Multics Series
MS-909 Revision 1
August 1, 1981

MASSACHUSETTS INSTITUTE OF TECHNOLOGY INFORMATION PROCESSING SERVICES
ACADEMIC AND RESEARCH COMPUTING SERVICES - CAMBRIDGE MA 02139 (B17) 253-1793

MULTICS BULLETIN ARTICLE REPRINTS

This memo contains diverse articles, which
have appeared previously in the IPS
bi-monthly newsletter, the Bulletin. Al-
though we selected for reprinting only those
articles which remain relevant and useful on
the current Multics system, we cannot guaran-
tee that all details are still accurate. The
most wup to date information can always be
found in current Honeywell and IPS documenta-
tion and in the most recent issue of the
Bulletin.

Copyright (:) 1981 Massachusetts Institute of Technology

CONTENTS (8/1/81)

Things Nobody Told You About Your start_up.ec
Have your start up.ec set things up for you when you log on

Multics Time-Savers:
A Beginner's Guide to (Personal) Energy Conservation
How to save work with add names, links and the "abbrev" com-
mand

You Don't Hafta Answer Right Away
What to do when you want to check something before answering
a system query

Writing Multics Commands, Part I
Everything you need to know to create your own commands

Writing Multics Commands, Part II
More on writing your own commands

The New Multics Mail System
"Print_mail" and "send_mail" explained

Multics Tapes from Scratch
An explanation of basic facts about tapes

Notes on Using Multies Tapes
How to use the "tape archive" command
M"JJ"' 5
Hardening Up Your Soft Copy i
Turn on the Multics "audit" facility for a running copy of
everything you do

Fun with Read mail
Using the "read mail" command

Baffled By Buffers
Here's how to use gedx buffers, with examples from Dante

Mine!
The basics of Multics access controls; who can do what with
your segments

Multics Backup System
Don't worry, we're backing you up. How to retrieve lost di-
rectories and segments

Ec's and All That
More on start _up.ec's and other exec_com's

Send mail for Beginners
Basics of the "send mail" command

Active Functions
Learn about active functions and save yourself a lot of typ-
ing

Archives: Live and On Tape
A guide to the Multics "archive" command

Wanna Start Something?
Getting more out of Emacs by writing your own start_up rou-
tines -

Excerpts from "Qur Favorite Multiecs Questions"

How to copy someone else's segment

Likely causes of error messages: "storage condition", "rec-
ord quota overflow", and "stack frame overflowed"

Hold everything; it's an interrupt!

How to join segments together

Help! I'm trapped in a question to the OLC!
Using "tape_archive"

Retrieving a lost segment

What happens if you just hang up

M5-99 Multics Bulletin Reprints

THINGS NOBODY TOLD YOU ABOUT YOUR START_UP.EC

by Richard Scott
reprinted from the March 1978 Bulletin

There are certain operations--such as adjusting printout to suit your particular termi-
nal's characteristics, checking your Multics mail, and opening up the lines of communica-
tion to other Multies users--that you want to have performed just about every time you log
in. To save you the effort of remembering to type (and typing correctly) the required
commands each time, Multics permits you to put them into a segment in your home directory
(the one where you find yourself immediately after logging in) and have the system auto-
matically execute them for you. This segment must be named "start up.ec".*

The start_up ec is usually created with a text editor (such as qedx), and contains two
kinds of lines:

(1) Multics command lines, just as you would type them at the terminal; and

(2) special instructions, called control statements, that the exec_com com-
mand (which executes your star;_up.ec) understands.

Let's consider some of the commands commonly found in start ups. (For the purposes of
discussion, we will assume a Multiecs login ID of "JQUser".)

KEEPING TUNED IN

One of the first things you see when you log in is the "message of the day". This message
contains important information about the status of the system, system problems, schedule
changes, etc. If you have no start_up, the message of the day is printed each time you
log in. However, from the very existence of a start up.ec segment in your home directory,
the system assumes that you are taking explicit action to examine the message and ceases
to print it automatically. Placing the print motd command in your start up.ec will handle
this. The print motd command keeps a copy of the last message of the day in a segment
(called "JQUser.moEd") in your home directory. Each time print_motd is invoked it com-
pares the current message with the saved copy, and prints the message only if it has
changed. This relieves you of having to read the same message over and over, when once is
sufficient. Of course, it does cost $.02 a day to keep JQUser.motd around, so if you're
pinching pennies, the command

print >doc>iis>motd.info 1 99

in your start up will print the message of the day each time you log in, without incurring
extra storage costs.

