Ho W DAP-16 AND DAP-16 MOD 2
ney ell ASSEMBLY LANGUAGE

SERIES 16

SOFTWARE

DAP-16 AND DAP-16 MOD 2
Honeywe“ ASSEMBLY LANGUAGE
SERIES 16
SUBJECT:
DAP-16 Assembly Language and Its Extension for the 316 and 516 Computers, DAP-16
Mod 2.

SPECIAL INSTRUCTIONS:

This manual completely supersedes the edition dated August 1970, Changes specified
by ECO 9246 update this manual to comply with Revision C of the Assembler and provide
improved examples to assist programmers in more efficient application of the DAP-16
Assembly Language. The order number has been changed to be consistent with the
overall Honeywell publications numbering system.

DATE:
June 1971

ORDER NUMBER:
BY09, Rev, 0 (Formerly M-1756)

DOCUMENT NUMBER:
701300724428

PREFACE

This document is organized as a reference manual, The DAP-16 and DAP-16 Mod 2
Assembly Languages and Assemblers used on Series 16 general purpose computer systems
are described. Subject areas include pseudo-operations (instructions to the assembler rather
than instructions to be assembled into the program), the mixing of FORTRAN and DAP-16

programs in a memory load, performing an assembly, and generating an assembler system.

Users of this manual should have some familiarity with Series 16 computers but need

no assembly language experience, The 316/516 Programmers' Reference Manual (Order

No. BX47, Doc. No. 70130072156 — M-490) and the 316/516 Operators' Guide (Order No.

BX48, Doc., No., 70130072165 — M-491) are companion volumes.,

Series 16 DAP-16 and DAP-16 Mod 2 Assembly Language is a coded
program designed to extend the power of Series 16 in the area of
program preparation and maintenance. It is supported by compre-
hensive documentation and training; periodic program maintenance
is furnished for the current version of the program in accordance
with established Honeywell specifications, provided it is not modi-
fied by the user.

©1970, Honeywell Computer Control Division
©1971, Honeywell Information Systems Inc. File No.: 1AZ23

BY09

CONTENTS

SECTION I
INTRODUCTION
Scope of Manual
Supporting Programs
Reference Documents
SECTION II

DAP-16 ASSEMBLER
Location Counter
Two-Pass Assembly
One-Pass Assembly
Loaders
Modes of Operation
Desectorizing Modes
Load Mode
Coding DAP-16 Programs
Symbolic Names
DAP-16 Coding Form
Test Examples
Operation Field
Address Field
DAP-16 Assembly Listings
SECTION III
PSEUDO-OPERATIONS
Assembly-Controlling Pseudo-Operations
CFx, Computer Configuration
V REL, Relocatable Mode
ABS, Absolute Mode
LOAD, Load Mode
¥V ORG, Origin
FIN, Assemble Literals
MOR, Operator Action Required
V END, End of Source Program
List-Controlling Pseudo-Operations
EJCT, Start At Top Of Page

LIST, Generate Assembly Listing;
NLST, Generate No Assembly Listing

iii

23
2=-2
2=-2
2-4
sk
2=-5
2-5
2-5
2:6
2-6
2-8
2-9
2-14

CONTENTS (Cont)

Page
Loader-Controlling Pseudo-Operations 3-6
EXD, Enter Extended Desectorizing;
LXD, Leave Extended Desectorizing 3-6
SETB, Set Base Sector 3-6
Symbol-Defining Pseudo-Operations 3-7
V EQU, Give a Symbol a Permanent Value 3-7F
SET, Give a Symbol a Temporary Value 3-7
Data-Defining Pseudo-Operations 3-8
VDAC, Address Constant 3-8
¥ DEC, Decimal Constant;
DBP, Double Precision Constant 3-10
4 OCT, Octal Constant,
HEX, Hexadecimal Constant 3-16
¥V BCI, Binary (ASCII) Coded Information 3.17
VFD, Variable Field Constant 3-17
Storage Allocation Pseudo-Operations 3-18
BSS, Block Starting With Symbol,
BES, Block Ending With Symbol 3-18
V BSZ, Block Storage of Zeros 3-19
COMN, Common Storage 3-19
SETC, Set Common Base 3-19
COMMON Storage 3-19
Program-Linking Pseudo-Operations 3-21
ENT, Entry Point;
¥V SUBR, Entry Point 8451
EXT, External Name 322
V XAC, External Address Constant 3.22
V' caLL, call Subroutine 3-23
Conditional Assembly Pseudo-Operations 3-23
IFP, Assemble Only if Plus;
IFM, Assemble Only if Minus; 3.23
IFZ, Assemble Only if Zero;
[FN, Assemble Only if Not Zero
ENDC, End of Conditional Assembly 3-24
ELSE, Combined IF and ENDC 3.24
FAIL, Identifies Statement Which Should Never Be Assembled 3-24
Using Conditional Assembly 3-24

iv

CONTENTS (Cont)

Special Symbols

##%, Op Code Zero;
PZE, Op Code Zero

Error Code

Example

SECTION 1V
USE OF FORTRAN PROGRAMS

Common
Argument Transfer Subroutine F$AT
Calling a Subroutine
Calling F$AT
DAP-16 Main Program With FORTRAN Subroutine
FORTRAN Main Program With DAP-16 Subroutine

SECTION V
PERFORMING AN ASSEMBLY (DAP-16 MOD 2)

Estimation of Symbol Table Size

Assembler Support Programs
Ol6-DECS, 0l6-DECL
SYMLIST, Symbol Table Printer
TABLESIZ

Input /Output Supervisors
Dedicated IOS Programs
I05-016D

SECTION VI
PERFORMING AN ASSEMBLY (DAP-16)

Estimation of Symbol Table Size

Assembler Support Programs
DECCS, DECCL
MEMSIZ, SETSIZ

Input/Output Supervisors
Dedicated I0S Programs
I0S-516X, 10S-516D

SECTION VII
GENERATING AN ASSEMBLER SYSTEM

Loading Loader
Loading Assembler

Generating Map

3-27
3-27
3-28

4-1
4-1
4-1
4-2
4-2
4-5

CONTENTS (Cont)

Loading I0S-016D
Loading Ol6-DECL
Loading SYMLIST

Loading IOS Drivers

Loading TABLESIZ

Producing Self-Loading Core Image

Figure

1-1
2-1
)
2-3
2-4
3-1
3.2
3.3
3-4
3.5
3-6
.
248
3-9
4-1
4-2
4-3
4-4
4-5
4-6
&
4-8

APPENDIX A
EXPANDED STDDEV LISTING

ILLUSTRATIONS

General Program Flow

DAP-16 Processing of a Line

Assembler and Loader Operating Modes

DAP-16 Coding Form

Assembly Listing

General Format for Numerical Values

Binary Point Position

Fixed-Point Word Formats

Floating-Point Word Formats

COMMON Allocation in DAP-16

Flow Chart for Example in Figures 3-7 through 3-9
Example, Main Sequence

Example, Conversion Routine

Example, Output Routine

Portion of DAP-16 Program Calling FORTRAN Subroutine STDDEV
FORTRAN Subroutine STDDEV

Loader Map for AVGCOL, MEASURE, and STDDEV
Qutput From STDDEV

FORTRAN Calling Sequence for DAP-16 Subroutine READT
DAP-16 Subroutine READT

Paper Tape Input Format (for Figures 3-4 and 3-5)

DAP-16 Subroutine READT, Transferring Arguments Without
Calling F$AT

A-Register Settings for Assembler Initialization

A-Register Settings for Assembler Initialization

wvi

2-15
3-11
3-12
3-13
3-15
3-20
3-29
3-31
3-34
3-36
4-3
4-3
4-4
4-4
4-5
4-6
4-7

4-7
5-1
6-1

Figure
7-1

7-2
A-l

Table
2-1
3=1
3-2
3-3
5-1
5-2
5-3
5-4
6-1
6-2
6-3
6-4

ILLUSTRATIONS (Cont)

Dummy Example
Core Map, After Generating Assembler System

Expanded Listing of STDDEV

TABLES

DAP-16 Assembler Formats

Pseudo-Operations

Subfield Conversions for DEC and DBP Pseudo-Operations
Warning and Error Flags

Assembler Starting Addresses

Dedicated Input/Output Supervisors

Device Selection with I0S-016D

B-Register Settings for Magnetic Tape Input/Output
Assembler Starting Addresses

Dedicated Input/Output Supervisors

Device Selection with I0S-516X and I08-516D
B-Register Settings for Magnetic Tape Input/Output

vii

SECTION I
INTRODUCTION

SCOPE OF MANUAL

This manual describes the DAP-16 and DAP-16 Mod 2 Assembly Languages and
Assemblers for use on Honeywell Series 16 general purpose computer systems. DAP-16
Mod 2 is an extension of the DAP-16 Assembly Language which is supported only on the
DDP-516 and H316 computers. All existing source programs for these computer systems

will assemble correctly using the DAP-16 Mod 2 Assembler.

SUPPORTING PROGRAMS

Source programs written in DAP-16 language may be processed by several supporting
programs. Each provides the programmer with a specific tool helping him toward the goal
of producing an efficient, error-free object program.

The DAP-16 Assembler is the primary program for processing the DAP-16 Language.
This program produces object text for eventual loading into the computer along with a listing
of the source program and the assembler's action on each statement. This program is
discussed in Section II of this Manual.

The Macro Preprocessing Program permits processing of a DAP-16 source program
with several additional statement types. These statements allow predefined blocks of source
text to be modified and inserted in a copy of the source program. The term "Macro'"
implies that one statement produces several instruction blocks. These blocks, called
macro-expansions, may be defined within the program or may come from a macro library.
These macro-expansions are also modified to include appropriate symbols for each instance
of use. Through use of the Macro Preprocessing Program Ithe programmer can significantly
reduce the number of statements to be written. With this program, the user can also define
a new language which suits his needs more closely than DAP-16. Macros also aid "instal-
lation standard' code for system interfacing where the macro library contains the critical
code for connecting user programs with the operating system and/or I/O equipment. The
output of the Macro Preprocessing Program is a DAP-16 source text suitable for use by any
of the programs discussed in this Manual. However, the Macro Preprocessing Program is
discussed in a separate Manual, titled MAC Macro Preprocessor Programmers Reference
Manual.

The Concordance Program operates upon a DAP-16 source program in a manner
similar to the operation of the DAP-16 Assembler. Its Output is a cross-reference table
listing each symbolic name and literal and the source locations of every reference to them.
This program is discussed in a separate Manual, titled XREF Concordance Program Pro-

grammers Reference Manual.

The Update Program allows manipulation of a source program within the computer.
This program is discussed in a separate manual titled 016- XREF, SSUP and MAC Source
Language Processors.

The discussion so far has concerned the assembly process prior to loading.
However, a loading program is logically inseparable from an associated assembler,
because the path from assembly language code to loaded program must pass through both
the assembler and the loader. The loading programs used with either DAP-16 Assembler
are described in Section II of this manual.

Figure 1-1 illustrates the processing of a DAP-16 source program by these support-
ing programs. Note that Figure 1-1 references another useful program, namely, the
Write and Load Program. This type of program provides a core dump which is easily
reloaded without the use of a loader, providing a handy method of storing completed pro-

grams between use,

REFERENCE DOCUMENTS

1-2

Document Doc. No. Order No.
DAP-16 70180275000 M-1052
DAP-16M2 70181446000 M-1727
DECCL 70180455000 M-236
DECCS 70180458000 M-186
DUMY-X16 70180095000 M-861
IOS-0OAAA 70182615000 M-1732
I05-ORAA 70182603000 M-1726
I0S-ORPA 70182601000 M-1723
I0S-016D 70181507000 M-1810
IOS-5AAA 70180323000 M-1053
I0S-5CAA 70180618000 M-535
I0S-5CPA 70180594000 M-534
I0S-5RAA 70180592000 M-538
I0S-5RPA 70180573000 M-354
I05-516D 70180278000 M-567
I0S-516X 70180324000 M-1054
LDR-APM 70180005000 M-569
LDR-C 70180582000 M-860
MEMSIZ 70180606000 M-363
MINILOAD 70180580000 M-372
Ol6-DECL 70181506000 M-1801
Ol6-DECS 70181505000 M-1703
SETSIZ 70180457000

Document
SLDR-A
SLDR-C
SLDR-P
SYMLIST
TABLESIZ

Doc. No.
70180341000
70180583000
70180342000
70181445000
70181497000

Order No.

M-237
M-368
M-76
M-1821
M-1728

1-3

PROGRAMMER

SOURCE
CARD
IMAGES
MACRO MasHO
Ll PREPROCESSING
BRARY PROGRAM
UPDATE
CARD
‘ IMAGES
SOURCE
CARD
IMAGES
T UPDATE
* * e PROGRAM
CONCORDANCE
ASSEMBLER
o L e D R
UPDATED
i SOURCE
—1 /_K‘ CARD IMAGES
REFERENCE fF‘SSTEMB'-“' OBJECT
LISTING MG
TEXT

1-4

?

LOADER
PROGRAM

OTHER
OBJECT

TEXT

MEMORY
MAP

OPERATOR

Figure 1

-1.

)

DESIRED
MEMORY
CONTENTS

WRITE AND
LOAD
PROGRAM

RELOADABLE
(SELF—
LOADING)
CORE
DUMP

General Program Flow

SECTION II
DAP-16 ASSEMBLER

The DAP-16 Assembler provides the programmer with the means for generating
linkages between a source program and others which are assembled or compiled separately.
The linkage is actually performed by the Loader. Each point in a program to be linked is
assigned an external symbolic name which is then referenced by any other program requesting
use of that link point. The Loader will not complete its job until all references to external
names in the program being loaded have been satisfied.

The Assembler produces two independent outputs. The first is the object text which
is further processed by the Loader, and the second is the assembly listing. The listing
serves to inform the programmer of the actions taken by the Assembler so he can eliminate
errors and make other changes. The assembly listing also carries programmer comments
and other documentation.

The assembly listing is printed during the final pass. Thus the listing from a two-
pass assembly contains more information than that from a one-pass assembly, namely the
definition of all symbols encountered anywhere in the program. Object tapes from the two
types of assembly may be loaded by the same Loader,

The DAP-16 Assembler must be linked to a number of support programs which permit
it to operate independent of associated input/output devices and to operate either alone or
under an operating system. The input/output system can use a general supervisor, allowing
successive assemblies to be conducted with different devices, or can be formed from one of
several dedicated supervisors which use a preselected combination of input/output devices.
Such a dedicated supervisor is useful for systems where standard devices are always used
or the available memory is limited. Note that the DAP-16 Assembler is referred to as an
Assembler System in Figure 1-1. The specific programs comprising this system are
described in Section V and VI.

The Assembler may make either one or two passes over a source text depending on

how the assembly is initiated.

LOCATION COUNTER
The DAP-16 Assembler maintains a Location Counter which points to the memory
location for which a word is currently being assembled. This counter is relocatable or
absolute depending on the mode of assembly and is used in defining symbols appearing in
the Location Field and in establishing a value for asterisks appearing in the Address Field.
After each word (instruction) is assembled, the Location Counter is normally incre-

mented by one.

TWO-PASS ASSEMBLY

In this mode of assembly, the DAP-16 Assembler reads the source program twice,
first to develop a dictionary of symbols, and a second time to assemble the object program
by referencing the Symbol Table (Dictionary). Each entry in the Symbol Table is three
words in length. Therefore, the maximum number of symbols that may be handled is one-
third of the number of locations available (usually all of the locations between the highest
location used by the assembler and the highest location of memory). During pass two,
DAP-16 assembles and outputs the Object Text and Assembly Listing. FEach source line is
processed before the next line is read. Figure 2-1 illustrates the processing of each line.

During the processing of a line, the operation mnemonic is first examined. If a
standard machine operation is being conducted, the proper code is inserted in the object
text. If a pseudo operation is specified (calling for some action by the assembler rather
than specifying an operation code) the proper action is taken. The address field is then
processed and the proper value inserted in the object text. The assembly listing image is

formed and any errors detected in the line are flagged at the left end.

ONE-PASS ASSEMBLY

The development of the Symbol Table and the assembly of the Object Program are
accomplished simultaneously in a one-pass assembly, Any symbols not defined when en-
countered are assigned an internal symbol number. The printed output shows two asterisks
in the field which would contain the symbol value. When the Assembler determines the
assigned value of a symbol this information is included in the object text. The Loader then

uses this information to finish assembling the instruction words in core.

LOADERS

A Loader processes object text to form a core image and places this image in memory.
Memory references within the program are resolved and indirect links generated as required.
References to external names (which are assembled without an address) are also resolved.
The Loader operates in the mode specified by the programmer in the source text. Loaders,
which are large and complicated programs, are as important to the process of generating
an executable core content as Assemblers and Compilers.

There are two kinds of Loaders available, namely linking and non-linking. LDR-APM,
SLLDR-A, SLDR-C, and SLDR-P are the linking Loaders; and MINILOAD is the non-linking
Loader.

LDR-APM is the full Loader, and with proper support programs can load object text
from any medium or mix of media. Object Text from either one or two-pass assernblies
can be loaded as well as FORTRAN Object Texts with all external references correctly
linked.

SLDR-A and SLDR-P are smaller linking loaders for paper tape Object Texts loaded
through an ASR teletypewriter and the high-speed tape reader respectively. SLDR-C is the

small linking loader for punch card object text. These Loaders can load object text [rom

2-2

Figure 2-1.

READ ONE
INPUT LINE

PROCESS THE
QOFERATION OR
PSEUDO -
OPERATION

PROCESS THE
ADDRESS
FIELD

FORM THE
OBJECT TEXT;
QUTPUT IF
BUFFER FULL

PRINT THE
LINE LISTING

DAP-16 Processing of a Line

two-pass assemblies and FORTRAN compilations, but not from one-pass assemblies.
Again, all external references are correctly linked.

MINILOAD is the smallest of the Loaders, and loads object text from any medium in
conjunction with appropriate support programs. The object text must be derived from two-
pass assemblies. One-pass assemblies and FORTRAN compilations cannot be loaded.
Furthermore, only one mode of loading must be used in any one program. Since no linkages

are made to external names, these must be handled by the programmer as absolute refer-

ences.

MODES OF OPERATION
There are three assembly and loading modes which may be specified to and through
the DAP-16 Assembler by the programmer. These are illustrated in Figure 2-2. The

descriptions of the pseudo-operations which implement the three operating modes are

located in Section III.

ABSOLUTE RELOCATABLE
DEFAULT MODE
REL

DESECTORIZING
ABS

l LOAD

o 4

DESECTORIZING
(LOAD)

{NON EXISTENT
MODE}

Figure 2-2. Assembler and Loader Operating Modes

Desectorizing Modes

In the two Desectorizing Modes, the Loader handles all intersector references by
generating indirect address links (vectors) when necessary. These links are located in
sector zero unless the programmer has specified location elsewhere by the use of a SETB
pseudo-operation. Because in general the programmer may not be aware of which instruc-
tions will have indirect bits set by the Loader, he must be careful in modifying the address
of instructions during program execution.

The Loader may handle intersector links for either normal addressing or extended
addressing. The EXD pseudo-operation causes the Loader to form 15-bit indirect address
links, while the LXD pseudo-operation returns the Loader to the normal 14-bit mode.
These pseudo-operations should be used in conjunction with the EXA and DXA machine

operations. The effect of EXD and LXD may also be forced by the operator at load time.

2-4

Desectorizing and Absolute Mode. -- This mode is the Assembler default mode for program
loading unless one of the other modes is specified. The location at which the program is
loaded is fixed by the ORG pseudo-operation, which must be assembled before any locations

are assigned. This location cannot be changed at load time.

Desectorizing and Relocatable Mode. -- This mode differs from the Desectorizing and
Absolute Mode in that addresses may be relocated at load time. The REL pseudo-operation
initiates entrance into this mode. The ABS pseudo-operation may be used to return to
Desectorizing and Absolute mode.

Any symbolic names assigned in the relocatable portion of a program are considered
relocatable. Such symbols may not be treated in ways which the Loader cannot handle,

(e.g., being added together).

Load Mode

In this mode all intersector links are assumed to be handled by the object program.
Warning flags are posted whenever a link is required. The Loader will generate the link if
this program is loaded. This feature provides a useful tool for debugging, timing, or
loading a program when the programmer must give cross sector linkages special treatment.
Addresses are absolute (there is no relocatable load mode). The Load Mode is entered

with the LOAD pseudo-operation and continues for the duration of the assembly.

