: *“.command”
This end literal command appears at a place in the file which is not immediately fol-
lowing a literal command and the corresponding literal text. It probably reflects
that the count on the literal command is incorrect.

?RNFEVL EXCEEDING VARIABLE LIST: “.command”
Only a maximum of 20 variables can be declared. This command is attempting to
declare the 21st variable. This and all further variable declarations will be ignored,
although the message will not be repeated.

?RNFFIF FOOTNOTE INSIDE FOOTNOTE: “.command”
This command is attempting to start a footnote definition, only it occurs within a
footnote definition, which is illegal. It probably indicates that the previous footnote
definition was never terminated.

?RNFIBO INPUT BUFFER OVERFLOW
A string of characters has been input which is so long between spaces (or the right
margin is so large) that it has overflowed the internal line buffer storage area.

?RNFIFT ILLEGAL IN FOOTNOTE: “.command”
This command is illegal within a footnote.

%RNFIIF "x IGNORED IN INPUT FILE
Control characters are not normally allowed in the input file. This character was input
and is being ignored. If it should be input, then declare “.CONTROL CHARACTERS”

in order to make it legal.

?RNFILC ILLEGAL COMMAND: “.command”
This command is illegal for some reason. Most reasons are that a key word was not
recognized or that an argument was out of range.

%RNFJEC JUNK AT END OF COMMAND: *“.command”

The command, after all its arguments, still has some other characters which are not
blanks or comments.

Version 10 RUNOFF 28 February 1975

RUNOFF 223

[RNFKCF nK CORE - FOOTNOTE]
Core was expanded because of growth in the footnote storage area. If this repeats

indefinitely it probably indicates that the footnote was improperly terminated.

[RNFKCI nK CORE - INDEX]
Core was expanded because of growth in the index storage area. In a well indexed

document this message should be output occasionally as processing progresses.

?RNFLDE LITERAL DOESN'T END WITH .END LITERAL: “.command”
After a counted literal, the next line is not an end literal command. This probably
indicates that the count is wrong.

?RNFNEC NOT ENOUGH CORE nK
Core has been expanded to the limit of what the monitor is allowed to assign to this

job. The processing is aborted at this point.

?RNFNFS NO FILE SPECIFIED
The user has specified some switches or an output file, but has not specified an input

file.

%RNFNIA NEGATIVE INDENT ATTEMPTED
The sum of the indent and the left margin is less than zero, meaning that the line
should start to the left of the left edge of the paper. Either the left margin has been
missed or the indent is wrong. The indent might be implicit in a paragraph or table
request. This message is output only once until the next left margin or SD command.

%RNFNIC ANOTHER n NEGATIVE INDENTS COUNTED
This message indicates how many additional negative indents were discovered since
the last NIA message.

?RNFNID NO INPUT DEVICE
The user has failed to specify either an input device or file.

?RNFODE OUTPUT ERROR xxxxxx
The output file has an I/O error whose octal code is included in the message.

%RNFSPO SUBPAGE OVERFLOW
While incrementing the subpage counter, it got larger than 26. This probably indi-
cates that the end subpage command is missing.

%RNFTFE TOO FEW END COMMANDS
When the end of the input was reached there were not the same number of end (or
end list or end note) commands as there had been list and note commands. This

probably indicates that an end command is missing.
"RNFTMI INSUFFICIENT CORE FOR COMMAND

The user has specified so many input file specifications that RUNOFF could not fit
them into core. The command should be split into several commands.

Version 10 RUNOFF 29 February 1975

224

RUNOFF

RNFTMR TOO MANY RANGES
The user has specified too many IRANGE or ORANGE pairs to fit in the storage

space assigned (20 pairs each). Fewer ranges should be specified.

RNFTMV TOO MANY /VARIANTS
The user has specified too many VARIANTS in the command. Only 20 variants can

be specified in one command.

%RNFTNN TOO MANY NESTED NOTES
More than 6 nested notes and lists has occurred. This probably indicates that one or

more end commands is missing.

RNFUKV UNKNOWN VARIABLE: “.command”
On an if, ifnot, else, or endif command a variable was referenced which was not de-

clared in a variable command. This usually indicates a spelling error or a missing
variable command.

%RNFUME UNMATCHED END COMMAND
More end commands have occurred than list or note commands.

PRNFYVZ /[VARIANT VALUE ZERO
In a VARIANT switch, the value was null or zero. Variants always have names.