TAILORING TERMINAL OQUTPUT

To take advantage of your terminal's capabilities and to make typing easier, you may want
to use your terminal's set tty command. This command has many options, documented in the
MPM Commands and Active Functions and in the on-line info file (type "help set tty"); we
will consider only a few of the most general. The syntax of the command, for our pur-
poses, is:

set tty -modes OPTION1,0PTIONZ2,...,0PTIONn

Note that there is a space before and after "-modes", and commas but no spaces between the
options. For example, in the command:

set_tty -modes 1lfecho,polite,11132

"lfecho", "polite", and "11132" are options. 3ome particularly useful options are:

1fecho (line-feed echo) makes it possible to transmit typed lines by hitting only the
RETURN key, instead of RETURN-LINEFEED. (This option is not necessary with
Selectriec-type terminals.)

11132 (line length 132) tells Multies it can use the full carriage width of your ter-
minal, not just 79 columns (the default). Of course, you can use a number other
than 132, as appropriate. (For example, if your terminal beeps every time it
passes column 72 and it's driving you crazy, use "1171".)

¥If you wish, you may also log in" without executing +these commands, by using the
"-no_ start_up" control argument to the login command.

Things . . . About Your start up.ec Page 1

MS-99 Multies Bulletin Reprints

tabs tells Multics that your terminal has settable tabs. Tab stops should be set at
columns 11, 21, 31, ete., to correspond to Multiecs' view of the world.

“tabs tells Multies that your terminal does not have settable tab stops.

tabecho (used in combination with "“tabs") tells Multics to simulate tab stops on your
’ terminal even though there are no hardware stops. When you depress the TAB key
or CTREL-I, Multics prints the spaces required to move the print-head or cursor
to where the next tab stop would be.

echoplex tells Multies that your terminal is permanently set in "full-duplex" mode and
therefore cannot (without help) print what you type. If Multics will print on
your terminal, but your typing causes no printing (and you have no switch la-
beled HALF-FULL or HDX-FDX), you need this option.

polite prevents lines you type from being interrupted by output from Multiecs (e.g.,
messages) unless you have taken more than 30 seconds to finish.

replay causes Multics to retype a line which does get interrupted, up to the point
where you were stopped, so that you can continue it easily.

play (page length 24) tells Multics that you have a soft-copy (CRT screen) terminal
that can display only 24 lines at a time. After the 2Uth line, Multics prints
"EOP" and refuses to display anything else until you hit FORMFEED or CTRL-L.
This is to allow you time to read the screen before new lines drive the old ones
off the top. The default is "plO", which causes no interruption.

COMMUNICATING WITH OTHERS

The Multics mail facility is one feature of the system that you would do well to exploit
fully, in spite of the slight overhead involved. It allows you to send and receive mes-
sages to and from other Multics users, communicate with the on-line consultant (type "help
ole" to find out about this), and hear from the SysDaemons (those elusive, eternally-
logged-in creatures that, among other things, print your files on the high-speed printer
and back them up against future blunders and unforeseen disasters). To regularly check
the messages 1in your mailbox (a segment in your home directory called "JQUser.mbx"), you
can include the mail command in your start up. If you don't already have a mailbox, the
mail command will create one the first tIme it is invoked with no arguments. If you get
lots of mail and don't always want to print it right away, you might include the line

&if [have maill &then &print You have mail.

instead of the mail command, in your start up. This makes use of the exec_com control
statements "&if", "&then", and "&print", and of the [have maill active function, and re-
sults in the printing of the message "You have mail." if there is anything in your mail-
box. You may then examine the messages later at your leisure.

Experienced Multics users also communicate with one another via one- or two-line messages
that are printed on the terminal immediately after being sent (via the send_message com-
mand) if the addressee is logged in and accepting messages. To accept messages, you may
include the accept messages command in your start up. Two useful control arguments to
this command are "-print", which prints any accumulated messages of this immediate type,
and "-short", which replaces the sender's ID with "=:" if the same user sends several mes-
sage lines in tandem, (After having accepted messages, you cah use the defer_messages and
immediate_messages commands to shut off and restore the printing of messages, if desired.)
Methods of sending mail and messages, and further options available for these commands can
be found in the MPM Commands and Active Functions and in the respective on-line info
files.