CODING DAP-16 PROGRAMS

Symbolic Names

DAP-16 uses Symbolic Names to identify numerical values computed by the Assembler.
These values are normally the addresses of instructions or data. The assembler maintains
a Symbol Table that permits substitution of the proper value for any reference to a Symbolic
Name.

The most common method of assigning values to Symbolic Names is to enter the
symbol to be named in the location field of the DAP-16 coding form. The assembler will
assign the value of the Location Counter to that symbol when that line is processed.
Multiple definition is an error. Symbols may also be assigned values by the EQU and SET
pseudo-operations.

Allowable symbols consist of from one to four characters from the 37-character set
A-Z, 0-9, and $, with at least one of the characters in a symbol being alphabetic. The
dollar sign can not be the first character, and generally should be used with care since it
usually signifies system programs. Six-character symbols may be used for referenced
external names in the address field.

The following symbols are legitimate:

LOOP

ST2P

A$

CENTER (an external name)

DAP-16 Coding Form

The DAP-16 Assembler's input support programs accept input in either of two for-
mats, namely, fixed-field and tab-field (paper tape input only). In the fixed-field format
each source line is an 80-character field (a punched card image). Each data field within
this 80-character field has a specified location. The input drivers convert a tab-field for-
mat to this fixed-field format. Each data field may be terminated by a backslash charac-
ter (\, '334), and the source line may be terminated by a carriage return.

Figure 2-3 shows a DAP-16 Assembler Coding Form. The five fields that appear
on this form are: Location, Operation, Operand, Comments, and Identification. The
circled t's in columns 5, 11, and 29 signify that a backslash to the left of that column will
be interpreted as a tab to the column following the marked column. Similarly, the circled
CR in column 72 indicates that the comments field may be terminated by a carriage return.
Furthermore, Table 2-1 shows in detail how the assembler defines and interprets these
fields in both the fixed-field and tab-field formats. Notice that each field, with the excep-
tion of the Comments and Identification fields, is terminated by blanks, Therefore, their
contents must be left-justified and cannot contain embedded blanks. If, for example, the
statement X1 LDA X2+7 were written as X1 LLDA X2 + 7, the assembler would interpret

this statement as X1 LDA X2 and assume that + 7 was a comment:

: = INTEMDED STATEMENT
ey 4

1: 4 ho02 N1427 LT A X247
ninse 2 CAISFES [NCORRPECT ACTION TF WPRITTEN AS
nine N1031 0 02 niazn LMaA X2 + 7

Text I-:".xamples

The examples in this manual are shown in the form of assembly listings which are
described in detail at the end of this section. The first few examples present both the
coding form and the assembly listing to show the correspondence of the fields. See
DAP-16 ASSEMBLY LISTINGS near the end of this section for a description of the fields
generated to the left of what the programmer has written,
Location Field

Each time a symbolic name is encountered in the location field it is entered into the
symbol table along with the value of the location counter at the time the name was encoun-
tered. Thus, the location field is used to name instructions or data for later reference.
In the second pass of the assembler {or the first pass for one-pass assemblies), the sym-
bolic name i; replaced by its value as found in the symbol table. In addition, the location
field can sometimes be used in other ways by pseudo-operations. References to multiply
defined symbols are arbitrarily assigned to the first definition.

As asterisk in column 1 of the location field signifies that the entire line is a com-

ment, which is printed on the output listing but otherwise ignored. The first line in the

2-6

wLIo g

guipod 91-dvd

]

LN 3walves

aqm.ﬂ._ Z_W n

———— | EG TR roa s o R |) L L] L S S R S SN | L T p T M e o i S | T 1.7 T | S o R R O e UED e o B R B B LA B B | T v 7
L L L . ; [FE (S S S U SR L B T T T 1 T1 L L L L L T T 1 1 55+t rr L L | P B S s D o FEE o oo Rl SN RS o R A | P [P | 7T
=TT ™1T r=f"T-T-T I T =T T BN (. N, i M . B L L T I T) B [T T T P T R R TR Yo T i R B o et B S e s e L o |

T Tt L T 1 o s | i e o SRR T P S | | D I D R N SR N A | T T I T TR S . O U AL L L R | e T
rtT-T1 1 T T T T &7 LI | T T e | G R T R R I B | | SN N T T S R G S T 1% | G (=) s mak] ol [TV R RN T AR BN SR B B B T T T | o
T T T T T T T T T T | S e = . S EE SR BN ENE KR D (o COPT N S e e R N | LI O R L PR L . L T TR O T B B T T T
e e T T T 1 T T T T T 1 1T % &+ T T T IR s 1) P ST S e S T T \ P [SR RN e WEN K Sm T QU Rato fHHe JENC R Y | T Fid e |
[D oy e e R | L L L LI T T | PR R R | 1 T 1 =1 o o S 2 e e s i S I) T T 1 T F T LT E ey Ty 173 | T |
e o ol e RN R T T 5 71 ™ T : o S R 0 T & 5 % o T o A R R T R ks T3 | sl S R N P CON T A R PN AL AN EE D LI 1T
TS L e R PN T LI L | O T e SN G . L e R T L S R T T | o e e e M PR NN RN RN TN NN T RN N 1 T 1 T T
Lz SR (e e SR PR | S e A SO R T LA | L L B | T 1 1 T 71 | e e e be D [s [o ST P R R L TR I L L L) T 1 1
DR R N T G e | T T kT T 1 LI T 1T 1.1 T T T T T T T F T T 3 7 ¢ 0k o LI B | T 1 T
o
% W i T | o) i e e e T 1 | PR | T T T—T T Tegk (o O R SN Enr Mew RN BN G FE RN D CUE AR T) ™T T ¥ L |
L L L L | e i R TR B T | T N | 1 § 1 T 1 1 11 T L LT F L LT kel | TR I G | T T
— T T | Ew S S I Ep T T 1 T 1 =1 .0 .7 . . T L TN T e T e B e B ¢ T T T L
T T T T . B L L) La T L | | G R [D I TR T, R T B T LR e e | Tt
T T T T T T T T T T T T L] T T T T T T T T 1 L L] T T T L] L T T T ¥ L T T T T T T L] T T T T T T T T
| I TR ER TREE: | S T e ey (o B T ™7 SO T | SO T ER T | | T R G R M L [W P TR TR N Ao O [RE LI e | | S |

|._.|_.|..ﬂ|._|-|_||u:||_.|q|l~l 2 EER R D R G T | | | S S S | | (RO By i o | | L L I L R L L O R | (i B e | B
T T T T T T TR N D P T 1 | B | T T T 17 | QT [e S T (S A PN P [R i LR T T L
—r—T T T T =TT T T =% T | A N N SR T | | I S W f N N N NN TN B S G R D BN T Tt 1T

L + TX v e
T G Sy ey N YR T T 5 1 1 3 | T 7T T T T T v 1 T .K_H_ _z_Q._uFdUd‘. .F.U.W-«JE_Q.UHH. q.a.U..m_w 5‘_0_ _*_
T T L L L AL L L] Laaiil T | SN I T | T T 7 L SN BN N R T M Sl S IR S B .hl_.—_.ﬂ_x =T q<d.ﬂ_.— ™17
r—t—f—r T T T T T T e m T T e (oglo il P o e fa o BN e W s i s o i A B I B A I B T ML L I B P R
NI

sTE:EmN_TT &l _._Ei%w,j%}_m%ig_s_%g_ B _mwm.ﬁwﬁa_a_g__m_s_m__m__ EFPEPTeTE o Pl
[LITTLTETUE [(S SLNIWNCD 030NZLX3 _ SLNIWNOD F 314 ONVH3H0 _@_ NOILYH3<D |@, NOLLYOOT
JBHVHI WYHO0ud

40 39vd alva H3IMWYHDONd

QLOI=PLGd

WHO4 9SNIQ0D dvd

IISMAUOH

)

assembly (whether it is a comment or not) is used as a header for all pages in the

assembly listing.

Operation Field

If a given abbreviation is not recognized or is not legal on the object machine, an error is

This field contains the abbreviation (mnemonic) of an operation or pseudo-operation.

flagged.

TABLE 2-1.

DAP-16 ASSEMBLER FORMATS

Field

Fixed-Field Format

Tab-Field Format

How Assembler
Handles Field

Location

Operation

Operand

Comments

Extended
Comments

Identification

Column 1 to first blank
column following

Column 6 to first blank
column following

Column 12 to first
blank column follow-
ing

First blank column
following column 12
to column 44

Columns 45 to 72

Columns 73 to 80

First column to first
blank or backslash
following

End of location field
to next blank or back-
slash

End of operation field
to next blank or back-
slash

First 15 characters
between end of
operand field and
carriage return
character

Any remaining
characters before
carriage return
character

Part of comments
field

Symbolic name for
address of this
operation or data

Abbreviation for
operation or
pseudo-operation

Variables or data

Printed on listing,
otherwise ignored

Printed on listing,
except overprints
last character on
ASR

Printed on listing,
otherwise ignored

following the operation code) signifies that the indirect bit is to be set.

An asterisk (%) used in the operation field of a memory reference line (immediately

For example, to

store the contents of the A-register indirectly through the location at symbolic name XNA

(i.e., to store at the location pointed to by XNA), the following code would be written:

-

[Locmon ICD OPERATION OPERAND FIELD (DI COMMENTS
|
1{2]|3|4]15]|6|7|8|9/i0fii|i2|i3]14]15 IG|!TIIB lglzolza 2223{24 25}252?29293—0[3113213334 35353?343914&4“42143 141
L 4 SITlAL*l XiNlAl 1 | | EH P S [| S el [Roity] IR _J_.,J,_...!_'_IE_J_D_I'.LE_JE._JC.LTI...J.$_I.II9J_R_LE_L,..,_ -
N T | ety VT IIIIJIlltlIILIIlIl1I|IIJIIIll|

2-8

The assembly listing of this line would appear as follows:
-0 N4 n3244

on1n 034n7

STA=

XHA

IMDIRFCT STruF

The assembly listing always shows a minus sign for indirect references as shown

above.

Address Field

The address field is used in several ways, but generic operations do not use this

field at all. As an example of the use of this field, consider twa's complementing the cur-

rent value of the A-register:

LOCATION I@ OPERATION r@' OPERAND FIELD <Dl COMMENTS
1|2|3]a]5 slrla gliofifi2|13]i4 15] nsln +sl|912 2l pap3jee aﬁaszrza}naolarlaalsalmlﬂaes 3439[4041 421[43
L1 TICIAI 1 I T S TSR DU LW PO N W PO T | N S | ._Izisi .J.CLQJ._A_IE_LI_'I..E..LM__LE.IEJIJ._I
T PR RN RN T VAN SR SN TN SN SN S S N ST S OO W O Y WO S T S R R
or
D011 06654 140407 TCA 25 COMPLEMENT

shift.

Shitt instructions use the address field to specify the number of bit positions to

For instance, a 4-bit logical right shift is coded as:

LOCATI

I

oN, @

OPERATION

ol

QPERAND

FIELD

|

COMMENTS

{|2]3[4 5

6/7[8]|9

10

iz

rslm[ss[rsfi?

8

mh

2l g2

23]24

2spole pops

ofsi 523

34(35

B37)

st e

42143114

f—t .

S T T W

LGR,

4 1 1 1 1 1

= I e B ESRE) Sie O ORe A0) n Ky Vv s

L

5 M PR e

Lowd 4

1 1 1 1

THI,S

ol Sl Sl I |

, J;L - I._A_L

L ET

0016 02763 0404 74 LGR 4 THIS IS A SHIFT

In input/output instruction lines, both the value of the function and the controller
address may be coded as a single variable or an expression to be evaluated. This is often
an octal number coded with an apostrophe. However, it is recommended that a symbol be
used (see SET and EQU Pseudo-Operations in Section III). Tor instance, before using the
ASR (controller address = '04), it must be enabled in the proper mode. The function code
for enabling in the output mode (applicable to ASR) is '01. Therefore, the instruction for

enabling the ASR in the output mode may be coded numerically as:

LOCATIONI(D OPERATION CDl OPERAND FIELD CDl COMMENTS
1|2‘3 4|5 61? RN |2|}3|l4\|51|6 I7 |8||9lzozi R2 3\24?"\ 6 Tkﬂk‘a 3!1’52[3;-13435*36 ﬂzalltdﬂ
!

I T | OICI.PI ! JOLI Iolql N T T RN [SRS OO P (e[S SV R L P ‘_A_I‘_SLR..L J_O_J. _L[LELl.J_LTL._L_
*- i1 1 IO|RI § (P { LT [| | { LR Y) S | 1 N T (1 I I (N R | | | o Sl e TR (T
| | IOI('-'lpl 1 _,4_,11_’ lanl R TS AL TR TANFR I [U [PL) 1) [SG] TH | | R A | CERY S [P (s e |
*, | 1 10|R¢ R R 1 OO T TR [TR] N Y VI 7 [Y Y s e Y NSRS, P Cotek i e [k 5
L1 OIC'IP: 1 ’I,LDL01+1'IQ| | [T N [[V (NN ST (AN A | | M B (NN A I VANS) SR S S O

The first line is listed as:
0014 07667 14 0104 oCcp tnin4g ASR oUTPUT

The address field for memory reference instructions contains two subfields. The
first subfield specifies the address to be used in the instruction. For example, loading

the A-register with the contents of the memory cell at symbolic location CEX would be

coded as follows:

LOCATION |€D OPERATION (Dl OPERAND FIELD @ COMMENTS

112[3|4]5 sJ 7(8|9iofifi2 |3|14]|5 61718 Jsz:{z&alza‘z-*.[zskseﬂaajm 3132[3334 35'363?343&[-“4!42]]4 K45
LDA, ¢cEX I

R R VRIS TLFESY GO TSR, 7R LS (o] (a7 | _l___L._i__i__.L...,J. A-dodi bbbl Lo by

and assembled as:

0020 042n2 0 02 p4221 LNA CEX

In the example above, the second subfield is null. However, when used, the second sub-
field usually specifies that the index bit is to be set in the assembled line. A wvalue of 0
or null designates no indexing; a value of 1 designates indexing. All other values are
errors. Also, the two subfields are separated by commas. For example, storing the
contents of the A-register in the memory cell at the address which is the sum of the sym-
bolic value CEX and the contents of the X-register at the time this STA instruction is
executed would generate the following line on the listing:

0022 04207 1 04 04221 STA CFX,1
The assembly listing shows the index bit as 0 or 1 for memory reference lines. Pseudo-
operations can use the address field in a number of ways, some of which allow division

into many subfields separated by commas,

Expressions. -- The address field generally contains a symbolic algebraic expression to
be evaluated, with the result of the evaluation being passed to the loader through the
object text. Within the object text, such an expression may be either absolute or
relocatable.

Only plus and minus operators are allowed. Furthermore, all elements of the
expression must be constants or symbols present in the symbol table by the end of the
final pass. Arithmetic may not be performed on external symbols. No indication of
overflow is given. The following examples show both addition and subtraction. In the

third line, indexing is also specified.

niNl 06072 0 02 Ngphw? LNA DATA+%

01N2 0AD7ZS 0 N6 NAPA4 AND DATA-1

nin3 NAD74 1 04 rne1s54 STA RSl T+40,1
fiindg NAaU72 =0 01 NKAZET3Z JMpr NEXT+20
nins 0r076 0 017N nag DATA=RSLT+23

Absolute and Relocatable Symbols. -- Symbols defined within relocatable program seg-
ments are relocatable. Other symbols and all constants are absolute, In the following
example the retrieval of the contents of core location 0002 is implemented irrespective

of where the instruction resides or is relocated in core.

0018 03717 0 02 00002 LDA 2
Special Elements. -- The asterisk is used as an element by itself, and three other sym-
bols — the apostrophe ('), the dollar sign ($), and the equals sign (=) — modify the ele-

ments they precede.
The DEC and DBP pseudo-operations allow the letters B and E to be used in the
address field to specify the position of binary and decimal points (these pseudo-operations

are discussed in Section III).

Asterisk. -- The single asterisk is a variable which always has the value of the location

counter. For example:
D026 04615 0 01 04614 JMP a=1

means jump to the previous instruction. The two following examples have the same effect,

a jump to symbolic location CONT:

0030 00462 0 01 00464 JMp 42
0031 00463 101000 NDP

0032 0N464 0 01 00501 JMp CONT
0077 00462 0 01 00464 JMP X3
0078 00463 101000 NOP

0079 00464 0 01 00501 x3 JMP CONT

Double Asterisk. -- The double asterisk is assembled as zero. Normally the program

will set the address during execution.
0030 01347 0 01 00000 JMP e Ho

The example above might be used in a program in which the location to be jumped to was
unknown before assembly. The loader places zero in the 9-bit address and 1-bit sector
fields and handles the index and indirect bits normally. However, if this instruction were
assembled in sector 0 rather than sector 1, the sector bit would be one, because the

referenced location, location 0, is in the same sector as the instruction.

Apostrophe (Octal Numbers). -- An Apostrophe preceding a number signifies that the number

is to be evaluated as an octal number. The following examples yield the same result:

n037 05164 0 02 00200 LDA *200
0022 05164 0 02 007?00 LDA 1728
The minus sign for negative numbers should follow the apostrophe, e.g., '-60 = -48, and

the minus operator in expressions should precede the Apostrophe; A-'60 is valid but A+'-60

is not.

Dollar Sign (Hexadecimal I\Jl.:tn'ﬂ:mrs}.a -- A Dollar Sign preceding a number signifies that the

number is to be evaluated as a hexadecimal number. The following examples yield the

same result:

0034 00213 0 62 nN0017 LDA $F
0041 00213 0 02 00017 LDA 15
0026 00213 0 02 00017 LDA t17

The minus sign for negative numbers should follow the Dollar Sign, e.g., $-30 = -48.
The minus operator in expressions should precede the Dollar Sign; A-$30 is valid but

A+$-30 is not.

Equal Sign (Literals). -- The use of constants in calculations is done conventionally by
storing a constant as data and writing the data name in the Address field. When

reading the listing, the value of the constant is not apparent from its name. However, by
using a literal (expressed as the value of the constant preceded by an equal sign), the same
result is achieved except that the name of the constant now gives its actual value. There
are two additional advantages to use of literals. First, the storage location of the literal
becomes the concern of the Assembler and Loader rather than the object program (i.e., a
literal is self-defining). And second, all references to a literal of the same value refer

to the same location, even though the programmer may not remember that he had made
more than one use of that value or even that the form of the literal is different.

Evaluated literals are stored in the Symbol Table along with other symbols.

2DAP-16 Mod 2 only.

The following examples all achieve the same effect, namely loading of a word composed
of all ones (-1 in twos complement notation) into the A Register. The programmer controls
the location of the -1 word in the first case, but the Assembler controls location in all other
cases. In any case, the address in the assembled instruction is the address of a word

containing -1.

0039 D13Ns 0 02 01323 LDA M1

0043 01373 177777 M1 DI;C =1

D047 0306 0 02 01344 LDA ==1

N0%1 01306 0 07 01344 LDNA ='-1
n055 01306 0 02 01344 LDA =%=1
0059 01306 0 02 01344 LNA ='177777

The DEC pseudo-operation, as used above, assembles a word with the indicated decimal

value (-1 in this case).

USASCII Literals. -- To specify a USASCII literal the form =A is used. The following
example implements loading of a 16-bit word containing C and $ ('141644) into the A-
Register:

0045 00456 0 02 00563 LNA =AC%

DAP-16 ASSEMBLY LISTINGS

The printed output of DAP-16 Assembler System is an Assembly Listing containing
the source program as it was read along with the action taken by the assembler. Figure 2-4
illustrates a sample listing.

The first column contains the line record number of the source statement. The next
column contains the value of the Assembler Location Counter (octal), The third column
shows, in octal, the binary word assigned to the location. The parts of the word are
broken up differently for different categories of instruction. TFifteen bits of address infor-
mation are included in memory reference instructions and the Loader uses these fifteen
bits to determine the ten bits of address information to be loaded into the instruction. The

three modes of loading cause the Loader to modify these fifteen bits in three different ways.