Version 10 RUNOFF 30 February 1975

RUNOFF

APPENDIX

SUMMARY OF RUNOFF INPUT FILE COMMANDS

.CENTER n or .CENTRE n
.CHAPTER

.COMMENT

.CONTROL CHARACTERS
.DISABLE BAR

.DO INDEX

.ELSE

.ENABLE BAR

.ENDIF name

.END BAR

.END FOOTNOTE

.END LIST

.END LITERAL

COMMANDS FUNCTION
APPENDIX Start next appendix with rest of line as name.
AUTOPARAGRAPH Treat leading spaces as new paragraph.
AUTOTABLE Treat lines without leading spaces as new para-

graph.

.BEGIN BAR Start a change bar.
.BLANK n Skip n lines.
.BREAK Start new output line.

Center the next line around column n/2.

Start naw chapter with the rest of line as name.

Ignore this command.

Allow control characters.

Set to ignore change bars.

Output index with rest of line as title.
Change sense of IF/IFNOT.

Set to allow change bars.

End conditional input.

End change bar.

Terminate a footnote definition.

End a list.

Terminate a literal block of text.

31

225

RUNOFF

APPENDIX (Cont.)

COMMANDS

FUNCTION

.END NOTE

.END SELECTION
.END SUBPAGE
JFIGURE n
.FIGURE DEFERRED n
.FILL

JFIRST TITLE
JFLAGS ALL
FLAGS type ch
FOOTNOTE n
.HEADER x
.HEADER LEVEL n
F

JFNOT name
INDENT n

JINDEX

JUSTIFY

.LEFT n

.LEFT MARGIN n
LIST n

.LIST ELEMENT

Terminate a NOTE command.

Stop selection until single line prefix.

Stop subpage numbering (resumes page).

Make space for n line figure.

Same except may be on next page.

Resume filling and justifying each line.

Include title on first page.

Enable existing flag characters.

Change flag character to ch.

Start n line footnote.

Issue “page” in x (UPPER,LOWER MIXED) case.
Start section at level n (1-5);rest is name.

Start conditional input if VARIANT name.
Start conditional input if not VARIANT name.
Indent next line.

Insert rest of this line in index.

Resume justifying text.

Start next line n columns from left margin.

Set left margin.

Start list of items with spacing n.

Start of item in a list,

32

RUNOFF 227

APPENDIX (Cont.)

COMMANDS FUNCTION
.LITERAL n Start a literal block of text n lines long.
.LOWER CASE Start footnotes and text in lower case.
.NO AUTOPARAGRAPH Stop autoparagraph mode.
.NO AUTOTABLE Stop autotable mode.
.NO CONTROL CHARACTERS Do not allow control characters.
.NO FILL Stop fill and justify.
.NO FLAGS ALL Disable existing flag characters except . and !
NO FLAGS type Do not use flag characters type.
.NO HEADER Suppress page headers.
NO JUSTIFY Stop justifying.
.NO NUMBER Stop page numbering.
NO PAGING Stop splitting into pages.
.NO PERIOD Stop double spacing after period, exclamation
point, question, etc.
.NO SELECTION Accept all text as input.
.NO SPACE Suppress space on this end of line.
.NO SUBTITLE Suppress subtitles.
NOTE text Start indented note with heading “text” centered.
NUMBER n Resume page numbering at page n.
NUMBER APPENDIX n Set chapter to appendix n.
NUMBER CHAPTER n Set chapter number to n.

33

RUNOFF

APPENDIX (Cont.)

COMMANDS

FUNCTION

.NUMBER INDEX

NUMBER LEVEL a, b, c, . ..

.NUMBER LIST d, ¢
.NUMBER PAGE n
.NUMBER SUBPAGE ch
.PAGE

PAGE SIZE n, m
PAPER SIZE n, m

PAGING
PARAGRAPH n, v, t
PERIOD

PRINT INDEX

.RIGHT n

.RIGHT MARGIN n
.SELECTION string
SKIP n

SPACING n
.STANDARD n
.SUBINDEX
.SUBPAGE

.SUBTITLE or .SUBTTL

Set chapter number to “INDEX™.

Set next HEADER LEVEL TO a, b, c, . ..
Set list counter depth d to c.

Resume page numbering at page n.

Set subpage number to ch (A-Z).

Start new page.