MINDING YOUR PENNIES
Tou are probably concerned, to a greater or lesser extent, with how fast the computer is
eating your funds. There are three commands you can ineclude in your start up to keep tabs
on this:

resource usage -total
prints out how much money you have used so far (exclusive of storage charges) in the cur-
rent billing period prior to the current process, your limit (if any) for the period, and
the amount you have used on your current project since you were registered.

estimate bill -init
sets up the estimate bill command to let you know how much you have used in the current
login session (again, exclusive of storage charges) by shift and item. At any time later

Things . . . About Your start up.ec Page 2

M3-99 Multics Bulletin Reprints

in the session you can use estimate_bill to see how much has been spent so far. The
estimate bill command sometimes creates a segment, "JQUser.eb data", for accounting pur-
poses. TFinally, =

general_ready -set -time -ine vecpu -inc_mem_units -inec_cost -level

changes your ready message (normally printed after the execution of each command line) to
include the amount spent since the last ready message.

ALLEVIATING TYPIST'S CRAMP

The abbrev command allows you to define abbreviations for whole command lines or parts of
command lines. You may use this facility by including the command in your start up. Once
this 1is done, you can issue special abbrev requests (documented in the MPM) to define ab-
breviations, which may then be used in your command lines. Properly used, the abbrev fa-
cility can save a 1lot of time and bother. It can also be used in combination with
exec_com and the "do" command (a special command-line processor) to define, 1in effect,
your own commands. It does create and use a segment called "JQUser.profile", which you
should not delete unless you are prepared to lose all your abbreviations.

YOUR PRIVATE SECRETARY

The memo command may be included to keep a kind of calendar or checklist for tasks to be
done. This facility (again, documented in the MPM) allows you to set up memos for your-
self which are printed at a prespecified time, or repeated pericdically. The memo command
creates a segment called "JQUser.memo". This facility can prove valuable if you log in
often and are prone to absent-mindedness.

PARAMETERS AND CONTROL STATEMENTS
In the start up.ec, the special parameters "&1" and "&2" represent (and are replaced by)

arguments passed to the exec_com by Multiecs when the start _up is executed. These argu-
ments may be (depending on the situation, as noted):

&1 &2
login interactive when you log in;
new_proe interactive when you issue the new proc command, or after a fatal
process error; or
login absentee when an absentee job you have submitted is logged in by

Multies,

Then there are the special exec_com control statements:

&command_line off tells exec_com not to print each command before it is
executed. It is helpful to omit this instruction when
debugging a start_up (or any exec_com);

&goto XXX tells exec _com to continue executing, starting with the
line labeled XXX;

&label XXX where XXX is some character string to be used as a la-
bel; if XXX is one of the special parameters mentioned
above, it is replaced by the respective argument as a
label; and finally,

&guit tells exec_com to stop executing, bringing the start_up
to a halt.

Any line that begins with an ampersand (%) followed by one or more blanks is treated as a
comment and ignored during execution.

PUTTING IT ALL TOGETHER

Let us now consider an example of how some of these commands can be combined into a

start_up. (The numbers at the left are for reference and do not actually appear in the
start_up.ec segment.)

Things . . . About Your start up.ec Page 3

M5-99

il i Lt e L R e e L L T L L o e T o

R R R T T S N e L Lo
WO EWMN 20w e N EWN = OO =] U By —
e et e e e R e e e bt e e e g et b o e b e e el L b

Lines 1, 2, 3,
start_up more

respectively.

line executed will therefore be line 17 or line 25, respectively.

&
&
& ALWAYS EXECUTED:
&command line off
abbrev

kgoto &2

&

& FOR INTERACTIVE PROCESSES ONLY:

&label interactive

accept messages -print =short
memo -brief

estimate_bill -init

&goto &1

&

& FOR INITIAL LOGIN ONLY:
&label login

Multies Bulletin Reprints

<{{<<<<<<<< A SAMPLE start up.ec SEGMENT 55555553335

set tty -modes lfecho,11132,"tabs,tabecho,polite,replay

print_motd

mail

resource_usage -total
&quit

&

& FOR A NEW PROCESS ONLY (NOT LOGIN):

&label new proc

&quit

&

& FOR AN ABSENTEE LOGIN ONLY:
&label absentee

&quit

7, 8, 14, 15, 22, 23, 26, and 27 are comment lines, used only to make the
readable and understandable. The "&2" in line 6 is replaced by either "in-
teractive" or "absentee", meaning that the next line executed will be line 10 or line 29,
The "&1" in line 13 is replaced by either "login"™ or "new_proc"; the next

This, of course, is only one example of what you can do in a start_up.ec. Many variations
of the commands discussed, as well as other commands and exec_com controls, can be uti-
lized to preecisely tailor the Multics environment to your individual needs.