Note the following features of Figure 2-4.

a. Line 1 contains an asterisk in the location field, causing DAP-16 to treat the

entire line as remarks.

b. Line 2 contains a pseudo-operation (ORG) which sets the DAP-16 location counter

to octal 1000, the starting address of sector one.

c. The expression in the variable field in line 3 means the current value of the loca-
tion counter, plus one. Consequently, DAP-16 has written octal 1001 into the

address field of the instruction word assigned to this location.

d. The symbol in the left margin of line 5 is a diagnostic signifying that a memory
reference instruction (LDA) has an empty address field. Diagnostics are covered

in more detail in Section IIL
e. Indirect addressing is specified in line 5, and indexing is specified in line 8.

f. Inline 10 the programmer has entered the number of shifts desired in an LGL
instruction., DAP-16 has generated the necessary TWOs complement form in the

object program.

g. The literal pool starts in line 11 and continues until all three literals called for

have been satisfied.

ooni # SAMPLE ASSFMPLY LISTINA
0002 0RG 512
NO03 01000 0 0?2 N1N01 STRT LDA sl
pon4 gioni 0 04 ninon STA a=1
A poos pl1on02 =0 u? Q0OO0 LNA#®
none p1und 0 06 N1N1? AND =15
noo7 pion4 0 06 N1n11 ADD ='15
0008 0p10Nn3 1 04 00700 STA STRT=-A4,1
non9 plone 0 02 nintin LDA ='=5
noin olon? ndi4 76 LGL 2
0011 01010 1777173 END

01011 onoo1s
01012 anpo17

(Performs no useful function. See text for discussion of handling of fields.)

Figure 2-4. Assembly Listing

SECTION III
PSEUDO-OPERATIONS

DAP-16 pseudo-operations are instructions to the Assembler rather than instructions

to be assembled into the program. Table 3-1 lists the abbreviations (mnemonics) for these

instructions in the order of discussion.

by a checkmark,

The most basic pseudo-operations are preceded

TABLE 3-1. PSEUDO-OPERATIONS

Abbreviation Meaning Abbreviation Meaning
ASSEMBLY -CONTROLLING HEX Hexadecimal constant
FSEUDO-OFERATIONS / BCI Binary (ASCII) coded

CFx Computer Configuration information
REL Relocatable mode VFD Variable field constant
ABS Absolute mode STORAGE ALLOCATION
LOAD e pe PSEUDO-OPERATIONS
ORG Origin BSS Block starting with symbol
FIN Assemble Literals BES Block ending with symbol
MOR Operator Action Required \/ - Block storage of zeros
\/END End of Source Program GOMN Sonaties. siutigs
LIST-CONTROLLING SETC Set common base
PSEUDO-OPERATIONS PROGRAM-LINKING
EJCT Start at top of page SEEUDG-OPERATICND
LIST Generate assembly listing . Bary il
NLST Generate no assembly \/SUBR Eintey:poiat
listing EXT External name
LOADER-CONTROLLING v, xAC External address constant
PSEUDO-OPERATIONS \/ CALL Call subroutine
LAD o bt . CONDITIONAL ASSEMBLY
& PSEUDO-OPERATIONS
LED Lg:::;:;i_?;l?:d IFP Assemble only if plus
SETB Sk B sectogr IFM Assemble only if minus
SYMBOL-DEFINING IFZ Assemble only if zero
PSEUDO-OPERATIONS IFN Assemble only if not zero
\/EQU Give a symbol a permanent ENDC End of conditional assembly
value ELSE Combined IF and ENDC
P Give & symbiel s teranorary FAIL Identifies statement which
value should never be assembled
gggt?ng?ggzﬁfﬂons B
\/DAC Address constant bk OpiCede Zero
\/DEC Decimal constant PZE Op Code Zero
DBP Double precision constant
\/OCT Octal constant

In the discussion that follows, the diagram under the title of each pseudo-operation
illustrates what the Assembler expects to find in the location, operation and operand
fields. The comments and identification fields are used normally for all pseudo-opera-
tions. The words 'previously defined' mean "aiready in the symbol table even in the first

pass.' The pseudo-operations that apply only to DAP-16 Mod 2 are footnoted.

ASSEMBLY -CONTROLLING PSEUDO-OPERATIONS

CFx, Computer Configuration

LOCATION OFPERATION OPERAND

Ignored CF1l for DDP-116 Ignored
CF3 for H316

CF4 for DDP-416
CF5 for DDP-516

The pseudo-operation CFx defines the computer on which the program is to run and
if used, must precede the executable instructions to be tested. If the configuration is not
specified with CFx, the DAP-16 Mod 2 Assembler assumes that the program will be run on
an H316 or DDP-516. The DAP-16 Assembler assumes that the source computer is the
object type. The only effect of this pseudo-operation is to print O flags on the listing for

illagal operations. The object text is unaffected.

¥ REL, Relocatable Mode

LOCATION OPERATION OPERAND

Ignored REL Ignored

The pseudo-operation REL specifies the desectorizing and relocatable mode for
assembly and loading (see Section II, Modes of Operation). The action of the REL is
reversibly terminated by an ABS pseudo-operation and irreversibly terminated by a LOAD

pseudo-operation. REL may not follow LOAD,

ABS, Absolute Mode

LOCATION OPERATION OPERAND

Ignored ABS lgnored

This pseudo-operation specifies the desectorizing and absolute mode for assembly

and loading (see Section II, Modes of Operation). The assembler assumes this as the

3-2

operating mode in the absence of a REL, ABS, or LOAD pseudo-operation. The action
of the ABS is reversibly terminated by a REL pseudo-operation and irreversibly termin-

ated by a LOAD pseudo-operation. ABS may not follow LOAD.

LOAD, Load Mode

LOCATION OPERATION OPERAND

Ignored LOAD Ignored

The pseudo-operation LOAD informs the assembler that the source program from
this point on is to be assembled in load mode (see Section II, Modes of Operation). All
references to addresses not present in either the current sector or sector Zero are
flagged as errors on the assembly listing but do not affect the object text. Load mode

continues in effect for the duration of the assembly.

¥V ORG, Origin

LOCATION OPERATION OPERAND

Normal ORG Any previously-defined
symbol or expression

The assembler's location counter is given the value of the expression in the address
field. In the desectorizing and relocatable mode, the program will be loaded at the loca-
tion specified by the ORG plus the relocation factor, which is not normally useful. In the
absolute mode (either desectorizing or load) the ORG specifies the exact location at which
the program will be loaded. Any number of ORGs may be used in a program.

Any symbol in the location field will be assigned the value of the location counter
before the ORG is processed.

In the following example, a relocatable program temporarily reverts to absclute and
stores two pointers to relocatable locations. The program then returns to the relocatable
mode giving the location counter the value it would have had if the excursion into absolute

had not been made.

nNo34 RFL RELOCATABLE PROGRAM
0037 01050 0 02 NO334 LDA 1334 .. . REFERENCING SECTNR
0038 01051 0 04 01573 STA x47 7ERN

0039 701 ORG 1334 START AT LOCATINN
No40 ARS ARSOLUTE '334,

0041 00334 0 004465 DAC X PUT IN POINTERS,

0042 00335 0 004507 DAC Y AND

0043 0RG 201 RFTURN TO MAIN SEQUFNCE
No44 RFL (RELOCATABLF)

0045 01052 =0 06 00335 ADD® 335

no4é6 01053 0 04 n1574 STA X48

In the example below, the next instruction must be in an odd location. The DBP
pseudo-operation (described below) forces the assembler to locate its first word in an even

memory location. Therefore, ODD in the example below is forced to be in an odd location.

non3 03260 0 01 03263 JMP ono

0004 03262 000000 DRP 0 DUMMY VALUE, USED FOR
03263 ononon

0005 . ALIGNMENT

0006 0RG a=-1 FORCE ODD LOCATION

0007 03243 0 02 03244 nDD LDA XNA PROGRAM EXECUTION RFSUMES

FIN, Assemble Literals

LOCATION OPERATION OPERAND

Ignored FIN Ignored

Whenever the pseudo-operation FIN is encountered, DAP-16 starts at the present
setting of the location counter and assembles all literals accumulated since the beginning
of the program or since the last FIN. When the next statement is processed, the location
counter points to the first location following the literals. The same function is performed
by the END pseudo-operation; however, END also terminates the assembly. FIN allows
the programmer to distribute literals throughout his program, thereby possibly reducing
the indirect address links that the loader must supply. The program must not be allowed

to jump to a location within the literal pool.

MOR, Operator Action Required

LOCATION OPERATION OPERAND

Ignored MOR Ignored

This pseudo-operation is used when additional material mustbe added tothe assembly.
When MOR is encountered the computer halts (unless the source input is on magnetic tape,
in which case MOR is ignored). The computer resumes processing when the START button

is pushed. MOR causes a halt on both the first and second passes.

¥ END, End Of Source Program

LOCATION OPERATION OPERAND

Ignored END Blank of any defined symbol or
expression. If blank, loader
will start execution of program
at its first location. Otherwise,
execution will start at address
specified.

An END pseudo-operation must be the last statement in a source program; no state-
ments are processed following an END statement. All accumulated literals are assembled
as with a FIN statement. If this is the final pass, the value in the address field is entered
into the object text. The loader can be directed to start execution of the program at that
address, If the address field is blank, the first address in the program will be entered
into the object text as the starting address.

In a two-pass assembly from cards or paper tape, the computer halts when the END
statement is reached on the first pass. The operator must then reposition the source text
to its start and push the START pushbutton to initiate pass two. The second pass may be

repeated with the same parameters or with other parameters to gain additional outputs.

LIST-CONTROLLING PSEUDO-OPERATIONS

EJCT, Start At Top Of Page

LOCATION OPERATION OPERAND

Ignored EJCT Ignored

The pseudo-operation EJCT causes the next source line on the assembly listing to
be printed at the top of the next page following the heading. It has no effect if the NLST
pseudo-operation is in effect. The EJCT pseudo-operation is effective only when the line
printer is being used for the assembly listing or the ASR is being used with Input/Output
Supervisor Ol6-OAAA (see Section V, Input/Output Supervisors). The line containing EJCT

is printed.

LIST, Generate Assembly Listing;
NLST, Generate No Assembly Listing

LOCATION OPERATION OPERAND

Ignored LIST or NLST Ignored

The LIST pseudo-operation causes the assembly listing to be printed. The assembler
is ordinarily in the LIST mode. NLST inhibits printing of the assembly listing. LIST and
NLST may be used throughout a program in order to list selected sections. The line con-

taining NLST is printed if printing is on.

3-5

LOADER-CONTROLLING PSEUDO-OPERATIONS

EXD, Enter Extended Desectorizing;
LXD, Leave Extended Desectorizing

LOCATION OFERATION OPERAND

Ignored EXD or LXD Ignored

The loader forms l4-bit indirect address words (each having an indirect bit and an
index bit) unless an EXD pseudo-operation is performed or the operator forces extended
loading at load time. EXD causes the loader to form 15 -bit indirect address words (each
having an indirect bit but no index bit). EXD, normally used in conjunction with the EXA
operation, implies that the program is to be operated in EXTEND addressing mode. LXD,
used in conjunction with the DXA operation, implies that the program is in the normal

addressing mode,

SETB, Set Base Sector

LOCATION OPERATION OPERAND

Normal SETB Normal. For one-pass
assemblies, any symbol
used in this field must be
previously defined.

'The pseudo-operation SETB is used for programmer control of the location of the
address constants. SETB causes the loader to place the address constants starting at the
address derived from the address field of SETB. This statement may be used to ensure
that the loader-generated address vectors are in the same sector as the instructions that
use them. In this case, the program must reserve a block of memory locations for their

storage. The following example shows this use of SETB.

nok7 nrReG r3nng START AT REGIMNTNG
ons8 SFTR %+1 0F SECTOR 3

nN&e9 93000 0 01 n3nld JMP #+11 JUMP OVEFR ADDRESS
0870 # CONSTANTS

0071 03001 BESS io UP TO 10 CONSTANTS
0072 03013 0 072 03763 LhA RTOP CONTIMUF HERE

SETB pseudo-operations and loader B-register settings may be used freely to move
the base during the course of loading a program and its subroutines. The loader allows
only one contiguous block of base locations to be in any one sector. Thus, if the base is
ever returned to a sector it has been directed to before {e.g., back to sector zero) address
constants will continue to be loaded immediately following the previous block of address
constants loaded in that sector. For example, if the next address constant were to be
loaded into location '134 when the loader encountered a SETB to another sector, a following

3-6

SETB to any location in sector zero (e.g., SETB 0, SETB '134, or SETB '100) would re-

turn the base to '134,
SETB may also be used with the base-setting operation SMK '1320 (Memory Lockout

Option). The programmer must be sure that the relocation register is properly loaded
when the program starts executing and that storage is allocated for the address constants.

SYMBOL-DEFINING PSEUDO-OPERATIONS

JEQU, Give a Symbol a Permanent Value

LOCATION OPERATION OPERAND
Normal. EQU Normal. Any symbol used in
Must contain this field must be previously
a symbol. defined.

The EQU pseudo-operation allows a symbol to be defined without being used in a
location field, thereby permitting more than one symbol to refer to the same value. EQU
also allows a symbol to be given a value outside the range of locations in the prograrmn.

Once a symbel has been defined with EQU it may not be redefined.

SET, Give a Symbol a Temporary Value®

LOCATION OPERATION OPERAND
Normal, SET Normal. Any symbeol used in
Must contain this field must be previously
a symbol, defined.

The SET pseudo-operation is identical to the EQU pseudo-operation, except that the
symbol may be redefined any number of times with further SET pseudo-operations. An
example of the use of EQU and SET pseudo-operations is shown below. At the start, EQU
is used to set STRT = A, Sl = B, and S2 = C. SET is used to set TOP = A = STRT. Later,

TOP is reset to '4223.

ITER) 001121 STRT ENU *
0054 001122 Si EQU #+1
nuss 001123 Se EQU *42
0056 001121 TOP SET *
0057 *

START [INST T
00%8 011721 0 0000O0D A DAC LA (NSTRUCTIONS
0059 01122 0 07 01162 R LDA CNT
0060 01123 141206 G ADA
Noéd1 01124 0 04 N1162 STA CNT
006? 01175 =0 01 01121 JMP® TOP RETURN THROUGH
0068 % ' TOP (=4)
0067 004223 TOoP SFT 14223

*DAP-16 Mod 2 only.

EQU is particularly useful in making the address field of I/O instructions more read-

able. For example, if the ASR teletypewriter is to be programmed, the following memory

aid symbols might be chosen:

000g 000004 TIN ENU "4 SFT INPUT MODF

0010 onoio4 TOUT EQU *104 SFT OUTPUT MOCE

nuii 000004 TRDY EOU ‘4 SKIP IF RFADY

0012 000104 TNRS ENUY '1.04 SKIP IF NOT BUSY

0013 001004 TINA ENQU '1004 CLEAR A AND INPUT ASCII
0014 000004 TOTA ENU '4 OUTPUT ASCI1

DATA-DEFINING PSEUDO-OPERATIONS

W DAC, Address Constant

LOCATION OPERATION OPERAND

Normal DAC or DAC= Normal. Indexing may
be specified.

The low-order 14 bits of address generated from the address field of a DAC pseudo-
operation is combined with the indirect bit (if specified by an asterisk after DAC) and index
bit (if specified by , 1 after the address). Relocatable addresses are relocated during
loading. If extended desectorizing has been specified with EXD, the loader will form 15-
bit instead of 14-bit addresses (without regard to the index bit). Thus, the programmer
must be careful in using address constants with the index bit set. A 14-bit number with
indirect and index bits, or a 15-bit number with indirect bits, is generated by the loader
for any positive expression or negative relocatable expression. A 16-bit negative number
is generated for negative absolute expressions.

There is no provision for literal address constants. Thus, a DAC must be used and
given a symbolic value for each indirect reference. For example, to transfer the address

of location FIND to location PUT, the following statement must be written:

0110 03617 0 02 N3n4s LDA ADDR
N111 03620 0 04 N330N sTa puT

N115 03045 0 003307 ADDR DAC FIND

The following example shows address constants used in several ways. This sequence
works properly only for programs operating in the normal addres sing mode, because the
desired post indexing is specified in the address constants. The example moves 10 words

from a buffer specified by the calling sequence to a buifer in the example program.

3-8

oon3
pon4
0oos5
0oos
0on7
noos
0009

0013
0014
0015
no1é
0017
nois
0019
0020
noe2i
nge2
noz23
noza
0025
noz2é6
noz27
noes
00?9
ou3o
0031
no32
0033
0034
0035

addressing.

03355
03356

03357
03340

05375

05376
05377

05400

05401

05402
05403
054n4
05405

05406
054n7

05410
05411
05423

0 10 05375
1 003372

0 01 N3374

-0 0ouoo0n
0 35 05428
-0 02 N5375

-0 04 05410

0 12 oonoo
D 01 05377
0 02 05375
14p010n
141206

0 U4 05423
-0 01 N5423

1 c05423

angoon

& SAMPLE CALLING SEDUFNCE FOR TRANSFER SURROUTINE

B (NORMAL ANDPESSING)
J&T TANS
DAC BUF1e10,1
-
JMP CONT
RUF1 BSS 11
» TRANSFER SURROUTINE
TRNS DAC® &
L
L]
LDy =10
LOOP Lha* TRANS
-
STas aAC1
#
*
1RS 0
*
JMp LNOP
Lna TRNS
SSP
ANA
-
STa TEMP
JMPs TFMp
L]
AC1 DacC BUFZ2+10,1
BUF2 BSS 10
TEMP BSZ 1

CALL TRANSFER SUBROUTINF
INDEXFB POINTER

TN FIRST RUFFFR
CONTIMNUF AT CONT
FIRST BUFFER

TRANSFER SURROUTINE
ENTRY POINT, HAS
INDIRECT FLAG SFT.

TEN TRANSFERS WILL RE MADF

PICK UP WNRN USTNGR [N-
DIRFET AND INDEXED NAC

STORE IN RUFFFRs USTNBG
AMOTHFR [NDIRFCT,
IMDEXED DAC

UPDATE INDEX USFD FOR
BNTH RUFFFRS

CONTIMUE IF NOT DONE

PICK UP RETURN POINTER

REMDVE INDIRECT FLAG

INCREMENT TO POINT TO
RETURN POINT

STORE IT

RFTURN TO RFTURM POINT

IMDEXFD POINTFR
SECNND RUFFER
TEMPORARY POIMTFR LNCATION

The following example shows this same subroutine rewritten for operation in extended

Notice that indexing must now be specified in the instruction rather than the

address constant.

no4ao
0041
no42
0043
no44
no4s

0049
0050
0051
nose
0053
0054
noss
0056
0057
0058
0059
noso
0061
noéz2
0063
no64
0045
nose
0067
no68
noa9
0070
0071
ne7z2

03355
033%¢6
03357
03340

05375

05376
05377

05400

054n1

05402
05403
05404
05405

05406
05407

05410
05411
0%423

0 10 05375
0 003372
0 01 n3374

-0 000000

0 35 n5424
-1 02 05375

=1 04 05410

0 12 noooo
0 01 05377
0 02 NS375
140100
141206

0 04 05423
=0 01 05423

0 005423

onoooo

. SAMPLF CALLING SENUFNCE FNR TRANSFER SURRNUTIME
. (FXTENDFD ADDRESSING)
JST TANS CALL TRANSFER SURRQUTINF
DAC BUF1+10 POIMTFR TN FIRST RUFFER
JMP CANT CONTINUF AT CONT
RUF1 BSS 10 FIRST BUFFER
. TRANSFER SURROUTIMNE
TRNS DACs s# TRANSFER SURRDUTIME
bd ENTRY PNAINT. HaS
s INDIRECT FLAG SET,
LDX ==10 TFN TRANSFERS WILL RE MADF
LOOP LDAs TRNE,;1 PICK LIP WARD USTNG IN=-
DIRECT DAC HITH
. POST=INDEX
STA®* AC1,1 STORE IN RUFFER, USING
s ANQTHMFR INDIRFCT
. DAC WITH POST=[NDEX
[RS 0 UPDATE INDEX USED FOR
4 BOTH RUFFERS
JMP LOOP CONTINUE [F NOT DONE
LDA TRNS PICK UP RETURN POINTER
sSSP RFMOVFE INDIRECT FLAG
ANA INCREMENT TO POINT TO
* RETURN POINT
STA TEMP STORE IT
JMP# TEMP RETURN TO RETURN PQINT
-
AC1 DAC BUFZ2+10 POINTER
RUFZ BSS 10 SECNNI RUFFER
TEMP BS2Z 1 TEMPORARY POINTER LOCATION

3-9

Address constants may also be used to define ranges by subtraction. In this case,
the only restriction is that the result must be a positive number less than 16, 384 (or
32, 768 if the program is being loaded with extended addressing). In the following example,

the assembler calculates the length of the buffer and enters it as the first word.

nnsa noo100 LNET EQU t100

n0S7 01341 0 0on1on ayFfF pac LasT-2uFF 41
nos& N1342 pnonon RG&7 LNGgT=2
0059 01440 gaonon LAST BSZ 1

(The BSZ pseudo-operation is described in this section.) Notice that the length of the buffer

has been specified to the assembler by LNGT earlier (using EQU or SET).

v DEC, Decimal Constant;
DBP, Double Precision Constant

LOCATION OPERATION OPERAND

Normal DEC or DBP One or more subfields, each
containing a decimal data item.
As many subfields can be used
as can fit in columns 12-72, but
no more than 29 words can be
generated.