Paper is n lines by m columns.
Paper is n lines by m columns.

Resume breaking into pages.

Start new paragraph (.In, .Sv, TP t).
Double space after . !? : ;

Start printing index.

Right adjust next line n columns left of the mar-
gin.

Set right margin.

Set selection string.

Skip n*spacing lines.

Set spacing (default=1).
Standard setup of width n.

(1]

Index with used to delimit sub-indices.
Start subpage numbering.

Use rest of line as subtitle.

34

RUNOFF

APPENDIX (Cont.)

COMMANDS

FUNCTION

.TAB STOPS 0, n; . ..
.TESTPAGE n
.TITLE

.TYPESET text
.UPPER CASE

.VARIABLE name ch ch

Set tab stops.

Use rest of line as title.
Send quoted text to TYPESET-10.
Start footnotes and text in upper case.

Declare variable with on/off flags ch, ch.

* Skip to new page if fewer than n lines left.

35

229

Abbreviations, 4, 5
Ampersand, 14, 15
AUTOPARAGRAPH, 11

Back-slash, 14, 15
BLANK, 6
BREAK, 5

Capitalize flag, 12
Case shifting, 14
Case, lower, 14
Case, upper, 14
CENTER, 4, 7
CHAPTER, 9
Circumflex, 14, 15
Command indicator, 2, 5, 14
Commands, §
appendix, 31
mode setting, 11
page formatting, 9
parameter setting, 12
text formatting, 5
Comments, 4, 14

Defaults, vii, 2
DO INDEX, 10

END FOOTNOTE, 7
END LIST, 8
END NOTE, 8
Errors, 17, 27
Examples, 19
CHAPTER, 23
HEADER LEVEL, 24, 25
LIST; 21
NOTE, 22
Exclamation point (!), 4, 14
Extension, 17

FIGURE, 6
FILL,3, 1}
FLAG CAPITALIZE, 12, 16

RUNOFF 231

INDEX

FLAG INDEX, 12, 16
FOOTNOTE, 7
Formatting

page, 9

text, 5

Greater-than, 12, 14, 16
HEADER LEVEL, 9

INDENT, 6

Index
buffer, vii
flag, 12

Input, 1, 3

Justification, vii
JUSTIFY, 11

Left margin, 2
LEFT MARGIN, 12
Less-than, 12, 14, 16
LIST, 8

LIST ELEMENT, 8
LOWER CASE, 12
Lower case, 15
Lower case lock, 15

.MEM, 17

Messages, 29

Mode, vii

Mode setting commands, 11
AUTOPARAGRAPH, 11
FILL, 3,11
FLAG CAPITALIZE, 12, 16
FLAG INDEX, 12, 16
JUSTIFY, 11
LOWER CASE, 3
NOAUTOPARAGRAPH, 11
NOFILL, 3, 11
NOJUSTIFY, 12
UPPER CASE, 12

INDEX-1

232

NOAUTOPARAGRAPH, 11
NOFILL, 3, 11
NOJUSTIFY, 12
NONUMBER, 9

NOTE, 7

NUMBER, 9

Number sign, 14, 16

Qutput, 1, 3

PAGE, 4, 10
Page formatting commands, 9
CHAPTER, 9
DO INDEX, 10
HEADER LEVEL, 9
NONUMBER, 9
NUMBER, 9
PAGE, 10
SUBTITLE, 10
TEST PAGE, 16
TITLE, 10
PAGE SIZE, 13
PAPER SIZE, 13
PARAGRAPH, 6
Paragraph indent, 6
Parameters, 4
Parameter setting commands, 12
LEFT MARGIN, 12
PAPER SIZE, 13
RIGHT MARGIN, 13
SPACING, 13
STANDARD, 4
TAB STOPS, 2
Period, 2, 5, 14
Printing, 18

Quoted space, 14, 16

Ragged right, vii, 3
Right margin, 2
RIGHT MARGIN, 13
.RNO, 17

Running RUNOFF, 17

RUNOFF

Semicolon, 4, 14

Settings
mode, 11
parameter, 12

SKIP, 5, 6

Source file, 2

Source text, 4

SPACING, 13

Special characters, 14, 17
ampersand (&), 14, 15
back-slash (\), 14, 15
circumflex (n), 14, 15
exclamation point (1), 4, 14
greater-than (>>), 12, 14, 16
less-than (<), 12, 14, 16
period (.), 2, 5, 14
number sign (#), 14, 16
semicolon (3), 4, 14
underscore (), 14, 17