Things . . . About Your start up.ec

Page U

o
wm

M3-99 Multics Bulletin Reprin

MULTICS TIME-SAVERS: A BEGINNER'S GUIDE TO (PERSONAL) ENERGY CONSERVATION

Adapted with permission from an article by Alicia Towster in Two Bits Worth, newsletter of
the University of Southwestern Louisiana Computing Center (February-March 1978). Appeared
in the May 1978 Bulletin.

T o e e e e e e e T = = = A= =

Are you worn out from typing lengthy pathnames, repetitious command sequences, or tedious
lists of control arguments? You are? Well, if you're willing to use your memory, your
ingenuity, and possibly some of your computer funds, you can minimize keyboard cramp.

First, there are addnames. Addnames are additional names which can be given to segments
or directories. This permits you to keep, on each entry, a long descriptive name (up to
32 characters) to help you to remember what it is, and a short convenient name which is
what you actually type. You add names to entries by using the add name command. For ex-
ample, user HTudor has a segment named catherine_of aragon. Once he has executed the com-
mand :

an catherine of aragon kate

he can refer to the segment as simply "kate". (He will see both names when he 1lists the
directory--addnames appear right under the "primary" name--but he can tell they are add-
names rather than other segments, because quota and access information is given only with
the primary name.)

The reason HTudor can type "an" instead of "add name" is because "an" is an addname of
"add _name". (You may have to read that sentence twice.) Addnames are used throughout the
Multics system; many are selected and added by systems designers (who don't much care for
extra typing either). Clearly you can save a lot of time and nerves by learning the
choices they have made. The surest way to find the addnames of a particular entry is to
move to the directory which contains it and do a "list" (or rather, "ls"). For standard
Multics commands, you ecan check the Table of Contents of the MPM Commands and Active
Functions (AG92); and on-line info files give addnames in the first section of each
writeup.

Addnaming your programs is just slightly more complicated. HTudor has a source program
called "ann_beleyn.pl1"™ which he decides to addname "ann.pll1". (The compiler insists on
the ".pl1" suffix for addnames, too.) He then compiles the program (referring to it by
the addname), and the object program is stored in a segment called "ann". But alack!
When he tries to execute "ann", Multics refuses, choking on the entry point defined by the
label which begins the source program. We often ignore the entry point name, since, un-
less told otherwise, Multies assumes it is the same as the segment name. HTudor can man-
age by typing "ann$ann_boleyn", but this is not very graceful. A far better solution is
to plan a head (!) and put two labels at the beginning of the source program, thus:

ann_boleyn: ann: procedure;

System designers have also defined standard abbreviations for control arguments. (Why
type "-brief" when "-bf" works just as well?) You can see a list of many of these by typ-
ing "help control_arguments". Invest some time and dip more deeply into Honeywell docu-
mentation, scanning for words like "default" and "optional" (maybe you can avoid typing
some control arguments altogether), and the note "Star convention allowed." The star con-
vention enables you to reference several entries at once, and is described in Section III
of the MPM Reference Guide (AG91), and in an on-line info file. (Type "help star_names".)

Even taking advantage of every available addname, you may still find yourself typing some
rather long pathnames. If you expeet to be using the same pathname repeatedly, you should
probably create a link.* User HTudor might type:

link >udd>Britain>HTudor>TskTsk>wives>wives.archive

Thereafter, when he is in the directory in which he created the link, he need only type
"wives.archive" to reference that segment. Links are handy "pointers" to other segments,
and do not consume your quota nearly as fast as real live segments do. However, you can't
take them with you, (e.g., when you change working directories or 1log into a different
projeit)ﬂ links stay in the directory in which they were created. You may, however, link
to a link.

If you have at least one record to spare, you can use the portable energy saver--abbrevs,

Abbrevs are your own abbreviations for the kinds of processing you do; they can stand for
anything you want, from a few characters to a deluge of sequential commands, If HTudor

S R o

*See also the article "A Beginner's Guide to Links" in the May 1977 Bulletin.