These pseudo-operations, DEC and DBP, cause DAP-16 to convert each subfield to
one, two, or three words of binary data with the desired value in either fixed-point or
floating -point format. As each subfield is encountered, the next successive memory
location is used. Subfields are separated by commas.

The addition and subtraction operations may be used in DEC and DBP address sub-

fields, for example:

0119 00633 gozonio DEC 1024+8

The DBP pseudo-operation is identical to the DEC pseudo-operation, except that in
all cases two words are generated and the first word is always in an even memory location.
This allows constants generated by DBP to be loaded and stored using DLD and DST of the
High-Speed Arithmetic Option. The loader maintains the double-word boundary alignment.

Figure 3-1 shows the general format of numerical values for DEC and DBP. Table
3-2 summarizes subfield conversions for DEC or DBP., Further details on writing sub-

fields for either DEC or DBP follow Table 3-2.

3-10

@ n...n [.n...n] [EEE) mm] [BBB (+) pp]
N— N — .

mantissa characteristic scale
or or factor
fraction exponent

Figure 3-1. General Format for Numerical Values

TABLE 3-2 SUBFIELD CONVERSIONS FOR DEC AND DBP PSEU DO-OPERATIONS

DEC DBP
Condition Pseudo-Op Pseudo-Op
\/ 1. No decimal point, B, or E (B15
assumed)
or Fixed, 1 word Fixed, 2 words
B (with or without decimal point,
E. or EE)
2. BB (with or without decimal point, Fixed, 2 words Fixed. 2 words
E, or EE)
3. Decimal peoint, no B or E
or Floating, 2 words Floating 2 words
E, no B (with or without decimal
point)
4, EE, no B (with or without decimal Floating, 3 words Floating, 2 wordsz
point)

IThe second word is always '000000.

2Nc> third word is generated when EE is used with DBP,

Use of Plus and Minus Signs., -- A plus or minus sign (unary operator) may be used before
any number in a DEC or DBP subfield (including the numbers which follow B or E). The

plus sign is always optional.

Use of B (Binary Point Position), -- The letter B followed by a number is used to specify
the location of the binary point in evaluating fixed-point data. The number following the B
is the number of positions the binary point is shifted from the standard assumed location
between bits 1 and 2. For example, 3B5 means assemble a word with the value of 3 if the
binary point is considered to be 5 bits to the right of the standard position (i.e., between
bits 6 and 7, see Figure 3-2).

The hardware binary point location between bits 1 and 2 is important only for multipli-
cation and division, The Assembler therefore assumes a binary point following bit 16 (B15)

when the B is not specified.

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16

W
F'“STORD|I||IL|I|1|||I1|]
IR
B-1 BO B1 B2 B3 B4 B5 B6 B7 B8 B9 B1I0B11B12B13 B14 B15
LTHE COMPUTER TREATS ALL NUMBERS
AS |F THE BINARY POINT WERE HERE
THE ASSEMBLER CONSIDERS ALL
UMNSPECIFIED BINARY POINTS TO
BE HERE
SECOND WORD |°||1||:11|||11||]
O T I O S A A
B15B16B17B18B19B20821822B23B24 B25B26 B27 B28 B29B30

Figure 3-2. Binary Point Position

Use of E (Decimal Point Position). -- The letter E followed by a number is used to specify
the position of the decimal point in either fixed-point or floating-point data. The E should
be read as "times ten to the...'. For example 3E5 means assemble a floating point word
with the value of 3 x 105 {300, 000). The number following the E is known as the exponent

or characteristic, and the value before the E is known as the fraction or mantissa.

Use of the Decimal Point. -- A decimal point may be specified in any floating-point number
and some fixed-point numbers. However, it may not be used in the number specifying the

exponent or the position of the binary point (that is, following E or B).

VFixed-Point Word Formats. -- Figure 3-3 shows the word format for single and double-
precision fixed-point words. The central processor always treats fixed-point words as if
the binary point were between bits 1 and 2. Negative numbers are in twos-complement
form. All bits of a double-precision word except bit 1 of the second word are twos comple-

mented., Bit 1 of the second word is always 0,
Specifying Fixed-Point Data. -- Fixed-point data is specified either by no modifier at all

(e.g., 349) or by a B or BB with or without an E or a decimal point (e. g., 349. 3B13).

B signifies single precision, and BB signifies double precision.

3-12

SINGLE - PRECISION FIXED - POINT FORMAT :
2 3 4 5 6 7 8 9 10 111213 14 15 16

|jIIIII|lI|IIlII

\— INTERNAL POSITION OF THE BINARY POINT

SIGN BIT
DOUBLE - PRECISION FIXED - POINT FORMAT :
1'23456?891[]1‘112131415!6
FIR
ST WORD Bl g ¥ pai g g e by
. S
e
\- 15 MOST SIGNIFICANT BITS
POSITION OF THE BINARY POINT
SIGN BIT
SECOND WORD Icllllllllllllllil
Y J
Yl
15 LEAST SIGNIFICANT BITS
ALWAYS ZERO

(Negative numbers are represented by two’s complement of absolute
value. Bit O of second word in double-precision is always 0 for both

positive and negative numbers.
Figure 3-3. Fixed-Point Word Formats

The effect of B and BB is to move the actual point to an assumed position. B or BB
is referred to as a scale factor since it allows the programmer to scale his number to a

value more easily handled. The relationship is:
-F

N1 = NOL'Z)

where Nl is the value ot the generated word, with the binary point between bits 1 and 2;

N0 is the original value of the number in the DEC, DBP, or literal address field; and P is

the value following B or BB. Any low-order bits beyond 15 (or 30) bits of significance are
truncated without rounding.

E may also be used in fixed-point numbers if B is present. The formula above is then

modified to:
P X

H, = NOEZ_)(1077)
where NO’ Nl' and P have their former significance and X is the value following E. The
DAP-16 Assembler flags an error for any value of Nl not between -1 and +1.
The following example delineates fixed-point conversions and serves to point out
errors. The last four conversions show that there is no rounding in the conversion. The

binary approximation to 1/10 (which often appears in conversions) is also shown.

00?23 00346 po0o017 DEC 15 DECIMAL 15 = nCTAL 17
0024 00347 177761 DFC =15 NEGATIVF NF FIRST EXAMPLE
noz2s o03so0 041170 DFC 150F=-1 ERROR==-RESULT IS FLNATING
on3s1 00000D
0026 POINT (NO B)
0027 00352 177610 DEC =15B+12 SFCOND EXAMPLF TIMES 8
0028 00353 000170 DFC 15812 NEGATIVF OF PREVINUS
0029 EXAMPLE
£ 0030 00354 074000 DEC 15B1 ERRNOR==T700 LARGE
0031 00355 000170 DEC 150F-1B+1? USE OF ROTH E AND B
0032 00356 001700 DEC +0.15F2R9 PREVIOUS EXAMPLF TIMES 8
0033 00357 000000 DFC 1.5E+1BR21 DNURLE PRFCISION USING DEC
00360 017000
0034 00362 00000D DBP 1,5FE1RBZ4 DOURLE PRECISION USING NBP
0n363 0N1700
0035 00364 000000 DBP 15000F-3BR24 saMF a5 prEvIous ExampLF
0n365 001700
C 0036 00366 074000 DBP 15BR+1 ERROR==T0O0 LARGE
0n367 000000
0037 00370 000001 DRP +15RB18 BIT 17 ALWAYS = 0
00371 070000
vC 0038 00372 000000 DEC '17R15 ERROR=-=CANNOT USE B
0039 OR F WITH APOSTROPHE
0040 00373 020000 DEC 0.125R-1 USE OF NEGATIVE R
0041 00374 0N1717 DFC 15+.0015E4B9 USE OF ADDITIONN

0042 THE FOLLOWING CONVERSTONS SHOMW
no43 TRUNCATION AND THF RINARY VALUE OF 1/10
0044 00375 000001 DEC 1,1R15
0045 00376 o0poo1 DEC 1.1BB15
on37?7v 006314
0046 00400 ooonoi DEC 1,99999R15
0047 00401 oooo01 DEC 1.99999RB15

on4ng 077777

Floating- Point Word Formats. --Figure 3-4 presents the format for single- and double-
precision floating-point words. Negative numbers are constructed by assembling a posi-
tive number and taking the twos complement of the entire two- or three-word number
including the exponent.

The exponent is a power-of-two expressed in excess-128 notation. This gives a range

i + i +
between 2 — and 2 ol (about 10 A te 10 38). The number zero is represented by using
a number of all zero digits.
Specifying Floating -Point Data. -- Floating-point data is specified by an E without a B, an

EE without a B, or a decimal point without a B. One E specifies single-precision (two
words); two Es specify double-precision (three words).

The DAP-16 Assembler automatically generates the floating -point number with the
largest possible (normalized) fraction (€1). An error is flagged if an exponent with an
absolute value greater than 127 is required. Zero is converted to two or three words of

all zeros, and excess bits are truncated.

SINGLE — PRECISION FLOATING — POINT FORMAT:

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16

FIRST WORD: ||II[Ii]l1||ll

——

N
EXPONENT MOST SIGNIFICANT
(EXCESS - 128 NOTATION) 7 BITS OF THE FRACTION

SIGN BIT POSITION OF THE BINARY POINT

SECOND WORD: |

LEAST SIGNIFICANT 16 BITS OF THE FRACTION

DOUBLE — PRECISION FLOATING —POINT FORMAT:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
FIRST WORD: I I A
e J e
EXPONENT MOST SIGNIFICANT
7 BITS OF THE FRACTION
(EXCESS - 128 NOTATION)
SIGN BIT | POSITION OF THE BINARY POINT
SELOND WERD:] - | L1 | Y | I | |] 1 1 J
T

NEXT MOST SIGNIFICANT 16 BITS OF THE FRACTION

THIRD WORD: [|||II|1II|1!1I|

. P
T

LEAST SIGNIFICANT 16 BITS OF THE FRACTION

VALUE OF NUMBER IS FRACTION X 2 RAISED TO EXPONENT.

NEGATIVE NUMBERS ARE REPRESENTED BY TWQO'S COMPLEMENT
OF ENTIRE POSITIVE NUMBER INCLUDING EXPONENT,

Figure 3-4. Floating-Point Word Formats

The following example illustrates floating-point decimal conversions and serves to

point out errors:

0003 # FLOATING POINT EXAMPLES

0004 » EXPONENT FRACTION

0005 # NO., 1 1/2 TIMES 2 TD THF O

0006 00223 040100 DFC 0.5 200 1
00224 poo000

0007 ® NO. 2 SLIGHTLY LESS THAN NO. 1

0008 00225 037777 DEC 0.49999999 177 Par i O LT
00226 177777

0009 # NO, 3 25 COMP| EMENT OF NO. 1

0010 00227 137700 DEC -0,5
00230 gooooo

0011 # NO, 4 NO, 1 TIMES 2 TN THF 11

0012 00231 042700 DEC 1,024€3 213 SO0 .50
pn232 pooooo

0013 # NO., 5 NO. 1 TIMFS 2 Tn THE =2

0014 00233 037500 DEC 125F=3 176 .400,.,
00234 000000

0015 ®* NO. 6 P] (IN DOUBLE PRECISTION)

0016 00235 040544 DFC 3,1415926535898FEN 202 .62207+
00236 103755
00237 050420

0017 * NO. 7 ERROR==FIXED POINT, NOT FLOATING POINT

0018 00240 040000 DEC 16E0BS (R TS PRESENT)

I/OCT, Octal Constant; 5
HEX, Hexadecimal Constant

LOCATION OPERATION OPERAND

Normal OCT or HEX One or more subfields, each
containing an octal or hexa-
decimal data item. As many
subfields can be used as can
fit in columns 12 -72, but no
more than 29 words can be
generated.

These pseudo-operations, OCT or HEX, cause DAP-16 to convert each subfield to
one word of binary data with the desired value. As each subfield is encountered the next
successive memory location is used. Subfields are separated by commas.

Octal numbers use the characters 0 through 7, plus, minus, and apostrophe. The
apostrophe is redundant but acceptable. Hexadecimal numbers use the character 0 through
9, A through F, plus, minus, and dollar sign. A through F represent decimal numbers
10 through 15 and are contiguous to 0 through 9. The dollar sign is redundant but accept-

able. Hexadecimal and octal data may not be mixed in these pseudo-operations.

*DAP-16 Mod 2 only
3-16

The binary point is fixed following bit 16 with both OCT and HEX. However, there is
no provision for moving the point with B or E as there is with DEC and DBP. The following

example illustrates binary conversions using OCT and HEX:

0018 01021 000015 0CT 15 DECIMAL 13
no19 01022 000015 ocT +15 SAME AS FIRST EXAMPLE
0020 01073 177763 orT =15 NEGATIVE NF FIRST EXAMPLE
CveC 0021 01074 000000 ocr 1587 ERROR-=-B AND F CANNOT
noze * BE USFD IN NCT AND HEX
0023 01025 177763 ocT 177763 SAMF AS THIRD EXAMPLE
C noz4 01026 gnoooo ocT 200000 ERROR=-=TON LARGE
0025 01027 gnonzs HFY 15 DFCIMAL 21
noz26 01030 177753 HF X =15 NEGATIVE NF PREVINUS
0027 * EXAMPLE
no28 01031 177777 HFE X FFFF -1
C n029 01032 073543 HFE X 177763 ERROR==TO0 LARGE

¥BCI, Binary (ASCII) Coded Information

LOCATION OPERATION OPERAND

Normal BCI A decimal number, N, followed
by a comma and 2N alpha-
numeric characters, N speci-
fies number of words te be
formed and cannot exceed 29.

The BCI pseudo-operation causes DAP-16 to convert each group of two characters to
a binary word in USASCII code. A symbol in the location field is assigned to the location
of the first word., The words generated are stored in successively higher storage locations
as the address field is scanned from the left, The first character of a pair is stored in the
most significant bits, Blanks are acceptable characters and do not terminate the address
field. The comments field follows the 2Nth character.

The following example shows a conversion of eight words to USASCIL. Note that the
last two and one-half words contain USASCII blanks ('240). The symbol FINI is assigned to

the first word.

0056 00027 151305 FINI BCI B,RELNADN TAPE
00030 146317
00031 140704
0no3e 170324
00033 140720
00034 142640
00035 120240
00036 120240

VFD, Variable Field (',',l:-nsta.nta

LOCATION OPERATION OPERAND

Normal VFD Up to 16 pairs of subfields,
Each subfield must contain

a symbol or expression
composed of symbols defined
in object program,

®DAP-16 Mod 2 only.

The VFD pseudo-operation allows a 16-bit word to be formed, with the programmer
having complete control over each bit. The first subfield of a pair specifies the number of
bits to be controlled by the next subfield (starting with the most significant end of the word),
The second subfield of a pair provides the value to be inserted. This value will be truncated
to the number of bits given in the first subfield with no error indication. Fach pair of sub-
fields defines one or more bits from the most-significant to the least-significant bits of
the word, Unspecified bits at the least-significant portion of the word are filled with zeros.
An error indication is given if more than 16 bits are specified. The following examples

show data conversions using VFD:

noo3 01277 177777 VFD 16,%177777 -1
00n4 013nQ 106617 VFD B8,;'215,8,+212 CARRIAGF RETURN,
noons » LINFE FEFD
pooe 01301 0064172 vFD 1,0,7,'215,1,n,7,1212
oon7z L SAME, WITH MSR = 0
oons L FOR EACH CHARACTER
0009 01302 040000 VFD 2.1 BIT 2 ONLY

c 0010 01303 006060 VFD 64+3:6:3,6,3 ERROR~-=-18 B1TS
o1l L3 SPECIFIFD
0012 01304 100063 VFD 1,1,15,'63 SAME AS DAC® '63

STORAGE ALLOCATION PSEUDO-OPERATIONS

BSS, Block Starting With Symbol;
BES, Block Ending With Symbol

LOCATION OPERATION OPERAND

Normal BSS or BES Normal, Only one subfield
allowed, Any symbol used
must be previously defined,

These two pseudo-operations, BSS and BES, effectively reserve a block of storage
without defining its contents by advancing the location counter, The value in the address
field specifies the size of the block in words. If there is a symbolic name in the location
field, BSS causes that symbolic name to be assigned to the first location in the block,
\@fhile BES causes it to be assigned to the first location following the block, In the following
two examples a block of storage is defined from 1000 to '1027 inclusive. The symbol BUF
is assigned the value '1000 by BSS and '1030 by BES.

0073 ORG t1000
0074 01000 RUF BSS 30
0075 01030 0 001000 DaC BUF
0071 ORG '1000
0072 01030 BUF BES 130
0073 01030 0 001030 DAC BUF

¥BS7, Block Storage of Zeros

LOCATION OPERATION OPERAND

Normal BSZ Normal, Only one subfield
allowed. Any symbol used must
have been previously defined.

The pseudo-operation BSZ reserves a storage block which is initialized to zeros when
the object program is loaded. The first zero location is shown on a DAP-16 Mod 2 Assembly

Listing. All zero locations are shown on a DAP-16 Assembly Listing,

COMN, Common Storage

LOCATION OPERATION OFPERAND

Normal COMN Normal. Only one subfield
allowed. Any symbeol used
must be previously defined.

The loader establishes a pool of common values in upper memory using the pseudo-
operation COMN, The top of this pool is initialized by the loader but may be moved using
SETC (DAP-16 Mod 2 only). The block resulting from each COMN encountered in a program
is placed lower in memory than the previous one. (See COMMON Storage below for
discussion of DAP-16 and FORTRAN COMMON,)

SETC, Set Common Base®

LOCATION OPERATION OPERAND

Ignored SETC Normal. Only one subfield
allowed. Any symbol used
must be previously defined,

The loader initializes the COMMON base (the highest location in common) to a loca-
tion near the top of memory (or the present memory bank in systems with over 16K
locations). The SETC pseudo-operation allows another location to be specified. All pro-
grams referencing this block of COMMON rnust use the same value in the address field
of SETC.

COMMON Storage

DAP-16 Convention. -- The absolute address assignments are made at the time of assem-
bly, The assembler maintains an internal COMMON base, which is initially set to 'XX600
(where XX is the last sector of memory). It may be reset at any time by the DAP-16 Mod 2
Assembler by the SETC pseudo-operation, When a symbol is defined by a COMN pseudo-
operation., the number of locations specified in the address field is subtracted from the
current COMMON base, The result is both the address assigned to the symbol and the new
COMMON base, Figure 3-5 presents an example of this procedure.

ApDAP-16 Mod 2

the top of sector 6 (location '6776).

DAP-16 Coding

- -

CCMN 2
CCMN 1
CcMNn 2

RESULTINC SYM3CcL
BASE ASSIGNED

- === e Em m m - =

'27600 (CRICINAL VALUE)

27576 C = '"27576
*27575 I = "27575
*275713 A = '27573

Storage Allocation Diagram:

127600

27577 C+l
127576 C
127575 I
27574 A+l
279573 A

Figure 3-5. COMMON Allocation in DAP-16

In the following examples, two programs reference the same COMMON location at

second as PASS:

3-20

0066
0067
0068 00567

0072 00634
0073 0n635

0079
0080
noR1 05501

00A5 05525
noBeé
0087

006776 LBUF
0 006776 LDAC

0 02 00344
-0 04 00567

onev7é PASS
0 n06776 PDAC

-0 02 05501

The first program refers to this location as LBUF, the

SETC 8777 SFT COMMON RASE

COMN 1 ONE VALUE NAMFD LRUF
DAC LRUF PNINTER TD LBUF

LDA H STORE 1t

STA* | DAC IN LBUF

SFTC YA777 SAMF COMMON BASF

Comn 1 NOW CALLED PASS

ch PASS POINTFR TN PASS

LDA® PDAC PICK UP VALUE IN PASS

(=1 IF PRFVIOUS PROGRAM WAS THE LAST
T ACCESS THIS |OCATINN)

FORTRAN Convention., -- The FORTRAN compiler passes a displacement rather than an
absolute address to the loader for each variable in COMMON, The loader determines the
address by subtracting the displacement from the COMMON base. This base may be al-
tered when the program is loaded. The displacements assigned by FORTRAN are such that
the first variable mentioned has the largest displacement (and is lowest in memory) and
the last variable mentioned has the smallest displacement (and is highest in memory). The
address assignment may be altered at run time by changing the loader's COMMON base
(relative location '2000 in LDR-APM). If the two COMMON statements below are the last
COMMON statements in a FORTRAN program, and if the loader COMMON base is set to
127600, these statements will reference the same locations shown in Figure 3-5, =

COMMON A, I

COMMON C

Note that variables in COMMON must be named in the opposite order in DAP-16 and
FORTRAN.