STANDARD, 4, 13

SUBTITLE, 10

TAB STOPS, 2, 13
Text formatting commands, 5
BLANK, 6
BREAK, 5
CENTER, 7
END FOOTNOTE, 7
END LIST, 8
END NOTE, 8
FIGURE, 6
FOOTNOTE, 7
INDENT, 6
LIST, 8
LIST ELEMENT, 8
NOTE, 7
PARAGRAPH, 6
SKIP, 5, 6
TEST PAGE, 6, 11
TITLE; 10

Underline lock, 15
Underlining, 15
Underscore, 14, 17
Unexpandable space, 14
UPPER CASE, 12
Upper case, 14

Upper case lock, 15

INDEX-2

MASTER INDEX

A switch (PIP), 150

Abbreviations (RUNOFF), 198, 199

Advance command (PIP), 167

Ampersand (RUNOFF), 208, 209

Angle bracket matching (PIP) V switch,
153

Assembly (DDT), 49

Assembly switches (OPSER), 117

Assigning names to DECtape (PIP), 147

Asterisk (*) symbol usage (PIP), 127, 138,

158
AT (@) symbol usage (PIP), 127
AUTOPARAGRAPH (RUNOFF), 205

B switch (PIP), 155
Back-arrow (shift-0O) (PIP), 156
Back-slash (RUNOFF), 208, 209
Backspace file request (PIP), 166, 167
Binary mode switch (/B) (PIP), 155
Binary value interpretation (DDT), 52
BLANK (RUNOFF), 200
BREAK (RUNOFF), 199
Breakpoints (DDT), 22, 37, 65
Checking status, 39, 65
Conditional, 40, 65
Proceeding from, 23, 39, 40, 65
Reassigned and removing, 23, 38, 65
Restrictions, 22, 28
Setting, 22, 37,63
Type-outs, 23,59, 61

C switch (PIP), 150

Capitalize flag (RUNOFF), 206

Card punch, J switch (PIP), 167

Case, lower (RUNOFF), 208

Case shifting (RUNOFF), 208

Case, upper (RUNOFF), 208

CENTER (RUNOFF), 198, 201

Changing UFD or SFD protection codes
(PIP), 158

CHAPTER (RUNOFF), 203

Circumflex (RUNOFF), 198, 199

Coding conventions (OPSER), 117

Colon (:) usage (PIP), 128, 134
Combination of switches (PIP), 163

Combine files, transfer without, X switch,

(PIP), 149

Combining * and ? wildcard symbols (PIP),

139
Comma usage (PIP), 134
Command errors (PIP), 171
Command format

(CREF), 3

(FILCOM), 81

(FILEX), 96

(GLOB), 103

Command indicator (RUNOFF), 196, 199,

208
Command string (PIP), 131

Delimiters, 134

Format, 131
Commands (RUNOFF), 199
Comment (RUNOFF), 198, 208
Conditional break instruction (DDT),

40, 65
Control (PIP)

Direct, 127

Indirect, 127
Conventions, writing (PIP), 128
Copy (PIP)

All but specified files

DX switch, 149
Files without combining
X switch, 146

Copying (PIP), 147
Core layout (OPSER), 116
<CR> carriage return usage (PIP), 129
Current input format (CREF), 3

D switch (PIP), 154, 159
DX switch (PIP), 149

Copy all but specified files
Data formats (FILEX), 95
Data mode switches (PIP), 155
DECtape tape names (PIP), 149
DECtape to paper tape copy,

Y switch (PIP), 154

Index-1

233

234

Defaults Exiting from PIP (PIP), 127
(FILCOM), 81 Expression evaluation (DDT), 51
(GLOB), 104 Expressions (DDT), 21
(OPSER), 115 Extension (RUNOFF), 211