Multies Time-savers Page 1

MS-99 Multies Bulletin Reprints

wants to use abbrevs, he types:
abbrey

The very first time he does this, a segment called "HTudor.profile" is created for him in
his home directory to contain any abbreviations he wishes to define. Most users will want
to invoke the "abbrev" command (addnamed "ab"--getting confused?) as part of their
start_up.ec.*

Giving the "abbrev" command tells Multics to invoke the abbreviation processor; every com-
mand typed subsequently is examined to see if it begins with a period (meaning it 1is a
special request to manipulate abbreviations) or contains an abbrev. Command lines con-
taining abbrevs are first "expanded"--the abbrev is replaced by what it stands for--and
then executed. This process may, on occasion, produce unexpected results. For example,
"ro" might seem like a nice abbreviation for "runout"; however, the command "ro" (for
"revert_cutput") would then be expanded to "runout", which Multies would find incomprehen-
sible as a command. To guard against this kind of mishap, some users decide to define
abbrevs that include some special character (e.g., a colon), or use capital letters (since
standard Multics commands are always lower-case).

HTudor prefers capitals, and is now ready to define his first abbrev:
.ab PBehead delete ann

The ".ab" means add to the profile an abbrev to be expanded only when encountered at the
beginning of a command line (or immediately following a semicolon).

HTudor suddenly realizes that he wants his abbrev to work from any working directory, so
he corrects it by typing:

.abf Behead d1 >udd>Britain>HTudor>ann

using the absolute pathname of the segment "ann". The "f" means force the abbrev to re-
place any existing abbrev of the same name. HTudor alsc defines:

.ab Annul cwd >udd>Britain>HTudor>TskTsk>wives;da ann_of cleves HTudor.*.*
.a GIRLS (MTudor ETudor)

Since GIRL3 is not something that occurs at the beginning of a command, he defines it
using ".a" instead of ".ab". Now he can type such commands as:

Annul; sm GIRLS.Britain See me ASAP!

Some other useful abbrev requests are ".1" (to list some or all of one's abbrevs) and ".d"
(to delete abbrevs). A ".q" tells abbrev to quit using abbrevs. As you define progres-
sively more elaborate abbrevs, you will find the "do" command very helpful. (See the de-
seription of "do" in the MPM Commands and Active Funetions, or type "help do". If you
know a hardened Multician, you might ask him/her if you may go browsing through his/her
abbrevs. (Most will be flattered to oblige, and you can learn a lot just by looking.) To
do this, have your friend set you "read" acecess to his/her ".profile" segment. Then type:

.u >»udd>FriendProjectID>FriendPersonID>FriendPersonID

The ".u" tells Multics to use the profile segment whose pathname you have given. You may
then wuse the ".1" (list) request to peruse the abbrevs contained in this profile segment.
To return to your own abbrevs, type ".u" again, follcocwed by a carriage return.

* * * * *

None of these energy-saving techniques are directly useful when inputting text with an ed-
itor. However, a set of recently-installed Multiecs commands permits another kind of per-
sonal abbreviations to be wused in this manner. The "Speedtype" commands, as they are
known, provide a facility for expanding input text automatically. They should be used
cautiously--experienced typists have, on occasion, been known to produce errors of a some-
what bizarre nature ("Speedtypos"?). Use of Speedtype requires at least three extra rec-
ords and quite a bit of patience, but can greatly ease the tedium of large typing jobs,
and in many ways is far safer than defining--and remembering--one's own "abbreviations"
for input text (for later expansion by an editor's global-change request). For more in-
formation on Speedtype, consult the WORDPRO Reference Guide (AZ98), now available for pur=-
?hase in the IPS Publications Office (Room 39-484), or for reference in the Reading Room
39-430).

o o . o =

¥3ee also the article "Things MNobody Told You About Your start up.ec" in the March 1978
Bulletin.

Multics Time-savers Page 2

M3-99 Multies Bulletin Reprints

YOU DON'T HAFTA ANSWER RIGHT AWAY....

by W. Olin Sibert
reprinted from the January-February 197§ Bulletin

Many Multies commands will ask you questions when they require some extra information in
order to execute. These questions (and the answers you supply) are all handled by the
same subroutine (command query), and follow certain system-wide conventions. A new fea-
ture now allows to you "escape" command _query_ if you need to know more information your-
self before you reply. Just begin your "answer" with two periods (".."). The rest of the
line will be passed directly to the Multics command processor rather than being returned
to the program that called command query . After your command has executed,
command_quer&_ will prompt you again, printing only "Answer:" rather than repeating the
question, (since the question can be quite long, and you have already seen it once). At
this point you may type in your answer, or "escape" the query again if you wish (procras-
tinating as many times as you see fit). This allows you quite a bit of added flexibility
in answering commands' questions: if the question is unexpected and/or makes little or no
sense to you at first, you can issue a command or two to try to find out what prompted it.
The following example illustrates. User typing is preceded by an arrow (=>).