PROGRAM-LINKING PSEUDO-OPERATIONS

ENT, Entry Point;b
VSUBR, Entry Point

LOCATION OPERATION OPERAND
Ignored ENT or SUBR One or two subfields contain-
ing a name of one to six
characters,

ENT and SUBR are two names for the same pseudo-operation. This pseudo-operation
usually precedes executable instructions; however, itmaybe usedanywhere. These pseudo-
operations cause the assembler to output the symbolic name from the address field in the
object text. Its value at load time can then be saved bythe loader for use by other programs
(via EXT, XAC, or CALL), The loader starts loading a CALLed subroutine from the point
where the programmer placed the ENT or SUBR. Thus, it is possible to bypass the begin-
ning of a subroutine. If there are two names in the addressfieldthese names are considered
synonyms within the assembler. DAP-16 looks for the value of the second name in the
symbol table and assigns that value to the first name for use by other programs. Although
only four characters are used for names within a program, up to six characters may be
communicated between programs. The extra one or two characters are ignored when
searching the symbol table for a value,

The following is an example routine with three entry points, Other programs may
call the first entry using either SINE or SINF. The secondentrymay onlybe called COSINE.
The third entry may only be called ARCTAN. This entry point has been placed following the
SINE and COSINE entry points, because the ARCTAN routine uses none of the instructions

above its entry point.

%A and C are FORTRAN Real Variables occupying two words; I is an Integer Variable occu-
pying only one word.

I:‘ENT is supported only in DAP-16 Mod 2,

0077 SUBR SINF NAME FOR SINE ROUTINE

0078 ENT SINF,SINE ALTERMATE NAME FOR

0079 # SINFE ROUTINF

0080 ENT CNSINF NAME FOR COSINE ROUTINE
0081 00543 0 oovooo SINE DAC *a START OF SINE RNUTINE
0085 0N630 -0 01 00547 JMP# SINF EXIT FROM SINF ROUTINE
0086 DO631 0 0oongn COS] DAC »e START OF COSINE RNUTINE
0090 00662 =0 01 00K31 JMP® (CNST EXIT FROM CNSINF RODUTINE
N9l SUBR ARCTAN,ATAN NAMF FOR ARCTAN ROUTINE
0U92 00663 0 oo0non ATAN DAC LA START OF ARCTAN ROUTINE
0096 00705 =0 01 N0663 JMP® ATAN EXIT FROM ARCTAN ROUTINE

EXT, External Namea

LOCATION OPERATION OPERAND

Ignored EXT A name of one to six characters,

The EXT pseudo-operation signals the loader that the name in the address field is
not defined in this program. An error is flagged if executable instructions preceed EXT,
but this error may have no effect on the object text. If the name is referenced later in the
program the loader will make the proper linkage. Loading will not be complete until a
subroutine using the name in an ENT or SUBR pseudo-operation has been loaded. In the
example below, the loader is informed that a program defining SRTE as an accessible

location via ENT or SUBR must be linked to this one:

oooz EXT SRTF

0006 00070 0 02 00000 LDA SRTE

VXAC, External Address Constant

LOCATION OPERATION OPERAND

Normal XAC or XACH Any external subroutine name,
Indexing may be specified,

The XAC pseudo-operation is the same as the DAC pseudo-operation, except that the
loader fills the low-order 14 bits (15 if extended desectorizing has been specified) with
the address of an external name specified by another program,

EXT allows the programmer to treat an external name as if it were part of the current
program, XAC performs the same function but, in addition, allows the programmerto con-

trol the location of the indirect link.

“DAP-16 Mod 2 only.

3-22

VCALIL, Call Subroutine

LOCATION OPERATION OPERAND
Normal CALL Any external subroutine name,

The CALL pseudo-operation simultaneously specities a JST operation and EXT
pseudo-operation (which is effective, however, only for the processing of that one state-
ment),

The following examples link two programs., A JST is inserted in location ARC
linking (inairectly if necessary) to the entry point ARCTAN of another subroutine. In the
second example, the name ARCTAN is valid throughout the program, but in the remaining

examples it is valid only in the statement shown,

0091 01672 0 10 00000 ARC CALL ARCTAN

0002 EXT ARCTAN

0u06 01672 0 10 00000 ARC JST ARCTAN

00B3 01672 =0 10 01715 ARC JST+ ARCT

-
-

0087 01715 0 00000D ARCT XAC ARCTAN

CONDITIONAL ASSEMBLY PSEUDO-OPERATIONS®

IFP, Assemble Only if Plus;
IFM, Assemble Only if Minus;
IFZ, Assemble Only if Zero;
IFN, Assemble Only if Not Zero

LOCATION OPERATION OPERAND

Ignored IFP, IFM, IFZ, or IFN Normal. Only one subfield
allowed. Any symbol used
must be previously defined,

The address field is evaluated at assembly time. If the condition specified by the
operation field is not met, assembly is inhibited until an EILSE or ENDC is encountered.
Otherwise, assembly continues uninterrupted. In the following example assembly would

always be inhibited:
0092 IF2 1

Assembly would be inhibited in the following example if symbolic name NAM2 has a smaller

value than symbolic name NAMI,

0097 IFM NAMLI=NAMZ2

See Using Conditional Assembly on the following page for further details,

2 Conditional assembly is supported only in DAP-16 Mod 2,

ENDC, End of Conditional Assembly

LOCATION OPERATION OPERAND
Ignored ENDC Ignored

The ENDC pseudo-operation removes the effect of a preceeding IF statement with
which it is paired. When conditions are nested this fact may not restore inhibited assembly.
A Z-error is flagged if the END statement is reached before all IFs have been matched by
ENDCs.

EISE, Combined IF and ENDC

LOCATION OPERATION OPERAND
Ignored ELSE ' Ignored

The ELSE pseudo-operation is used as a switch between inhibited and uninhibited
assembly and has the following effects,
a, DBetween any IF and an ENDC when assembly is not inhibited, ELSE acts as
0111 ENDC
0112 IFN 0
That is, it matches the previous IF statement and generates a new statement
that inhibits assembly,
b, Between any IF and an ENDC when assembly is inhibited, EISE acts as

0096 ENDC
0097 IFZ 0

That is, it removes the inhibition unless this IF/ENDC pair is nested within
another statement that is causing the inhibition,

c. A Z-error is flagged if ELSE is used anywhere other than between an IF and an
ENDC.

FAIlL, Identifies Statement Which Should Never Be Assembiled

LOCATION OPERATION OPERAND
Ignored FAIL Ignored

The FAIL pseudo-operation causes an O-error and is used in conditional assemblies

to ensure that the conditions are logically consistent,

Using Conditional Assembly

Conditional assembly allows a comprehcnsive source program to be written covering
many conditions. Parameters are passed using SET or EQU pseudo-operations at the be-
ginning of the program to effect different assemblies for different objects. These state-
ments can control the variables used by Conditional Assembly statements and consequently

cause assembly of only those parts of the program necessary to this objective,

3-24

The following four examples show the same program assembled in four ways. Four

parameters, V1, V2, V3, and V4 control the assembly. Note that nothing is assembled if

V1=7V2., If V1 if greater than V2, only the FAIL pseudo-operation is assembled, otherwise

some combination of instructions is assembled.

In the routine below V1 =1, V2=3, V3 =1, and V4 = 0. First is a listing showing

both assembled and skipped lines listed (see Performing an Assembly).

0112
0113
0114
0115
Di1é
0117
0118
0119
0120
0121
p122
0123
ni24
0125
N126
0127
0128
0129
0130
0131
n132
0133
0134
0135
0136
0137
0138
0139
0140
N141
0142
0143

00337

00340
00341

00342

00343

000001
000003
000001
onpooo

0 10 00375

0 10 00457
0 04 00665

100400

0 01 00301

* EXAMPLE OF CONDITIOMAL ASSEMBLY

Vi EOU
v2a EQU
V3 EQU
v4 EQU
IFN
= %P
FAIL
—— ELSF
JST
s TE T
JST
STA
— ELSF
r— JST
[1FM
JST
ADD
STA
~ELSF
LDA
ADD
STA
—ENDC
ERA
SNZ
E=ELSF
SPL
“— ENDC
JMP
——ENDC
ENDC

1
3
1
0
Vi=v2
Vi-yv2

A3X
V1i=V3+V4
R3X

TEMP

C3X
v2-v4
D3X
TEMP
TEMP

=]
TEMP
TFMP

TTST

X1

The following example shows the same routine assembled without listing the skipped

statements.

0112
0113
nii4
n11s
0116
0121
0123
niz4
0139
0141

0n33z7
00340
003541
00342
0n3a3

onooul
noono3
ooovon1
onoooon
0 10 00375
0 10 00452
0 04 00665
100400
0 01 no301

V1

V3
V4

EXAMPLE OF CONDITIOMA|

£QU
EQU
EOU
EQU
JST
JST
STA
SPL
JMp

ASSEMBLY

The following example shows the same routine assembled using a different set of

parameters without listing the skipped statements.

nNi1r4
nizs
nN126
nlz27
N124
nizsy
N134
ni44
ni145
nidé
ni48
ni4e
nisa3

0n33z
pns4n
on3 1
0ons42
903543
0034
nns4s
un3as

agnonol
dg0onos
gnonon
noonot
0 10 nQ75
10 10467
02 00347
Ub NphabS
04 NP&BS
0% npessk
1i6in4ne
g 01 nNosaG1

co oo

=

V1
Ve
V.S
V4

EXA
FAU
EQU
EnU
ENU
JST
JST
LA
ANp
STA
EPA
§hZ
JMP

MELE OF COMDITIOMAL ASSEMBLY

1

5

i

1
ASX
Cax
TFEMPE
TEMP
TTST

X1

In the following example VI is greater than V2.

nini
ninz
01in3
nin4
nins
i0g

3-26

gnonoz
Joeonou3
gopoon
177770

Vi
V2
yva
V4

EXAMPLE OF rOMDITTIONAL
EQU 7

EdU 3
FQu 0
ERU -A
FaJL

ASSEMBLY

SPECIAL SYMBOLS

#%%, Op Code Zero;
PZE, Op Code Zero

LOCATION OPERATION OPERAND

0

Normal sl el Normal, Indexing may be
PZE, or PZE* specified,

These two pseudo-operations, *#& and PZE, are assembled and loaded as memory
reference instructions with an operation code of zero, Indirect addressing and indexing
may be specified. The sector bit is set or reset depending on the sector in which the
address is located. Since there is no memory reference instruction with an operation
code of zero, it is expected that the proper code will be inserted during program execution

and before attempting to execute this instruction.

ERROR CODE

The DAP-16 Assembler is able to detect various types of syntax errors commonly
made during the coding of programs, These errors are indicated by one-letter error
codes printed in the left margin of the assembly listing (see Figure 2-4 for an example).

Each error is treated differently; some result in zero in the erroneous field, others
result in a guess at the desired result. In the case of multiply defined symbols, the first
symbol definition is used. If the operation code is illegal for the object computer configura-
tion indicated, the line will be properly assembled but flagged with an O-error. At the
end of the assembly the following message is printed (DAP-16 Mod 2): 0000 WARNING
OR ERROR FLAGS (DAP-16 prints NO ERRORS IN ABOVE ASSEMBLY). The number of
errors is printed instead of 0000 if there are any (%% for DAP-16),

See Table 3-3 for a list of the error flags and their meaning,

TABLE 3-3, WARNING AND ERROR FLAGS

A Address field missing where normally required; error in address format

C Erroneous conversion of a constant; address field of data-defining pseudo-
operation in improper format

E Executable code generated before EXT pseudo-operation; external name modi-
fied by addition; external name used in address field of something other than
a memory reference instruction?

F Major formatting error
L Label (location field) missing where normally required; error in label symbol®
M Multiply defined symbol
O Operation field blank or not recognized; operation field not legal for object
configuration
Phase error (different definitions in first and second passes)?®
Relocation assignment error?
Address of variable field expression not in sector being processed or sector
zero (applicable only in LOAD mode)
T Improper use of index subfield; error in index subfield
u Undefined symbol
v Unclassified error in address field of multiple-subfield pseudo-operation
Z Conditional assembly error; ELSE used outside of conditional assembly;

END reached before all IFs matched by ENDCs?

®DAP-16 Mod 2 only.

EXAMPLE

Figure 3-6 shows a general flow chart of three programs that convert a binary num-
ber to an ASCII octal number and print it on the ASR; the assembled programs and their
cross-reference listings are shown in Figures 3-7, 3-8, and 3-9, These three programs
use a special format known as a Defined Character Address (DCA) for pointers to half-
words, Bits 2 through 16 of the DCA are a pointer (DAC) to the word, and bit 1 tells which
half of the word is to be accessed, with 0 meaning the left (high-order) half and 1 meaning
the right {low-order) half),

These three programs operate correctly when loaded into core and linked to another
program that supplies the number to convert. However, they were designed to show various
aspects of assembly language programming and therefore are not as efficient as they could
be.

MAIN PROGRAM IN

MAIN Loor
AVENUMEEH SHIFT IN 3 BITS OF (ENTER)
= 70 8E — BREGISTER
CONVERTED
CONV f:\;:n::”
WITH POINTER TO CHANGE TO
OUTPUT STORAGE ASCIl NUMEER
AREA i
i i SAVE POINTER
IN TO DCAIN
ouTP WITH POINTER THAD
T0'602 '{
} MOVE RETURN
UPDATE POINTER PAST
sToR WITH POINTER POINTER TO DCA
TO 602 b
i PICK UP DCA, SAVE RIGHT/
LEFT IN C BIT AND SAVE
CLEAR A REGISTER POINTER IN TMAD
HOT i PICK UP BYTE FROM TEMP
ENTER DONE AND MOVE TO PROPER HALF
UPDATE ZCNT OF A, RETURN IT TO TEMP
DONE
PUT POINTER TO DUTPUT PICK U7 OLD CONTENTS OF
STORAGE AREA IN X REGISTER WORD WHERE BYTE 15 T0 GO
MOVE RETURN POINTER
i PAST POINTER TO DUTPUT AREA

PUT 2 SPACES IN FIRST WORD

OF DUTPUT STORAGE
CLEAR PROPER HALF

i D) i

INCREMENT POINTER AND
STORE IT IN ABSOLUTE '602 PUT NEW BYTE INWORD

* AND REPLACEIT

PLACE NUMBER TO BE f
CONVERTED IN 8-REGISTER
* (RETURN }

INITIALIZE ZCNT
FOR 6 PASSES

!

CLEAR A- REGISTER AND
SHIFT IN BIT 1 OF B-REGISTER

Figure 3-6. Flow Chart for Example in Figures 3-7 thru 3-9 (Part 1 of 2)

3-30

NOT
DONE

ouTR

[

out

FLACE POINTER TD
COMMON LOCATION

SAVE PDINTER TO
DCAIN TMAD

LFCR

L

i

OUTPUT CARRIAGE
RETURN WHEN NOT BUSY

INITIALIZE X-REGISTER
FOR 4 TRANSFERS

MOVE RETURN POINTER
PAST POINTER TO DCA

!

=

!

OUTPUT LINE FEED
WHEN NOT BUSY

MOVEWORD FROM LOCATION
POINTED TO BY FTR TO WORD
OF BUF, INDEXED

PICK UP DCA, SAVE RIGHT/
LEFT IN G, SAVE POINTER

!

i

INCREMENT PTR AND
X-REGISTER

PICK UPWORD POINTED
TO BY TMAD

+ DONE

1

SET ASR FOR OUTPUT
MODDE AND WAIT FOR
NOT BUSY

SAVE PROPER HALF AND
PLACE IN RIGHT HALF
OF A-REGISTER

!

LFCR

!

FLACE POINTER TO
BUFFER IN PTR

t

INITIALIZE X-REGISTER
FOR 8 TRANSFERS

RETURN

UPDATE

|

o

NOT
DONE

ouT
'WITH POINTER
TOPTR

SAVE POINTER TO
DCA IN TMAD

!

!

OUTPUTIT
WHEN READY

MOVE RETURN POINTER
PAST POINTER TO DCA

1

!

Figure 3-6.

UPDATE
WITH POINTER
TO PTA

PICK UP DCA

!

UPDATE
X-REGISTER

ROTATE IT LEFT 1 BIT,
ADD 1, ROTATENT
RIGHT 1 BIT

!

DONE

LFCR

RETURN ITTD
ORIGINAL LOCATION

RETURN

‘ RETURN ,

Flow Chart for Example in Figures 3-7 thru 3-9 (Part 2 of 2)

(¢ Jo 1 31ed) @ousnbeg urepy ‘srdwexiy

¥3LOvawHD v 139 Ol INICd Abln4

L= =1-!

NCILVHO0T IVNISINC NI 1I 32vi43d
H3LOVHYHD M3IN NI Qg

1363y LIg€ 2 31 47VK LHEIY!