(RUNOFF), 193, 196
Delete disk (PIP), 160

Delete files, D switch (PIP), 159 F switch (PIP), 157
Delete sequence number, N switch Field separators (DDT), 50, 64
(PIP), 151 FIGURE (RUNOFF)
Delete trailing spaces, T switch File access protection codes (PIP), 135
(PIP), 152 142,143
Delimiters, command string (PIP), 134 File directory switches (PIP), 156
Density and parity parameters (PIP), 165 File protection codes (PIP), 159
Switches for setting, 165 Changing of UFD and SFD,
Device formats (FILEX), 95 File reference errors (PIP), 170
Device names (PIP), 135 File request, backspace (PIP), 166
Diagnostic messages (CREF), 9 File specification (PIP), 132, 133
Digit numeric protection code values Delimiters, 134
(PIP), 143 File transfer (PIP), 146
Direct control (PIP), 127 Filename fields (PIP), 137
Directory identifier (PIP), 139, 141 Filenames (PIP), 137
Disk deletion (PIP), 162 Generation of, 148
DO INDEX (RUNOFF), 204 FILL (RUNOFF), 197, 205

FLAG CAPITALIZE (RUNOFF), 206,210
FLAG INDEX (RUNOFF), 206, 210

E switch (PIP), 150 FOOTNOTE (RUNOFF), 201
END FOOTNOTE (RUNOFF), 201 Format (FILEX)
END LIST (RUNOFF), 202 Command, 96
END NOTE (RUNOFF), 202 Data, 95
Equals (=) symbol delimiter (PIP), 128, Device, 95
131, 135 DUMP, 96
Error messages SBLK, 96
(DDT), 24, 33 Save file, 96
(PIP), 169 Format specifiers (FILEX)
Error recovery (PIP), 167 DECtape, 98
Errors File, 98
(PIP), 170 Formatting (RUNOFF)
(RUNOFF), 211, 221 Page, 203
Examining storage words (DDT), 17, 25, Text, 199
60 FORTRAN carriage control character
Examples interpretation (PIP), 151
(CREF), S Functions, optional (PIP), 145
(FILCOM), 86
(FILEX), 99
(GLOB), 106 G switch (PIP), 167
(RUNOFF), 213 General error messages (PIP), 172
Exclamation point (RUNOFF), 198, 208 Greater-than (RUNOFF), 206, 208, 210

Exclamation symbol (PIP), 135
Executive mode debugging (DDT), 69

Index-2

H switch (PIP), 155
Hardware requirements (PIP), 127
HEADER LEVEL (RUNOFF), 203

I switch (PIP), 155
Identifier (PIP)
DECtape, 148
Directory, 139
Ignore card sequence numbers (PIP)
E switch, 150
INDENT (RUNOFF), 200
Indirect control (PIP), 127
Index (RUNOFF)
Buffer, 193
Flag, 206
Input (RUNOFF), 195, 197

Interactive commands (OPSER), 111

Insert sequence numbers (PIP)
S switch, 151

J switch (PIP), 167
Justification (RUNOFF), 193
JUSTIFY (RUNOFF), 205

L switch (PIP), 156
LEFT MARGIN (RUNOFF) 206

Less-than (RUNOFF), 206, 208, 210

Line-printer listing, FORTRAN (PIP)
P switch, 151

LIST (RUNOFF), 202

LIST ELEMENT (RUNOFF), 202

List limited source directory (PIP)
F switch, 157

List source device directory (PIP)
L switch, 156

Loading PIP (PIP), 127

Loading procedure (DDT), 15, 74

Logical device names (PIP), 136

LOWER CASE (RUNOFF), 206

Lower case lock (RUNOFF), 209

Magnetic tape switches (PIP), 136
MEM (RUNOFF), 211

Messages (RUNOFF), 223
Miscellaneous commands (DDT), 45

235

Mode (RUNOFF), 193
Mode setting commands (RUNOFF), 205
Modifying storage words (DDT), 18, 26

N switch (PIP), 151

Naming files with octal constants (PIP),
138

NOAUTOPARAGRAPH (RUNOFF), 205

NOFILL (RUNOFF), 197, 205

NOJUSTIFY (RUNOFF), 206

Non-directory to directory copy operations
(PIP), 147

NONUMBER (RUNOFF), 203

NOTE (RUNOFF), 201

NUMBER (RUNOFF), 203

Number sign (RUNOFF), 208,210

symbol (PIP), 138

O switch (PIP), 151

Octal constants as filenames (PIP), 138
Operating environment (DDT), 73
Optional functions (PIP), 145
Optional PIP functions (PIP), 165
Output (RUNOFF), 195,197