=> delete *¥ _pl1
delete: calliope.pll is protected. Do you want to delete it? => ..list

Segments = 3, Lengths = 7

e 2 calliope

row 4 calliope.pli

row 1 callicpe.list
Answer: => ,.print wdir
>udd>CIRCUS>Elephant>work
Answer: => ..repeat_query

delete: callicope.pll is protected. Do you wish to delete it? => no
r 1409.2 0.480 17.426

As shown above, the "repeat_query" command can be useful in this type of situation, if you
want to see the question again--e.g., if it has scrolled off the top of a CRT-type termi-
nal screen.

Another useful capability provided by this general-purpose question routine 1is the
"answer" command, which allows you to supply preset answers for questions that commands
will (or might) ask you. This is primarily useful in abbrevs, although you may alsoc find
it helpful at command level. For example, suppose you want to write an abbrev that moves
a segment from one directory to another, and then creates a 1link in the old directory
peinting to the segment's new location. If you were sure it would always be okay to de-
%ﬁpe any segment that already existed in the new location, you could define an abbrev like
is:

.ab mvlk do "answer yes -brief move &1 &2; link &2 &1"

The "answer"™ command in the abbrev will "cateh" any question asked by the move command
(e.g., an Mare-you-sure-you-want-to-delete" query brought about by a turned-on safety
switch or a name duplication), and answer it "yes". The "-brief" control argument says
that no such question will even appear on the terminal. (If "-brief" is omitted, the
question and your prespecified answer are typed out automatically.)

A second example will demonstrate how the "answer" command can be used effectively from
command level. Suppose you have an archive named "xanadu.archive" containing program
source segments, some of which you have extracted and modified. You now want to recompile
everything from the archive; to do this you must extract all its components. Since the
"archive" command, when asked to extract components, will not overwrite (delete) an exist-
ing file 1in the case of a duplicate name without asking, you could get "archive" to ex-
tract only those components you have not already extracted by using the command:

answer no -brief archive x xanadu

This would automatically (and silently) reply "no" to the "archive" command when it asks
you 1if you want the extract operation to delete your new, already-extracted segments.
(Unfamiliar with the Multics "archive" facility? See the Multics Programmers' Manual
(MPM): Commands and Active Functions, AG92, for information and examples.)

The full syntax of "answer" allows for considerable versatility: other contrel arguments
permit you to specify how many times a given answer should be supplied (default: as many
times as there are questions asked), or to specify a sequence of answers. For instance,

You Don't Hafta Answer Right Away... Page 1

M3-99 Multies Bulletin Reprints

you can set up a command line to supply one answer to the first question asked, supply an-
other answer to the second, give still another answer to the third, fourth, and fifth
questions, and ask you for anything else it wants after that. For a complete explanation
of these options, see the MPM, or type "help answer".

You Don't Hafta Answer Right Away... Page 2

M3-99 Multics Bulletin Reprints

WRITING MULTICS COMMANDS
PART I: OBTAINING ARGUMENTS AND REPORTING ERRORS

by Richard Scott
reprinted from the January-February 1979 Bulletin

Part of the beauty of programming on Multies is that all compiled "main" programs are com-
mands.<5> That is, you can invoke them simply by typing their names--no loading, no link-
ing, no muss, no fuss. And you can get information into programs by means of language 1/0
statements. You can even make these programs look like commands with arguments by wusing
combinations of exec_coms and abbrevs. Or you can do the same thing in the PL/I language
by writing programs as subroutines with character (*) parameters. These constructs may be
satisfactory for a program only you are going to use. But as you begin to write programs
for wider use, in combination with standard Multics commands, what you really want is the
efficiency, control structure, and error-handling capability of a true Multics command
written in the PL/I language.<6>

Unfortunately, as far as I know, no existing manual clearly explains how to write Multics
commands. People find out how by a combination of perusing the MPM Subroutines (AG93),
looking at the source code of existing commands, and asking people who already know how.
Through this series of articles, I hope to clear up some of the mystery, and show you how
to write your own commands with no Multies "guru" present. The only tools you will need
are the MPM Reference Guide (AG91), the MPM Subroutines (AG93), and a knowledge of PL/I
(worth obtaining in its own right).