(135 118 2 41 47vH L1437

Q3I14IACk 38 Ol 47vH ¥v3T2
SS3YAQY HIL2VEYHD

40 SLIN3LNCD gTC dr »D1d

dW3Ll Cl ¥3L1DWivH2 NurL3y

1437 41 IFENVHOH3ILNI

1437/ HS1 ¥C4 lg3l

SLIB 8 LHOIY ATINC 3AYS

H¥31lDov¥HykD 4N »31d

H3ILOWHYHD 40 sS3:xQQY 3E0LS
43lsIn3ay v 4C 1 1llg yv3T2 dhy

1Ig 2 NI LI€ Lld437/1HS1Y 3AwS

¥24d dN »>1d

¥3IINICH 3AVS

H3LN1Od ¥2a@ LSvd LNICGd NENL3y 3AQwW

¥2d Cl ¥3LINICd dr %>1d

HILovHYHD 3AwS

¥ILDOVHYHD v 30¥1d Ol INICd Adjind

SANILNOY 33¥WL 3S3KL ¥C4
S3IWVN TyNy3ILX3 A4ILN3gl

NOWWOD NI NCILYIQ7 CL ¥3INjod
ENINNIDIE 3HL CL

AI¥8 SHWNM LI Q3ILyvls3axr NIYM

¥3IBWNN MIAN ¥CH dOJS
(A¥YSS3D3N 1ON dON)

JE3K Kulh LY

Q3LNI¥d ¥3gWNN 3HL1 FAYH
(A¥ySS323IN LON dON}

I43IH SNYNLIW WvaS0¥d NOISEIANGD
MO738 g3NI430 NOILVICH

NOWWCD 3Hl LY SNILlEwlS

QIALYIANCD HIEWNM IHL FAyH
(yldC) 109

NCILvYD0T 3LNTICSEY NI E38WNMN Lnd
H3ILSIS3Y v NI

Q3L¥3ANOD 39 Ol Y3EANN HLIM SHIUINT

0007+ Lv ONILHYLS WvyNOOucd 3LMICg@v
91€ ¥C 916 SI NOILVENSIANOD

##

ind
QvWl
dW3l

QYWL
dW3l

dW3al
QvWl

aviWl

avWl

1Nd

1nd

diW3l

4
dnN2>0¢31lyqdn
A31d41N0
1Nd*NI

o1°

NIVW

dLlno

207
ANOD

1091

0001

L-¢ 2andig
Jvag »21d 000000 0
*

#dwl 01010 10 0=
#Y1S 49010 %0 0=
Yu3 €9010 S0 0
¥yD 9h0TH1
J¥s 1000cT
Tv2 060141
bl 1c0lonT

»

A Tl %9010 20 0~
v1S £9010 %0 0
LB} O%ETHT
28S 100701
Iy 050141
vaA €9010 20 ©
V1S 99010 %0 0

#
vsD 0ZE0%1
¥¥a7 %9010 20 O-
LIRS #9010 »0 0
SHl 01010 21 €
LA Teln 01010 20 0=
vis €90T0 %0 0
Jya iNd 000000 0
N3
In3
In3
*

AWCD 207 995LED
*

dnf 00010 10 ©

17H ooo0oe
¥

doN oootol

12 00000 0T O
»

doN poolol
*

ol 99GLEQ O

Ty 00000 0l ©

¥

¥1S NIVW 10900 %0 O
*
#

S%0

sS40

¥

IONINCIS NIVW==3dWYXI IvNNYW ¥IT8p3sSy #

SE010 6400
8400
#€010 L%00
EE010 9%00
Ze0T10 S%00
1€010 %00
0E010 €%00
L2010 2%00
92010 1%o0
O0%00
S§z010 6€00
%2010 Bgo0
€2010 Lfoo
2Z010 9¢o00
12010 SE0n
02010 %£00
L1010 €€00
2€00
91010 Teqgo
S1010 DOf00
%1010 6200
€1010 82ao
21010 L200
11010 9200
01010 Sz00
%200
€200
2200
1zoo
Czoo
6100
Lo010 8100
90010 L1t00
9100
0010 S100
%0010 ?100
€100
€0010 2190
1100
20010 0100
10010 4000
8000
00010 Loo00
9000
Spoo
2000
€000
2000
Tooo

3-31

(¢ 30 7 13eg) sdousnbag utey ‘ordwexy ‘y-¢ aanfig

oL=p2=01 g *A3Y 2 dQoW 9T=dva
SO¥T4 HO¥¥3 ¥C ONINMYM 0000

Y%90100 aviil vES0T00 dW3l vololoo 1Nd
YSEOQTOO W3Id Y000100 NIVh ¥995LED 201 Yisoloo dnoa

cnN3 8.00

¥ Li00

S3INILNCY 3S3IHL HC4 T+diW3al ne3 Qywl %90100 9L00

SNCILYD0T A¥YyOdW3IL F4 258 dWil 000oco €9010 MHoo

L00

Nar L3y dNJ2a ¥dwr 16070 10 0= 29010 £L00

11 3¥01S avWl #v)s #9010 %0 0= 19010 2L00

NOILISOd TYNISING QL Y2VE 3lvioM 1 Ml LL 9040 09010 TlLoo
L1 IN3IW3NINI vay 902141 L5010 OLOO

T 118 NI * 6900

118 1437/1KSId Ind Ol 31lvigy 1 v LL 9140 96010 8900

v2Q dft »)1d avWwl #vgd #9010 20 0= G6G0T0 4900

HILNICH 3AYS vl Yis %9010 %0 0 %5010 9900

H3INIOd ¥2Q 1Svd INICd NENL3y Ia0W dnd2d SyI 15010 21 © €ESO0T0 S900
¥2Q Cl ¥3LNICd dr 2514 dnd>a *vaq 16010 20 0= 260710 %900

¥3Q ¥ 3lvddrh Ol INICd Auind #% Dv¥d dn2Q 000000 O 15010 mnoa

¥ 900

hNal L34 ¥2Id #dpr SEOTo 10 o= 05010 1900

4yH L4317 ¥v3no Ty 0S0T»T L4010 0900

1437 41 S3ATWH 3ISNYHIHIANL Vol 0vETHT 94010 5500

49vH 1437 ¥0 LHODIE ¥C4 153l Jss 100101 4010 8500
d3LOVEVHD ONINIVINOD Q¥CM dn »51d avWl *vYagq 9010 Z0 0= »%010 L4500
HALDVHVYHS 40 s53tAdv 3J¥0ls avWwl vis $9010 %0 0 €%010 9500
¥3LSID3y v 40 1 11@ ®v31Y any * S500
118 2 NI 118 L1437/1HSIE 3pvS vgd 02E0%T 2%010 *500

w243 df >>71d avWwl #vgn 49010 20 0= 15010 €500

¥3ILINICd 3AYS awWl V1S %9010 %0 0 049010 2500

¥3LNI0d v2Q L1Svd ANIOd NENLIy 3apwW ¥Id Syl GEOTO 21 0 LgOt10 1soo
v2d ClL ¥3INICd 4r »314 W14 #vgT GE0T0 20 0= 9€010 Ogo0

3-32

(¢ 3o ¢ 112d) souanbag utely ‘sjduwexy

299
6€
q%

fiLy

rie

red

Lg
JEE
D8e
28
218

269

29g
51
e
Lz
0%

L]

2L 120 60 43¥x=91C

Sax023xy
SHA4IN
SAnYWAS

317adr

dyhl
dw3l
1Nd
A31d
dine
1ng
NIV
207
N1
dnaaq
ANOD

‘L-¢ 2andrg

€9

3-33

(7 Jo 1 13B4) 2unnoy uoisiaauo)) ‘srduwexi ‘yg-¢ 2In81g

an3 $%00

35¥7d LFOIY 3H] % 00
NI Qv01 T1IM SWyy90dd ©NIQ33DDMg 3y €900
lyHl ©S 3O>N3INC3S NIwW 0L NHrL3y gnv 13% oxe 2400

nvzoz1 Sp900
ZLLLLT %0900

SIVHILIT 3ITEWISSY MON NId 092000 €0%00 1400

SNOILYDCT d49vy0ls LNS3w CL ®3LINIqd 1 2¢89 2097 0c00cO 20900 0400
3YIH HIEWNN SIrd Wyaoczd SNITyD T 258 1097 000000 10900 %¢00
SE3ILDVEYHS 40 LhnQ2 T 258 LnN2?7 0C0000 00900 Bg00

0 ¥01235 NI §7vH3LIT 1Y QONy sgvy Leoo
SNOILVI07 3kCS HSIEv1ls3 mow 0094 9x%0 13N Mmoo

£00

WyYHSO¥g SNITTYD OL1 hNar 13y ANQD ¥dWl 00000 10 0= LZ0O00 Y00

¥3LNICd ¥344N8 1Svd LKICd NENL3Iy oW ANDD Sl 60000 21 © 9z000 €£00
INCG TILINT doo! d007 dul §1000 10 © §zZ00n0 Zg00

H43ILNMCD deg 3HL 31vadn INJZ S¥] c0%00 21 0O %2000 Tgo00

141H4S 3¥043€ r3lglcsd ¥ ¥v3Iq2 L5 0%00%1 €2000 O€o00

2092 N 2092 Jva 209000 0 22000 6zoo

¥IINTCd ZHL 3Llvgdn ILlvadn lsr 00000 01 @ 12000 8200

209Z NI ¥3LNICH SnISnN 2092 Jvya 209000 © pzooc Lzoo

444408 3KL NI 3148 3KL Ind NI lsr 00000 01 © L1000 9200

L=0 1125y SNIAI® *cy3z IIJsSvY gav 09zs= QCv €0900 90 O 91000 Szoo

v CL slI@ € 3aQW € 7M1 <097 SL 0T%0 S1000 %200

L4IHS LIE=E ¥3AC <I¥S Qhy dys 000021 %1000 €200

‘v Cl ¥38WNN 4C 1I€ LSCW1437 3ACHK 1 11 LL 0140 E1000 2200
*HILSICAN v Cy3<Z vy2 050041 21000 Tzoo

NCISHRANCD 3IHL KSrO¥HL S3sSvd 9 LNDZ vis 00900 %0 C 11000 0Zoa
¥C4 LN2Z FZI7vllinl g== va1 %0900 20 0 01000 &t00

¥3lgi93: 8 NI Lnd Ayl 102000 Looo0 Btoo

(»VECOH4 YNTITIVY AR J43K LNd Sw¥ FIIHM) * L100
Q2LY¥IANCD 3E€ 0L ¥3gwnN 3IFL dr >31d 1097 vg 10500 20 O 90000 9100
Z097 1 ¥344re cl ¥3ILNICa 3AYS 7097 X158 20900 ST © S0000 S100
Jdc¥ 1X3N AWl CLl INIpd 0 Sl coo00o 2T ¢ 70000 %100

Y4449 LNdLr0 3Rl 4C QuCM 1S¥lg * €100
4H1 NI §32vdS 2 3kl 3EQ)S 10 v1S 00000 %0 1 €0000 2100

NALSID3Ix ¥ CLNI §33vdS 2 Cwo'l 09202142 v21 g090b 20 0 20000 T1o00
¥3I15153E X NI ¥ C1o0

¥444N€ ANgllC CL ¥3INICH Lng ANOD ¥XQ1 000Co s€ 0= 10000 6000

INICH A&pn4 w4 2¢C ANOD 000000 C 00000 2000

Wy¥S0Nd 378v1lv¥ICT3d aEE Looo

SIANILNOY TyNy3L1X3 C3INI¥343x duy 31lvddn ix3 9000
31yCdlr anNw NI NI 1x3 S000

919 ¥C 91¢€ SI NOILVENSIANOD 5§42 7000

ANCD ST 3w ANCD k8PS £000

2000

ANILACYH NCISHIANODDI==31dk¥XI vNNYW H3T8,3SSY * Tooo

3-34

¥0C900C
otEococC

{z 30 7 11Bdg) sumnoy uoisisauon ‘ardwexy ‘g-¢ 2andig

INDZ
13¥

3-35

QL 120 50 43¥¥X=91C

SA¥023y G4
SH3I4AN 61
S7c8wAs 11
61 Q==
g2 n9zes=
11 0%20210=
J1¢ o02 IND7 8¢
62 L2 o461 2097 0O+
91 1092 &g
rez 9 Jivadn
2% 134 9¢
rze 4001 ¥z
roz g NI
Foe J€€ 6 3 AnOS B

0d=g2=-01 g8 *A3y 2 doW 91<dvag
SOV14 ¥OM¥3 ~C onInyyM Co00

Y209000 2092 ¢ 109000 10927 3000000 3LYadn
S10000 d007 3000000 W1 gonoacC ANCD

(z 70 1 11g) sulInOy ding ‘erduaexi

3ININC3S NIvw OL WHrL3d
AvI3Uu
11 1ndlnu
¥ 0L 0334 3INT I
AvI30U
11 INdinv
¥ CL N¥rl3r FEvltyy2
LNdiNc nNENL3Y 29vlzdvd
/0334 3INIT ¥Cd A¥LINI WRBILNL

AYESO¥d SNITIVYD QL Nari3d
¢334 3INIT ANV NEMLIY
A0y IHEYD v LNdLNO *3NCC NIWM
ANNILNGD
¥3LINNED d4C0T 3lvadn
41A8 LX3N €L LNICe C1L
tld 3Lvadn
C31d3D2v L1rdirc TILNM AVI3U
L1 1Nneinu
eld Ag 0L d3LMNICd
31A8 KL 139
Sydlovavk> B ¥od 3ZI1vILIN
140 4C 3LA9 LlsCwl437 Cl slnICd »ON)
¥2C A¥vaCdh3l- NI
H344re 01 ®3INICd IDyd
g334 3INIT ONY NHrLlEy
AoVINEYD v LMdLINC==ASsra loN
ASrE 41 NIvSw lg3l
ASNE ¥Sy ¥C4 1lg3l
3dow 1MdLNc ®Cd %Sy 138
Q3Aan N3ZQ
LaN3AVH ¥rc4 v 41 guCm u3klChy 2AQM
A3ACH N23a 3IAVH SGECM 1y 41 dI»s
amMY ¥4LNIOd NCIAYNILS3d 3lvadn
H3LINICd 3D¥r0s 3lvad!
4re NI 3EQLS
NCAWCD hC¥d4 CQxCy¥ >21d
ca¥C¥ % IACW CL ZZ217vIlIni
NOLLW2ICT A¥vEQda3l NI 3SvSSih 40
NOTLY20T NCWWCD CL ¥IUINICAH 3A2yId
INICd AELNS
WyEB0Nd F73vivoCc3ad
SANILNOY IWAE3LX3 QISNIE3I43y
I¥y Flvgen OGNy Lnu
9v€ ¥C 915 SI NCOILVEMSIdNQD
LI¥¥ g1 3nwN TWANSLIN]
tdirc SI AWyh TynHILIXd

ANILNCYH LMdLno==37dkvX3

¥347
T=#

4
Z12a=
I=%

L
S12e=

#* ¥
L1dM

¥od7
LNHd

0

H¥ld
J1lvddn
T=%

H

Hid
1No

g==

dld
2vad

¥247
T=»
&v
0T

AOw

o

dld
1*%+4Nn8
¥ld

h==

Hld
207

5%

dlvadn
1no

LIyM*dLNQ

6-¢ oanB1g

*disf
dal
Y10
idel
dil®
viC
van

ol ls
*dwr

isr
dinl"
Syl
Iva
isr
anr
V10
2y1
lsr
¢

Vis
va

lsr
dinfl
SyS
dlp

dif

S¥l
S¥l
V1S
¥y
Xxen
vis
val
2yQ
134
1x3
1x3
542

rEMg

¥347
»*

1n¥d

AOW

LIyM

¥

#

WANYW ¥3T8KL3SSY *

2€EC00 10 0=
LECOO 10 O
4000 4+l
15000 20 ©
®ECQO0 10 O
roco wL
25¢C0 20 0
000C09 0
00000 10 0=
2EQOQ0 0T 0
02000 10 O
00000 21 0O
S%0000 C
00000 OT @
22000 10 O
2000 %4
9%0000 O
J0000 0T O
£6000 GE O
94000 »0 0C
L%000 20 O
ZECO0 01 0
21000 10 0
2000 %E
7010 %1
%0000 10 O
00000 21 0
9%C00 21 ©
9%co0 %0 1
99000 20 C=
95000 SE O
9%CCO %0 C
06200 20 Q
000000 ©

14000
065000
LEOnO
9€000
Se0nc
#€000
E€ong

2e000
T€0p0

0€000
Lzoao
92000
S2000
%2000
€£2000
22000
12000
02000
L1000

91000
S1000

#1000
€1000
21000
11040

01000

Logoco
S0000
SN0n0
20000
£0000
20000
10000
00000

6400
8400
Lygp
9900
S%00
74520
€900
2400
T%00
0400
€00
2€00
LED0
9€00
SE00
"€00
€€00
ZE00
Tean
0go00
ézg0
8200
Lz00
9200
§200
%200
€200
2200
1zo0
0zoo
6120
8100
L100
9100
S100
7100
€100
2130
1100
C100
&noo
€020
Lpooa
9000
S000
7000
€000
2000
lo0o

3-36

(z 30 7 118d) 2urnoy nding ‘erdwrxy ‘4-¢ aan..qg

bt 0g 292

nooono
9%0C00 Hld NEooo0on
2€000C 247 Y99SLED

aNPCd LSyId sI 39vss3n Judkm
NOILlyD07 NCWWCD Cl x3iN1Qd
¥4344NE ArviCdl3dl Cl ¥3INIOQd
¥3INIOd A¥vEOdW3l
t344Mr€ SIHL WO®d INhNIya

3-37

0L 120 60 43¥x=910

SgN093y 9¢
SHER E NI ¥
SI083nAs 91

82 g==
21 Y=z
E% Gglzu=
9% 2lza=
ree € liyw 6
01 20w %g
Mee L 31vadn
261 €1 J11 dld <2g
r9e Indd 62
€ 4100
rez 9 1nc
ret nOw €1
rey rLe rez 43471 1+
E1] 3 Sg
€S %1 4ng 1g
%4 2vd £g

0l=p2=01 8 "A3d 2 doA 91=dva
SOV¥14 ¥CH¥3I »C OnINHYM 0000

LIyM 0&a0000 GV 3000000 3I1Yadn
LN¥d 300C000 ine %00000 ACW
3 Z2#0000 4nE L%0000 Jyadg

BLLLLT #5000

oLLLLT €5000

12000 25000
an3 212000 15000 9500
0T NwCD) 99GLEQ S600
e, Jwyd 207M 996LEQ O 05000 #5500
4ng Jya Jyqde 2¥0000 0 Ly000 £S00
1 2g8 yld 000000 94000 2500
] Ss@ 4ng Z%00C 1500
* Ogoo

SECTION IV
USE OF FORTRAN PROGRAMS

FORTRAN and DAP-16 programs may be freely intermixed in a memory load and can
communicate with each other through either COMMON, the argument transfer program
F$AT, or argument transfer routines generated by the programmer, Entry points in a
DAP-16 subroutine are declared using the ENT and SUBR pseudo-operationand in FORTRAN
by the SUBROUTINE statement, The linkages are established by the DAP pseudo-operations
EXT, XAC, and CALL, and by the FORTRAN statement CALL. Control is returned to the
calling program by an assembly TMP#% or a FORTRAN statement RETURN.

COMMON

Subroutines may transfer variables through COMMON without explicitly naming the
variables in a subroutine call, Because FORTRAN COMMON and DAP-16 COMMON are
handled differently, the user must deliberately locate the appropriate COMMON at the same
place in core. COMMON may be relocated in the following ways.

a, During execution of TABLESIZ (that is, at the first execution of a DAP-16 Mod 2
Assembler System), This option is not possible with the conventional DAP-16
or FORTRAN.

b. During a DAP-16 Mod 2 assembly, using SETC.

c. During any assembly or FORTRAN compilation, by establishing blocks of dummy
variables to move the effective COMMON location,

d. When loading, FORTRAN COMMON may be displaced by the operator.

The location of COMMON is further complicated by the Disc and Drum Operating Systems
(DOPs). When using this method of communication the exact location of both FORTRAN and
DAP-16 COMMON must be known for the local installation,

ARGUMENT TRANSFER SUBROUTINE F$AT

The compiler inserts a call to this subroutine at the beginning of FORTRAN-coded
subroutines. F$AT transfers pointers (DACs) to the variables being communicated between
the calling program and the subroutine. No call to F$AT is made for subroutines that

need no arguments,

Calling a Subroutine

The sequence on the following page is used to call a subroutine that transfers argu-
ments via F$AT. The variables are listed in the same order as in a FORTRAN CALL

statement. If there is only one argument, the terminal zero must be omitted:

(L} CALL subroutine name
(L+1) DAC <first variables
(L+2) DAC <second variables

(L+n) DAC <nth variable>
(L+n+1) oCcT 0 Zero must be omitted for n = 1
(Lin+2) Return point
The DACs to the variables can be indirect pointers; F$AT tracks down the indirect
links and transfers a direct pointer. Note that variables themselves are never transferred.
The reason for this is that the length of the variable is not known (it could be any length,

since arrays are acceptable variables).

Calling F$AT

By convention, the first action of a subroutine is to call F$AT. Therefore the location
preceeding the call points to the first argument to be transferred. F$AT transfers the
arguments associated with the words following the call to F$AT. Then, F$AT increments

the pointer to the calling program so that it now peints to the conventional return point

(following the zero). For example:
(L) <name> DAC = Subroutine entry point
(L+1) CALL F$AT Must immediately foll ow entry
(L+2) DEC <number of arguments, n>
(L+3) <name> DAC = First argument address goes here
(L+n+2) <name> DAC ok nth argument address goes here
(L+n+3) Return point for F$AT

The subroutine call may include extraneous arguments following those used by the
called subroutine. Although only the number of arguments specified in L+2 of the call to
F$AT are transferred, the return pointer is incremented until it points to the word following

the zero in the subroutine call.

DAP-16 MAIN PROGRAM WITH FORTRAN SUBROUTINE

The DAP-16 main program and FORTRAN subroutine combination may be advantageous
when assembly language programs must perform arithmetic or logical calculations, input/
output operations, or when FORTRAN procedures may be used to advantage. The DAP-16
main program must generate the call itself. Figures 4-1 through 4-5 present an example
of this procedure. The DAP-16 AVGCOL program in Figure 4-1 calls another DAP-16
program MESURE (not shown) which accumulates single-precision floating -point data (for
example from a peripheral measuring device). These numbers are accumulated in a buffer
with the external name MINP., The number of points collected in a given run is stored in a
location with the exterral name MNUM. Each time MESURE returns to AVGCOL, AVGCOL
calls a FORTRAN subroutine STDDEV which calculates the average and standard deviation.
STDDEYV then prints the run number, the values, the average, and the standard deviation and
passes these calculated values back to AVGCOL. In this example, AVGCOL does not use

the calculated values.