P switch (PIP), 151

PAGE (RUNOFF), 198, 204

Page formatting commands (RUNOFF),
205

PAGE SIZE (RUNOFF), 207

PAPER SIZE (RUNOFF), 207

Paper-tape control (DDT), 55, 68

PARAGRAPH (RUNOFF), 200

Paragraph indent (RUNOFF), 200

Parameters (RUNOFF), 198

Parentheses usage (PIP), 135, 165

Period (RUNOFF), 196, 199, 208

Period usage (PIP), 128, 134

Peripheral devices (PIP), 135

Physical device names (PIP), 135

PIP command errors (PIP), 171

Print summary of PIP functions (PIP)
Q switch, 161

Printing (RUNOFF), 212

Proceed counter (DDT), 40, 65

Proj.,prog. number pairs (PIP), 141

Index-3

236

Protection codes (PIP), 142, 143
Changing of, 158
Digit numeric values, 143

Q switch (PIP), 161
Question mark (?) symbol (PIP), 139, 158
Quoted space (RUNOFF), 208,210

R switch (PIP), 158

Radix, changing the (DDT), 35,59
Ragged right (RUNOFF), 193, 197
Register assignments (OPSER), 117
Rename (R) function (PIP), 158
RIGHT MARGIN (RUNOFF), 207
.RNO (RUNOFF), 211

Running RUNOFF (RUNOFF), 211

S switch (PIP), 151
Searches (DDT), 43, 66
Semicolon (RUNOFF), 198, 208
Sequence number, delete (PIP)
N switch, 151
Sequence number and increment by one
(PIP) O switch insert, 151
Sequence numbers (PIP)
S switch insert, 151
Set data mode switches B, H, and 1
(PIP), 155
Settings (RUNOFF)
Mode, 205
Parameter, 206
Single instruction proceed, 43
SKIP (RUNOFF), 199, 200
Source file (RUNOFF), 196
Source text (RUNOFF), 198
SPACING (RUNOFF), 207
SFD identifiers (PIP), 140
Special characters (RUNOFF), 208, 211
Special entries (OPSER), 115
Special functions (PIP), 165
Special symbols (DDT), 52, 63
Special syntax (OPSER), 114
Square brackets (PIP), 134
STANDARD (RUNOFF), 198, 207
Standard optional functions (PIP), 145
Standard PIP switches (PIP), 145

Starting the program (DDT), 24, 29, 66
Storage map for user mode (DDT), 71
Storage words (DDT), 17, 25, 60

Examining, 17, 25, 60

Modifying, 18, 26
Subfile directory (SFD) (PIP), 140
Subjob specifications (OPSER), 116
SUBTITLE (RUNOFF), 204
Switch combinations (PIP), 163
Switch options (CREF), 6
Switches

(CREF), 5

(FILCOM), 82

(FILEX), 98

(GLOB), 104

(OPSER), 117

(PIP), 145
Symbol evaluation (DDT), 51
Symbols (DDT), 20, 30, 47, 63

Defining, 47, 63

Deleting, 48,63

T switch (PIP), 152
TAB codes (PIP), 150
TAB STOPS (RUNOFF), 196, 207
Tab to space conversion (PIP), 152
Terminator (PIP), 131
Text formatting commands (RUNOFF),
199
TEST PAGE (RUNOFF), 200, 205
TITLE (RUNOFF), 204
TMPCOR error messages (PIP), 174
Trailing spaces (PIP), 152
Transfer function (PIP), 145
Transfer without X switch (PIP), 149
Type-in modes (DDT), 19, 61
Type-out modes (DDT), 17,29, 35,59
Typing errors (DDT), 24, 32
Typing in (DDT), 30, 62
Arithmetic expressions, 32, 64
Numbers, 31, 62
Symbolic instructions, 31, 64
Text characters, 31, 62

U switch (PIP), 150
UFD and SFD file protection codes (PIP),
143

Index-4

UFD-only identifiers (PIP), 140
Underline lock (RUNOFF), 209
Underlining (RUNOFF), 209
Underscore (RUNOFF), 208,211
Unexpandable space (RUNOFF), 208
Up-arrow symbol usage (PIP), 129
Upper and lower case (DDT), 33
UPPER CASE (RUNOFF), 206
Upper case lock (RUNOFF), 208
User file directory (UFD) (PIP), 133

V switch (PIP), 153

237

W switch (PIP), 152
Wildcard characters (PIP), 138
Writing conventions (PIP), 128

X switch (PIP), 146, 154

Y switch (PIP), 154

Z switch (PIP), 161

Index-5