ERROR MESSAGES

Since one of the big drawbacks of many programs is their inability to recover gracefully
from human error, let's start by talking about error handling. Commands report errors by
calling the subroutines "com_err_ " and "com err_$suppress_name". These subroutines take
arguments of varying number and type, and must therefore be declared with "options
(variable)", e.g.,

declare com_err_ entry options (variable);

The first two arguments are a Multics system status code and the name of the command. The
status code may be one returned by a standard Multies subroutine you have <c¢alled, the
value of an external variable in an error table, or zero. A list of most of the external
variables in the Multics system error table (>system library 71>error_table) 1is given
under "Handling Unusual Occurrences" in Section VII of the MPM Reference Guide, along with
the messages that "com err " prints when passed the value of each variable. All of these
variables are declared "fixed binary (35) external", Therefore, if your program
"do good_stuff.pli1" contains the declaration:

declare error_table $noarg fixed bin (35) external; /¥ missing arg */
then the statement: .
call com_err_ (error_table $noarg, "do_good stuff"); /¥ report error */
would cause the message:
do_good stuff: Expected argument missing.
to be printed on the terminal. Such a message is printed on the "error_output" I/0
stream, so that you see error messages even when other command cutput to the terminal

(printed on the "user output" I/O stream) has been diverted elsewhere (e.g., via a
"file output" command}.

Using the system status codes has the advantage of providing consistency with other
Multies commands: you need to memorize the meaning of fewer messages. However, if none of
the standard status codes' messages seem appropriate for your situation, call "com_err "
with a status code of zero and and give your own message as the third argument. The
statement:

call com _err_ (0, "do_good_stuff", "Try reading the documentation."); /* advise
user */

e e o

<5> In a larger sense, all programs are subroutines--commands are actually called by the
command processor; but we won't worry about that.

<6> Such a command may, of course, call FORTRAN subroutines for computational tasks.

Writing Multics Commands, Part I Fage 1

M5-99 Multics Bulletin Reprints

would print:
do_good_stuff: Try reading the documentation.

when executed., (A more elegant way of doing the same thing is to compile your own private
errer table; that, however, is beyond the scope of this article.) If the status code 1is
not zero, the third argument is appended to the message the code generates, as we'll see
later. Thls argument is actually an "ica " control string, which may contain variable
"keys" into which the fourth and subsequent arguments to "com_err " are formatted and sub-
stituted. (See the description of "ioa " in the MPM Subroutines.)

Generally, only commands call "com_err_"; subroutines do not. A subroutine instead re-
turns a status code to the calling command, which then calls "com_err_". This allows you
to call the same subroutine from several commands and decide (on a case by-case basis)
whether and in what format to print an error message. It also relates the message more
directly to the user action which led to the difficulty.

ARGUMENTS

We must also concern ourselves with getting the arguments given on the command line into
the program. A thorough discussion of how to interpret these arguments is beyond the
scope of this article. Some conventions to keep in mind inelude:

(1) Control arguments, i.e., keywords that modify the behavior of the com-
mand or indicate the interpretatlon of a single immediately-subsequent
argument (e.g., "-brief" or "-output file XXX"), begin with a hyphen
and may be given in any order.

(2) Informational arguments, i.e., variables such as filenames, may be re-
quired to appear in a particular order.

(3) Intermixing informational and control arguments should not change the
way the command behaves.

To find out how many arguments were supplied to your command, call the subroutine
"eu_$arg count", which must be declared:

declare cu_$arg_count entry (fixed binary);
If you then declare a variable like:
declare nargs fixed binary; /* number of arguments supplied */
the statement:
call cu_$arg count (nargs); /* find out how many args */
will set "nargs" equal to the number of arguments supplied.<7>
Suppose your program expects at least one argument. If "nargs" comes out zero, you wWould
want to return an error message. In such a case, the convention (these days) is to print
a message describing the syntax of the command, e.g.
if nargs = 0 then do; /* not enough arguments */
call com err (error table $noarg, "do_good_stuff",
"*/"5%Usage: do_good stuff path")'
return; /* tell user & abort command */
end;
prints a message like this:
do_good_stuff: Expected argument missing. Usage: do _good_stuff path
The usage message indicates (a) that an argument is expected, and (b) that it should be a
pathname. The "return" statement in the command procedure shown causes the command to be

aborted.