4-2

SUBR

AVGC LDA

RUN
NUM
INP
STD
AVG

Figure 4-1. Portion of DAP-16 Program Calling FORTRAN Subroutine STDDEV

S5TA
caLL
caLL

DAC
DAC*
DAC*
DAC
DAC
ccr
IRS
JMp
B85Z
XAC
XAC
DEC
DEC

AVGCOLsAVGC
=1

RUN

MESURE
STDDEV

RUN
NUM
INP
STD
AVG

0

RUN
AVGC+2

1
MNUM
MINP
0.0
0.0

EXTERNAL NAME
INITIALIZE RUN
NUMBER
SUBROUTINE TC ACCUMULATE VALUES
FORTRAN PRCGRAM TO CALCULATE
MEAN AND STANDARD DEVIATION
FIRST ARGUMENT (NRUN IN FORTRAN)
SECOND ARGUMENT (NPT IN FORTRAN)
THIRD ARCUMENT (PT IN FCRTRAN)
FOURTH ARGUMENT (DEV IN FORTRAN)
FIFTH ARGUMENT (AMEAN IN FORTRAN)

INCREMENT RUN NUMBER
CCLLECT NEXT BATCH OF DATA

RUN NUMBER

PCINTER TO NUMBER OF POINTS
POINTER TO DATA BUFFER

REAL STANDARD DEWVIATION
REAL AVERAGE

Figure 4-2 presents the FORTRAN subroutine STDDEV. An expanded listing is given

in Appendix A. Figure 4-3 presents a load map for AVGCOL, MESURE, and STDDEV.

Figure 4-4 is a typical output from STDDEV.

1000

SUBRCUTINE STDDEV
DIMENSICN PTC(1002>

SX
SX2
pec
5X2
100 SX
ANP
DEV

WRITE (1-1000) NRUN.»
FORMAT (////12H RUN NUMBER , 1S// (E1l«454E14.4))
WRITE (1,2000) AMEAN,

=0
=0
100 I = 1,NPT

(NRUNs NPT, PT» DEVs AMEAN)

= SX2 + (PTCI))*C(PTCI))

= SKiu+ PTCID
T = NPT

= SORT(SX2/ANPT-(SX/ANPT)*(SX/ANPT))
AMEAN = SX/ANPT

(PTCJYs J = 1:NPT)

DEV

2000 FCRMAT (19H ARITHMETIC MEAN = sE14.5s
1/22H STANDARD DEVIATICN = >El1.5)
RETURN

%0

END

Figure 4-2. FORTRAN Subroutine STDDEV

4-4

*LOW
*START
*HIGH
*NAMES
* COMN
*BASE
AVGCCL
MESURE

MANUM
MINP

STODEV

SARTX
SQRT

Csi12
S622
A%522

M522X

Ms22

DE22X

D&22
SNGL

Figure 4-3.

RUN NUMBER

0.76B0E-01
0.7350E-01
0+7610E-01
0.7320E-01
0.7510E-01

ARITHMETIC MEAN =

010900
01000
06326
71501
37177
00300
01000
01024
01564
01565
02010
02306
02306
02422
02454
02462
02704
02704
03065
03065
03306

7
0+7520E-01 0.7270E=-01
0.7510E=01 0.7320E-01
0.6970E-01 0.7410E-01
0.7310E-01 0.7310E-01
0+7640E-01 0-7120E-01
0«73435E-01

STANDARD DEVIATICN = 0.19745E-02

Figure 4-4.

REAL
L 522
H%22
NE22
F3AT
ARGS
F3Wl
G sAP
C®AC
CSAF
FSIC
F SAR
F sCB
F 3ER
F&HT
AC1

AC2

AC3

AC4

ACS

0.7100E-01
0.7010E-01
0.T7460E=-01
0«7110E-01

QOutput From STDDEV

03306
03306
03316
03334
03346
03430
03450
03544
03616
03622
03632
04155
04333
06252
06262
06320
16321
06322
06323
06324
37777

Loader Map for AVGCOL, MEASURE, and STDDEV

0.7570E-01
0.7270E-01
0.7380E-01
0+.7150E-01

FORTRAN MAIN PROGRAM WITH DAP-16 SUBROQUTINE

The FORTRAN main program and DAP-16 subroutine combination is required when
tasks which cannot be performed in FORTRAN must be done. In this case the DAP-16
program must handle the call to F$AT, or transfer the required arguments directly.

Figures 4-5 and 4-6 provide a sample of this combination. The FORTRAN main
program requires input from paper tape in a special format as shown in Figure 4-7. The
FORTRAN main program passes the start of message character (which may vary from
application to application) to the DAP-16 subroutine. The subroutine then reads the tape.
The first two words are integer values passed back through the caliing parameters. The
next two words are a real value also passed back through the calling parameters. The next
four words are a complex value passed to the main program through COMMON. The
COMMON base must be set to the same value by one of the methods mentioned above.
Notice that X3 is part of COMMON in the FORTRAN program, but not invelved in calling
READT.

Figure 4-8 shows another version of READT that does not use F$AT but instead

transfers the arguments directly.

CCOMMON IC10510)5J15J25X%X13%X25X3
CCMPLEX X2,X3

ISTART = 129
Cc 129 1S GCTAL 201 (START CF MESSAGE)
CALL READT (ISTART. Jls J2, X1)

Figure 4-5. FORTRAN Calling Sequence for DAP-16 Subroutine READT

SU8R
REL
TAPE DAC
cAaLL
DEC
CHAR DAC
P1 nAac
P2 DAaC
P3 DAC
LDA
STA
CCcP
LDA*
5TA
INA
JMP
ERA
SZE
JmP
JST
STA*
JST
STA*
JST
STax*
IRS
JST
STA*

LDX
LGCP JST
STax*
IRRS
IRS
JMP
cCcP
JIMP ¥
*
FORM DAC
I i‘q 'q
JwpP
ICR
INA
JMpP
JMP %
CN COMN
CMPT DAC
CMN1 BSZ
SCM CCT
END

READT, TAPE

* %
FsAT
4

ok
*ox

* %

* K
CMPT
CMN1
*0001
CHAR
SCHM
1001
*=1
SGM

*=4
FORM
P1
FCRM
P2
FORM
P3
P3
FCRM
P3

ENTRY POINT (USED AS POINTER BY F$ATD)
CALL ARGUMENT TRANSFER SUBROUTINE
FOUR ARGUMENTS TC BE TRANSFERRED
POINTER TC CHAR GOES HERE

POINTER TC P1 GCES HERE

POINTER TC P2 CGCES HERE

PCINTER TC P3 GGES HERE

PICK UP COMMON PCINTER

STORE IN TEMPCRARY LCCATICN

TURN CN PAPER TAPE READER

PICK UP START COF MESSAGE CHARACTER
SAVE IT

CLEAR A AND INPUT CHARACTER

JELAY UNTIL READY

IS IT START-CF-MESSAGE CHARACTER?
IGNCRE IF IT IS NCT

NCPE» TRY ANOTHER ONE

FOIM A WCRD FROM THE NEXT TWC CHARACTERS
THIS 1S P13 RETURN IT TC CALLING PROGRAM
FORM ANOTHER WCRUD

THIS 1S P23 RETURN IT

FGRM ANCTHER WCRD

THIS IS THE FIRST WORD OF P3

PCINT TC THE SECCND WORD

FCRM THE SECCNOD WGR0 GF P3

STORE IT

NGW GET THE FCUR WGRDS OF THE COMPLEX VARIA3LE

=-4
FORM
CMN1
CHUN1
0
LCOP
'0101
TAPE

* %

'1001
*=1

‘0001
*=]
FORM
8

CN

1

o]

Figure 4-6.

FCGUR WCRDS TO BE FORMED
FOR’RM A WORD
STORE IN CCYMON LOCATION
PCINT TO NEXT COMMON LOCATION
UPDATE INDEX
LOCP UNTIL 4 WCRDS TAKEN CARE OF
NOW TURN OFF THE TAPE READER
AND RETURN TO CALLING PROGRAM

ENTRY PCINT

CLEAR A AND INPUT CHARACTER
DELAY UNTIL READY

INTERCHANGE AND CLEAR RIGHT HALF
INPUT CHARACTER

INPUT SECCND CHARACTER

RETURN #'ITH WCRD IN A REGISTER

PCINTER TCQ FIRST WORD OF COMPLEX BLOCK

TEMPCRARY LCOCATION FCR PCINTER
STORAGE FOR START OF MESSAGE CHARACTER

DAP-16 Subroutine READT

TAPE

Figure 4-7.
SU3R READTs TAPE
REL
Dac * %
LDA%x TAPE
JST IND
STA CHAR
IRS TAPE
LDA% TAPE
JST IND
S5Ta P1
IRS TAPE
Lida* TAPE
JST IND
STA P2
I®S TAPE
LDA* TAPE
JST IND
5TA P3
IRS TAPE
LDA* TAPE
SZE
JMP *=7
I[RS TAPE
LDA CMPT
STA CMN1
CcCcP 'Q001
LDA* CHAR
5TA 50M
INA 1001
Figure 4-8,

FRAME

=T - - B - L e

e T T T T Y —
N @ M B oW R = O

Som

INTEGER

INTEGER

REAL

COMPLEX

Paper Tape Input Format (for Figures 3-4 and 3-5)

ENTRY PCINT C(USED AS PCINTER BY FSAT)
PICK UP FIXST ARCUMENT (CHAR)

RUN OCwWN INDIRECT LINKS

PCINTER IC SCM CHARACTER

PCINT TC NEXT ARGUMENT (P12

PICK IT upP

FUN NDCWN INDIRECT LINKS

STCORE 1T

PCINT TO NEXT ARGUMENT (P2)

RPICK IT uP

RUN DCWN INDIRECT LINKS

STCRE IT

PCINT TC NEXT ARGUMENT (P3)

pPICA IT upP

RUN DCWN INDIRECT LINKS

STCRE IT

PCINT TO NEXT ARGUMENT OR ZERC
PICK IT UP

DCNE IF IT IS ZERO

KEEP INCREMENTING UNTIL ZERQO REACHED
PCINT TO RETURN PCINT

PICK UP CCMMCN POINTER

STCRE IN TEMPCRARY LCCATICN

FURN CN PAPER TAPE READER

PICK UP START COF MESSAGE CHARACTER
SAVE IT

CLEA? A AN INPUT CHARACTER

DAP-16 Subroutine READT, Transferring Arguments

Without Calling F$AT

4-7

JMP Ll | DELAY UNTIL =READY

ERA S0M IS IT START-CF-MESSAGE CHARACTER?
SZE IGNORE IF IT IS NCT
JMP *= NOPE» TRY ANCTHER ONE
JST FO3IM FCRM A WORD FROM THE NEXT TWC CHARACTERS
STA* P THIS IS P13 RETURN IT TC CALLING PROGRAM
JST FORM FCRM ANCTHER WCRD
STA* P2 THIS IS P23 RETURN IT
JST FCRM FCRM ANCTHER WCRD
STax P73 THIS IS THE FIRST WGRD OF P3
IRS P3 PCGINT TC THE SECCND WCRD
JST FCRM FORM THE SECOND WORD CF P3
S5Tax P3 STORE IT
* NCW GET THE FCURX WCRDS CF THE CCOMPLEX VARIABLE
LDX =-4 FCUR WCRDS TOC BE FGRMED
LCCP JST FORM FCRM A WGRD
5TA* CMNI1 STCRE IN COMMCN LGCATIGN
IRS CvN1 PCINT TG NEXT CCMMCN LOCATICN
IRS 0 UPDATE INDEX
JMP LGCP LCCP UNTIL 4 WCRDS TAKEN CARE OF
ccpP '0101 NCW TURN CFF THE TAPE READER
JMP* TAPE AND RETURN TO CALLING PROGRAM
*
FORM DAC * % ENTRY PCOINT
INA '1001 CLEAR A AND INPUT CHARACTER
JMP %=1 DELAY UNTIL READY
ICR INTERCHANCE AND CLEAR RIGHT HALF
INA '0001 INPUT CHARACTER
JMP *=] INPUT SECCND CHARACTER
JMPx FCRM RETURN WITH WCRD IN A REGISTER
*
IND PDAC * ENTRY PCINT FCR REMGVING ALL
* INDIRECT LINKS
ST1 INDIRECT PCINTER?
JMPx IND NO==-RETURN
SSP YES--REMCVE INDIRECT FLAG AND TRY AGAIN
5TA TEMP SAVE IT
LDa%* TEMP PICK UP WHAT IT PCINTS TIC
JMpP IND+*1 AND CHECK "IT FCOR INODIRECT
*
CN cCcYN §
CMPT DAC CN POINTER TC FIRST WCR2 CF CCMPLEX BLCCK
CMN1 3SZ 1 TEMPCRARY LOCATION FOR PCINTER
5CM CCT 0 STCRAGCE FOR START CF MESSAGE CHARACTER
TEMP BSZ 1 STORAGE USED FCOR RUNNING DOWN INDIRECTS
CHAR DAC * ok PCINTER TO CHAR GGCES HERE
P1 NAGC * % POINTER TO P1 GOES HERE
P2 Dac ** PGINTER TC P2 GCES HERE
P3 BETY *% POINTER TO P3 GOES HERE

END

Figure 4-8. DAP-16 Subroutine READT, Transferring Arguments
Without Calling F$AT (Cont.)

SECTION V
PERFORMING AN ASSEMBLY (DAP-16 MOD 2)

Initially, the Assembler along with the proper I0OS (Input/Output Supervisor) subroutines
must be loaded. Normally a system is generated rather infrequently and a reloadable core
dump (binary record) made for general use. The core dump is loaded {rom paper tape, cards,
disc, etc. whenever an assembly is to be performed.

The source (tape, deck, or disc file) is loaded on the proper input device and the bits
of the A-Register are set to indicate the mode of assembly and the devices being used for
input and output (see Figure 5-1). Some Input/QOutput Supervisors also require a B-Register
setting. Set the P-Register to '400 and push the START button (see Table 5-1 for other
starting addresses).

At the end of the first pass the computer will halt. If a two-pass assembly is being
performed, press the START button when the source has been repositioned. When the
source is on magnetic tape or disc, automatic positioning can be specified and the computer

in this case does not halt.

1 2 3 8 9 10 11 12 13 14 15 16

4 5 6 7
II||I?%IIJJIIII

. e
(SEE INPUT/QUTPUT
SUPERVISORS FOR DETAILS)

(- if no halts should be made before punching object
text blocks

=1 if a halt should be made before and after the
output of each block of object text, This is to
allow manual punch control on an ASR - 33 so that

the object tape is not cluttered with the Assembly
Listing

—

=0 to print Symbol Table at the end of the assembly
=1 toinhibit printing of the Symbol Table

| =0 tolist all statements
=1 to list only statements with warning or error flags

=0 to inhibit listing of conditional pseudo-operations
and statements skipped as a result of inhibited
assembly

=1 to list conditional pseudo-operations and statements
skipped as a result of inhibited assembly

=0 for one-pass aisembly
=1 for two-pass assembly

Figure 5-1. A-Register Settings for Assembler Initialization

TABLE 5-1., ASSEMBLER STARTING ADDRESSES

'400 | Start normal assembly

'401 Continue assembly (used after halts for read errors etc.)

'402 | Start subroutine assembly (no end-of-file will be placed in the object text)
'403 | Terminate assembly (place end-of-file in the object text)

'404 | Restart second pass for additional listing or additional object text (A-Register
bit changes accepted).

ESTIMATION OF SYMBOL TABLE SIZE

The Symbol Table occupies the core area above the Assembler System. If this table
overflows, the assembly cannot be performed. Each entry occupies three words, and as
a general rule one entry is produced for every four or five lines of source text (2/3 words
in the Symbol Table per line of text). The programmer may minimize the number of entries

by use of displacements from symbolic values or the asterisk element.

ASSEMBLER SUPPORT PROGRAMS

The following programs must be linked to the Assembler for proper operation. The

Input/Output Supervisors are described following discussion of these programs.

Ol16-DECS, 016-DECL

These programs, Ol16-DECS and O16-DECL, provide the ASCII-to-binary conversion
capability of the Assembler. Ol16-DECS must be used for systems with up to 4K memory
locations. However Ol6-DECS does not provide floating-point or double-precision con-
versions. Ol6-DECL may be used with any system having more than 4K memory locations.
The full range of conversions as described under DEC, DBP, OCT, and HEX is available
with O16-DECL.

SYMLIST, Symbol Table Printer

The program SYMLIST performs an alphabetic sort of all entries in the Symbol Table
and prints out these entries, four per line, following the assembly. The last value printed
is the one for symbols established by SET. Following the value of each symbol is a blank
if the symbol is relocatable, an A if it is absolute, and an E if it is external (external
symbols always equal zero). The Symbol Table may be suppressed by entering a 1 in bit 4
of the A-Register when starting the Assembler. Figures 3-6 and 3-7 show two assemblies
with Symbel Tables.

TABLESIZ

The last Assembler support program loaded must be TABLESIZ, This program is called
at the start of the first assembly by the Input/Output Supervisor. Functionally, TABLESIZ

derives the top of memory and returns this location and the COMMON base ('177 locations

below the top of memory) to the supervisor. The symbol table overlays TABLESIZ, and it
is not called for subsequent assemblies, If Sense Switch 1l is set during execution of

TABLESIZ, the computer will halt with the highestmemorylocation inthe A-register. This
location may then be changed manually. The computer willthenhalt againwith the COMMON

base displayed for the operator to change if desired,

INPUT/OUTPUT SUPERVISORS

DAP-16 input/output supervisors are designed to operate with standard Honeywell
drivers (using their calling sequences and their expected results). These drivers are
described in the Programmers Reference Manuals for the specific peripheral devices,

One I0S program and the appropriate driver programs must be linked within an
assembler system along with the programs listed in the previous section. TABLESIZ

must be the last program (highest core address) in the system following the drivers,

NOTE

This section generally indicates the features available to
the programmer in the assembler system as generated
from standard software. An installation that performs

a large number of assemblies will normally find it worth-
while to tailor an IOS to the installation standard. This
tailoring may include card-to-tape or card-to-disc trans-
fer on the first pass, source blocking, simultaneous
peripheral transfer and computation, and operating system
interfaces. Some of these features are available on a
standard item basis,

Dedicated IOS Programs

Computer systems with 4K memory locations must use one of the dedicated input/
output supervisors, FEach of these 1I0S programs uses a fixed set of peripheral devices,
Therefore, no bits need to be set for device selection when starting the assembly, Table

5-2 lists the programs and the devices to which they are dedicated.

TABLE 5-2., DEDICATED INPUT/OUTPUT SUPERVISORS

Name Symbolic Input Object Text Listing
[OS-0OAAA ASR ASR ASR
I0OS-0ORAA High-Speed ASR ASR

Paper Tape
Reader
I05-OR PA High-Speed High-Speed ASR
Paper Tape Paper Tape
Reader Punch

With any of these dedicated supervisors Sense Switches 3 and 4 respectively may be
used to suppress the object text and listing. If Sense Switch 3 is set during the assembly,

no object will be produced. If Sense Switch 4 is set, no listing will be produced.

10S-016D

10S-016D is the supervisory program that permits a choice of input and output de-
vices, This program must be used only on computer systems with 8K or more memory
locations, Table 5-3 lists the options available for input and output with this supervisor.
The octal numbers are entered in the A-register before starting the assembly. Table 5-4
lists the B-register settings used when magnetic tape is specified, These settings define
the file more fully for the supervisor.

When I0S-016D is used with a disc or drum the appropriate DOP (Disc Operating
Program) must be present, There is a DOP for each standard disc and drum in the Honey-
well product line, DOP asks the operator which files (by name) are to be attached as

pseudo-devices for the current assembly. Access to these files is handled by DOP.

TABLE 5-3. DEVICE SELECTION WITH I0S-016D

105-016D
Symbolic Input
Bits 8-10
0 Undefined
1 ASR
2 High-S5peed Paper

Tape Reader
3 Card Reader

4 Magnetic Tape
5 Disc or Drum

6-7 Undefined
Object Text Outputs
Bits 11-13
0 No object text
1 ASR
2 High-Speed Paper
Tape Punch
3 Card Punch
4 Magnetic Tape
5 Disc or Drum
6-7 Undefined
Listing Output
Bits 14-16
0 No listing
1 ASR
2 High-Speed Paper
Tape Punch
3 Line Printer
4 Magnetic Tape
5 Disc or Drum
6-7 Undefined

5-4

TABLE 5-4,

B-REGISTER SETTINGS FOR MAGNETIC TAPE INPUT/OUTPUT

Bits 1-2
Bits 3-4
Bits 5-6
Bit 7

Bits 9-16

Logical Tape Unit Number for source. Default is logical unit 1.
Logical Tape Unit Number for object. Default is logical unit 2.
Logical Tape Unit Number for listing. Default is logical unit 3.

=0 Normal operation.
=1 Continuous mode operation. The computer will immediately

halt. At this time the operator should enter the number of
files to be processed into the B-Register. Zero means all
files until a double EQOF (blank file) is encountered. The
computer will not stop again until the indicated number of
assemblies have been performed. Operative only with
magnetic tape input.

How many files to skip before starting the assembly.

SECTION VI
PERFORMING AN ASSEMBLY (DAP-16)

Initially, the Assembler along with the proper IOS (Input/Output Supervisor) subroutines
must be loaded. Normally a system is generated rather infrequently and a reloadable core
dump (binary record) made for general use. The core dump is loaded from paper tape, cards,
disc, etc., whenever an assembly is to be performed.

The source (tape, deck, or disc file) is loaded on the proper input device and the bits
of the A-Register are set to indicate the mode of assembly and the devices being used for
input and output (see Figure 6-1). Some Input/Output Supervisors also require a B-Register
setting. Set the P-Register to '400 and push the START button (see Table 6-1 for other
starting addresses).

At the end of the first pass the computer will halt. If a two-pass assembly is being
performed, press the START button when the source has been repositioned. When the
source is on magnetic tape or disc, automatic positioning can be specified and the computer

in this case does not halt.
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

|1|||!l|L||I||J

—~
SEE INPUT/QUTPUT

SUPERVISORS FOR DETAILS

=0 for one - pass assembly
=1 for two - pass assembly

Figure 6-1. A-Register Settings for Assembler Initialization

TABLE 6-1. ASSEMBLER STARTING ADDRESSES

‘400 Start normal assemble
'401 Continue assembly (used after halts for read errors etc.)

'402 Start subroutine assembly (no end-of-file will be placed in the object
text)

403 Terminate assembly (place end-of-file in the object text)

‘404 Restart second pass for additional listing or additional object text
(A-Register bit changes accepted).

ESTIMATION OF SYMBOL TABLE SIZE

The Symbol Table occupies the core area above the Assembler System. If this table
overflows, the assembly cannot be performed. Each entry occupies three words, and as a
general rule one entry is produced for every four or five lines of source text (2/3 words in
the symbol table per line of text). The programmer may minimize the number of entries by

use of displacements from symbolic values or the asterisk element.

ASSEMBLER SUPPORT PROGRAMS

The following programs must be linked to the Assembler for proper operation. The

Input/Output Supervisors are described following the discussion of these programs.

DECCS, DECCL

DECCS and DECCL provide the ASCII-to-binary conversion capability of the Assembler.
DECCS must be used for systems with up to 4K memory locations. DECCS does not provide
floating-point or double-precision conversions. DECCL may be used with any system having
more than 4K memory locations. The full range of conversions as described under DEC,
DBP, and OCT is available with DECCL.

MEMSIZ, SETSIZ

One of these programs (MEMSIZ or SETSIZ) must be the last assembler support
program loaded (MEMSIZ for 4K systems; and SETSIZ for systems with more than 4K
memory locations). MEMSIZ or SETSIZ is called at the start of the first assembly by the
Input/Output Supervisor. Functionally MEMSIZ or SETSIZ derives the top of memory and
returns this location and the COMMON base ('177 locations below the top of memory) to the
Supervisor. The Symbol Table overlays MEMSIZ or SETSIZ and the pertinent program is

not called for subsequent executions.

INPUT/OUTPUT SUPERVISORS

DAP-16 Input/OQutput Supervisors are designed to operate with the standard Honeywell
drivers (using their calling sequences and their expected results). These drivers are
described in the Programmers Reference Manuals for specific peripheral devices.

One IOS program and the appropriate driver programs must be linked within an
Assembler system along with the programs listed in the previous section. TABLESIZ

must be the last program (highest core address) in the system, following the drivers.

NOTE

This section generally indicates the features available to
the programmer in the Assembler System as generated
from standard software. An installation which performs

a large number of assemblies will normally find it worth-
while to tailor an IOS to the installation standard. This
tailoring may include card-to-tape or card-to-disc transfer

on the first pass, source blocking, simultaneous peripheral
transfer and computation, and operating system interfaces,
Some of these features are available on a standard item
basis,

Dedicated IOS Programs

Computer systems with up to 4K memory locations must use one of these dedicated
input/output supervisors, FEach of these IOS programs uses a fixed set of peripheraldevices.
Therefore, nobits needtobe set for device selection when starting the assembly. Table 6-2

lists the programs and the devices to which they are dedicated.

TABLE 6-2, DEDICATED INPUT/OUTPUT SUPERVISORS

Name Symbolic Input Object Text Listing
IOS-5AAA ASR ASR ASR
IOS-5RAA High-Speed ASR ASR

Paper Tape
Reader
[OS-5CAA Card Reader ASR ASR
[OS-5RPA High-Speed High-Speed ASR
Paper Tape Paper Tape
Reader Punch
I05-5CPA Card Reader High-Speed ASR
Paper Tape
Punch

I05-516X, I0S5-516D

10S-516X and IOS-516D are supervisory programs that permit a choice of input and
output devices, These programs must be used only on computer systems with 8K or more
memory locations. Table 6-3 lists the options available for input and output with these
supervisors. The indicated bits are filled in the A-register before starting the assembly,
Table 6-4 lists the B-register seftings used when magnetic tape is specified. These
settings define the file more fully for the supervisor,

When I0S-516D is used, the appropriate DOP (Disc Operating Program) must be
present, There is a DOP for each standard disc and drum in the Honeywell product line,
DOP asks the operator which files (by name) are to be attached as pseudo-devices for the

current assembly. Access to these files is handled by DOP.

6-3

6-4

TABLE 6-3.

DEVICE SELECTION WITH I0S-516X AND 10S-516D

108-516X% I0S-516D
Symbolic Input
Bit 2 Teletypewriter Teletypewriter
Bit 3 High-Speed Paper High-Speed Paper
Tape Reader Tape Reader
Bit 4 Card Reader Card Reader
Bit 5 Magnetic Tape Magnetic Tape
Bit 6 Teletypewriter with Teletypewriter with
program halts for program halts for
manual action manual action
Bits 2-6 all = 0 Undefined Disc
Object Text Output .
Bit 7 Teletypewriter Teletypewriter
Bit 8 High-Speed Paper High-Speed Paper
Tape Punch Tape Punch
Bit 9 Undefined Undefined
Bit 10 Magnetic Tape Magnetic Tape
Bit 11 No object text No object text
Bits 7-11 all = 0 Undefined Disc
Listing Qutput
Bit 12 Teletypewriter Teletypewriter
Bit 13 High-Speed Paper High-Speed Paper
Tape Punch Tape Punch
Bit 14 Magnetic Tape Magnetic Tape
Bit 15 Line Printer Line Printer
Bit 16 No listing No listing
Bits 12-16 all = 0 Undefined Disec
Table 6-4. B-Register Settings for Magnetic Tape Input/Output
Bits 1-2 Logical Tape Unit Number for source. Default is logical unit 1.
Bits 3-4 Logical Tape Unit Number for object. Default is logical unit 2.
Bits 5-6 Logical Tape Unit Number for listing. Default is logical unit 3.
Bit 7 =0 Normal operation.
=1 Continuous mode operation. The computer will immediately
halt. At this time the operator should enter the number of
files to be processed into the B-Register. Zero means all
files until a double EOF (blank file) is encountered. The
computer will not stop again until the indicated number of
assemblies have been performed. Operative only with
magnetic tape input.
Bits 9-16 How many files to skip before starting the assembly.

SECTION VII
GENERATING AN ASSEMBLER SYSTEM

This section describes the process of generating a DAP-16 Mod 2 Assembly System
from paper tape cbjects, Most systems (notably conventional DAP-16) are generated anal-
ogously, With conventional DAP-16, however, care must be taken to avoid filling the base
sector beyond '377, which would overwrite the assembler, To avoid filling that portion of
the base sector, as many programs as possible should be loaded starting on a sector
boundary.

The system described in this section was generated on a computer with 12K memory
locations, To generate this system on an 8K computer, at least one driver package must
be left out. 0l6-DECL is used for decimal conversion, and the input/output supervisor
used is I05-016D.

LOADING LOADER

LDR-APM must be loaded into high sectors of memorybefore starting. A self-loading
form is available which loads in sectors 4 through 7. This programmay be usedto load the

loader object starting at any even sector boundary,

LOADING ASSEMBLER

The starting location of the cross-sector references must be set as low as possible
in order to provide enough room. The lowest possible address is '40, In this example,
160 was used, This address should be entered in the B-register before loading the assem-
bler, If no B-register entry is made, '100 is assumed, If DMC, Real-Time Clock,
Memory Lockout, Standard Interrupt, or Priority Interrupt/Memory Increment are used,
their needs must be taken into account when making this setting.

Enter relative location '3000 into the P-register. If the loader, for example, starts
at the beginning of sector '24, '27000 is relative location '3000, Mount the assembler ob-
ject text on the proper input device and press START. The computer will halt to receive
the input device selection in the A-register. After the proper code is entered, press

START again and the assembler will load.

Generating Map

Start the loader at relative location '3002, If the computer is allowed to print the en-
tire map, MR will be printed and the computer will halt. Usually, the first six lines of the
map (especially *HIGH and *BASE) are all that are pertinent. The remaining lines tell what
additional routines are needed, The computer may be halted during a map with the MA/SI/
RUN Switch and the map printer reinitialized by again starting at relative location '3002.

A map (or the first six lines of a map) taken after almost every load step is helpful.

After the assembler has been loaded, *HIGH should be in sector 5 and *BASE should
be not far above the value initialized in the B-register, The next routine loaded will load

at *HIGH and start its cross-sector links at #BASE,

LOADING I05-01l6D

To conserve cross-sector references, the selected IOS should begin in the next avail-
able sector, rather than at the current value of *HIGH. Set the A-register with the first
location of the next sector, mount the IOS object, and start the computer at relative location

'3003. From then on, the input device for the loader does not need to be reselected.

LOADING Ol6-DECL

This routine (or Ol6-DECS) need not start on a sector boundary, Therefore, it may

be loaded simply by starting the computer at relative location '3003,

LOADING SYMLIST

This routine (if desired) may also be started at the current value of *HIGH. Start

the computer at relative location '3003,

LOADING IOS DRIVERS

The following IOS driver packages can be loaded: ASR, Paper Tape Reader and Punch,
Card Reader, Card Punch, Line Printer, and Magnetic Tape., FEach of these packages in-
cludes several routines, some of which are not used by the assembler system. For some
input libraries, START must be pressed for reading each routine, whether or not it is
actually loaded. Other libraries do not have stop codes other than the physical end of tape,
which is a real convenience,

When using magnetic tape, routine M$UNIT must be configured to the installation
standard. See the appropriate magnetic tape programmers reference manual for details,

Maps should be taken at this time to ensure that there is still room in the base sector,
If the number of remaining locations is critical, specific routines should be loaded on
sector boundaries. To do this, set the loading location in the A-register and start the
loader at relative location '3003,

The calls to any omitted packages should be satisfied by a dummy, which is an object
text with entry points for each external name called. The safestwaytohandlethese entries
istopointeachonetoahaltor generateanerror message. Dummytexts (e.g., DUMY-X16)
are available from Honeywell upon request.

Figure 7-1 shows the source of a dumuny that satisfies calls to the card punch routines.
Normally one dummy with a lengthy list of SUBR statements is used to avoid wasting opera-

tor time and core space.

7-2

SU3R C3C3»0UMY
53”2 C®CS, UMY

REL RELCCATA3LE SuU3RCGUTINE

UMY 0AC # % ALL CALLS TC CARD PUNCH CCME HERE
HLT HALT TC ALERT CPERAICR
JMP H=) DC NCT ALLCYW RESTART FRCM HERE
END

Figure 7-1. Dummy Example

LOADING TABLESIZ
After all other routines and the dummy have been loaded, the object for TABLESIZ

should be loaded. This must be the last (highest in memaory) routine loaded.

PRODUCING SELF-LOADING CORE IMAGE

Figure 7-2 shows the result in core for this example. This result may be preserved
and reused if a self-loading (binary) core image text is made. For disc or drum systems,
DOF can store the binary image on the disc or drum. A paper tape image may be made
using PAL-AP. An 8K version of PAL-AP may be used as shown in Figure B-2,2

PAL-C is the proper program for producing a core image in binary cards. Either of these

programs must load on a sector boundary. Both are started at their relative location

'000.

#An 8K version of PAL-AP may be generated by the following steps. Use any Loader to
load the object text of PAL-AP into sector 7 (the Loader is no longer needed and can be
overwritten). Change the contents of location '7575 (for Rev. E of PAL-AP) from 7600
to '17600. Execute PAL-AP starting at '7000 to dump the other version from '17000 to
'17577. This dump is a version of PAL-AP that will load into, and execute properly from
the uppermost sector of an 8K memory. It may be used to dump core from '70 to 16777.

7-3

7-4

SECTOR

SR
0 CROSS-SECTOR LINKS
—
1
= DAP - 16M2
2
3
4
5
S DY fi
6 108 - 016D
7 016 - DECL
10 SYMLIST
— ASR PACKAGE
1
— PAPER TAPE PACKAGE
12 CARD READER PACKAGE
- LINE PRINTER PACKAGE
13
MAGNETIC TAPE
— PACKAGE
14 TABLES 12
_7
15
16
i U
17 PAL - AP
YIEHTTTEITTELI T
Figure 7-2,

20

21

22

23

24

25

26

27

LDR - APM

Core Map, After Generating Assembler System

APPENDIX A
EXPANDED STDDEV LISTING

SUBRCUTINE STDDEV (NRUNs NPTs PTs DEV»

000000
000001
0n0002
000003
000004
000005
000006
000207

CCT 000000
CAaLL FSsAT

CCT 000005
CCT 000000
CCT 000000
CCT 000000
ccr 000000
CCT 000000

DIMENSICN PTC1D0)

SX = 0
000010 JYP 000000
STG 000910

000011 LDA ='000009
000012 CALL CS12
000013 caLL H322
000014 DAC SX

X2 = 0
000015 LDA =°000009
000016 CALL C$12
000017 CALL HS$22
00020 DAC SX2

DC 100 1 = 1,NPT
000021 LDA ='000001
009022 sta I

SX2 = SX2 + (PTCI)I*CPTCI))
200023 Loa I
000024 ALS1 000000
000025 any PT
nN0026 anpb 000030
000027 JvMP 000031
000030 CCT 177776
000031 STA TI$1000
000032 cALL L322
0N0033 DAG* T$1000
000034 CALL M$22
000035 pac* TS1000
000036 CALL AS%22
000037 DAC SX2
000040 CaLL Hs22
000041 DAC SX2

Figure A-1, Expanded Listing of STDDEV

AMEAN)

103 SX = SX + PTCI)
000042 LDA I
000043 ALS1 000000
000044 ADD BT
220045 ADD 000047
000046 JMpP 000050
000047 CCT L77776
0900050 STA T51000
000051 caLL Ls22
000052 DAC* T51000
000053 CALL As22
009054 DAC SX
000055 CALL Hs22
000056 DacC $X
000957 LDA I
000060 ADD ='000001
030061 CAS* NPT
000062 JMP O DD00D65
000063 JMP 000022
000064 JMP 000022

ANPT = NPT
000065 LDA* NPT
000066 caLL Csi12
000067 caLL Hs=22
00924970 DacC ANPT

DEV = SARTCSA2/ANPT=(SX/ANPT)* (SX/ANPT))
000971 caLL Ls22
0092072 DAC SX
000073 CALL D322
000074 DAC ANPT
000075 CaLL Hs%22
000076 DAC T$2000
000077 CALL Ms22
000100 DAC r%2000
000101 caLL Hs22
000102 DAC r%2001
000103 CALL Ls22
000104 uAac SK2
0092105 CALL 0322
000106 NAC ANPT
000107 caLL S%22
000110 DAC T$2001
000111 CALL Hs22
000112 DAC rs2002
023113 CaLL SAarT
090114 DAC rs2002
000115 CALL H322
000116 DAC* DEV

AMEAN = SX/ANPT
000117 CALL Ls22
000120 DAC SX
000121 CAaLL 92522
000122 DAC ANPT
000123 CcaLL HS522
000124 DAC* AMEAN

Figure A-1. Expanded Listing of STDDEV (Cont.)

WRITE (151000) NRUNs (PTC(J)s J = NPT

000125 CALL Fs4l
000124 DAC ~1000
002127 CALL F3AR
000130 CCT 000001
0001 31 DAC* NIUN
000132 LDA ='000001
Q00133 STA J
000134 LDA J
000135 ALS1 020000
000136 ADD PT
000137 ADD 0001 41
000142 JMP 0001 42
0001 41 CCT 177776
0001 42 5TA T31000
000143 CALL F3aR
0001 44 CCT 000002
Q00145 DAC* T31000
0092146 LDA J
000147 ADD ='000001
000150 CAS* IPT
000151 JMP 000154
000152 JMp 000133
Q00153 JMP 000133
000154 caALL FsSCB
1099 FCRIMAT (/77712H RUN NUMBER 5 1577 (El1l.454E14.4))
5TC ~1209D
003155 JMP 00920200
NON156 GOT 124257
0092157 CCT 127657
2922160 CGT 127661
202161 CCT 131310
200162 CCT 120322
000163 CCT 132716
000164 EGT 120316
000165 CET 152715
022164 CCT 141305
020167 CCT 15124
200170 CCT 126241
200171 ocT 132657
QoNiL72 CCT 127650
000173 CCT 142661
000174 CCT 130656
000175 CCT 132254
000176 OCT 132305
noN1L77 CCT 130664
0002900 CCT 127264
000291 oCT 124651
STG 000155
JURITE (1,2000) AMEAN, DEV
000202 CALL FSsWi1
0002903 DAC «2000
000204 CALL Fs$AR
000235 CCT 002002
000206 DAC* AMEAN
0002907 CALL F3aR
000210 ocT 0002002
000211 DACx* DEW
0oo212 CALL Fs%C3

Figure A-1. Expanded Listing of STDDEV (Cont.)

2000 FCRMAT (19H ARITHMETIC MEAN = »E14+5, END

STG ~2000 STG = *000001
090213 JuP - 02009290 000255 ccT 000001
020214 CCT 124261 000003 DAC NRUN
000215 oCcT 134710 000004 DAacC NPT
000216 ocT 120301 000005 DAC PT
000217 CCT 151311 000006 DAC DEV
0092220 CCT 152310 000007 DaC AMEAN
000221 CCT 146735 STG SX
0nN222 CCT 152311 000256 OCT 120249
000223 CCT 141640 Q00257 GCT 120240
000224 CCT 146705 STG ='000000
000225 oCT 140716 000260 OCT 000000
000226 CCT 122275 STG SX2
000227 O0CT 120254 000261 OCT 120240
000230 OCT 142661 000262 CCT 131240
003231 CGCT 132256 000042 DAC <100
0032232 CCT 132654 5TG 1
000263 oCT 0046 40
1/22H STANDARD DEVIATION = sE11.5) STG TS1000
000233 OCT 127662 000264 OCT 012244
000234 COCT 131310 STG ANPT
000235 cCcT 120323 000265 cCT 120240
0020236 oCcT 152301 000266 GCT 150324
000237 GCT 147304 000000 DAC SART
0002490 CCT 140722 STG T$2000
002241 ocT 142240 000267 CCT 130260
000242 OCT 142305 000270 cCT 131260
N00243 CCT 153311 STG T$2001
000244 cCT 142724 000271 oCcT 130261
002245 CcCT 144717 000272 cCT 131260
n0n0246 oCcT 147240 STG T$2002
020247 CCT 136640 200273 ccr 130262
0002592 CCT 126305 000274 cCT 131260
030251 CCT 130661 Q000155 DAC +«1000
000252 CCT 127265 STG J
000253 CcCcT 124640 Q00275 oCcT 005240
STG 000213 000213 pac «2000
RETURN %0
000254 JMP= 000000

Figure A-1. Expanded Listing of STDDEYV (Cont.)

—~~