If command arguments were provided, get their values by calling "eu $arg ptr", which is
declared:

declare cu $arg ptr entry (fixed binary, pointer, fixed binary,
fixed binary (35));

e e S S

<7> In general, entry points to "cu " (command utility) deal with manipulating the command
environment.

Writing Multics Commands, Part I Page 2

MS-99 Multics Bulletin Reprints

If you then make the following declarations:

declare argno fixed binary; /% argument sequence number ¥/
declare argp pointer; /% pointer to argument ¥/
declare argl fixed binary; /% length of argument ¥/

declare arg character (argl) based (argp);
/% argument */
declare code fixed binary (35); /% system status code */

executing the statements:

argno = 1; /* looking for first argument */
call cu $arg_ptr (argno, argp, argl, code);
/* get argument */

will set the value of "arg" to the first argument of the command. The variable "code" is
a system status code, This is most often set to zero (meaning "no error") or to the value
of Merror_table $noarg", 1if, for example, you have asked for the fifth argument
(argno = 5) when only three were supplied. Proper use of "cu $arg count" will, of course,
prevent this. -

Suppose your program requires one pathname argument and may take an optional control argu-
ment, "-brief", or its abbreviation, "-bf".<8> You could use a sequence like this to
process the arguments:

declare (error_table_s$badopt, /* bad control argument */
error_table_ $noarg) /% missing argument ¥/
fixed binary (35) external;
declare brief flag bit (1) aligned initial ("0"b);
/% on if "-brief" supplied */

1

2

3

y

5

6 declare pathp pointer initial (null ());
7 /* pointer to pathname ¥/
8 declare pathl fixed binary; /¥ length of pathname */
g9 declare path char (pathl) based (pathp);
10 /% pathname */

11 declare (null, substr) builtin;

12

13 /* Get arguments (cu_sarg_count already called above) */

14 do argno = 1 to nargs;

15 call cu_$arg_ptr (argno, argp, argl, code);

16 - /% get argument */

17

18 if code "= 0 then do; /% couldn't get argument */

19 call com err (code, "do good stuff", "Argument “d.", argno);
20 -~ ~ /¥ report problem ¥/

21 return; /* abort command */

22 end;

23

24 if substr (arg, -1, 1,) = "=" then do;

25 /* control arguments start with "-" ¥/
26 if arg = "-brief" | arg = "-bf" then do;

27 if brief flag then do; /% already specified ¥/

28 call com err_ (0, "do_good_ stuff",

29 "Redundant control argument. “a");

30 /* report error %/

31 return; /* abort command */

32 end;

33

34 brief flag = "1"b; /* show "-brief" specified */

35 end;

36 else do; /* unknown control argument ¥/
37 call com err (error table $badopt, "do good stuff", ""a", arg);
38 - - /¥ report error ¥/

39 return; /* abort command ¥*/

40 end;

41 end;

42 else do; /* pathname argument */

43 if pathp "= null() then do; /* already specified ¥/

by call com err_ (0, "do_good stuff", "Redundant argument. "a", arg);
45 /¥ report error ¥/

L6 return; /* abort command */

o o o o S S N S N N e

<8> Appendix A of the MPM Subsystem Writers' Guide lists names and conventional abbrevia-
tions of commonly-used WMultiecs control arguments. Choosing applicable names from this
list and implementing the same abbreviations reduces the probability of errors in the use
of the command by people already acquainted with Multies.

Writing Multics Commands, Part I Page 3

MS-99 Multics Bulletin Reprints

7 end;

48

49 pathp = argp; /% save pointer and ¥/

50 pathl = argl; /*¥ length of pathname */

51 end;

52 end;

53

54 if pathp = null () then do; /* no pathname specified */
&5 call com err_ (error_table $noarg, "do good stuff", "Pathname required.");
56 - - - /% report error */

51 return; /* abort command ¥/

58 end;

Use comments to explain what is happening in your program. The "*d"™ in "Argument “d."
(line 19) is an "ioa " substitution key for formatting fixed-point values for decimal
printing--in this case the value of "argno". An error encountered in getting the argument
when argno = 2 therefore produces a message like:

do_good_stuff: Argument 2,

Here we can't print the actual argument in the error message; the nonzero error code may
indicate that it was uncbtainable. But later (line 37), when the argument has been suc-
cessfully obtained, we can use it in the error message 5o that the user knows exactly what
has tripped things up. The ""a" is an "ioa_ " substitution key for formatting character
values, such as the next argument te "com_err_", "arg". We use ""a" as the third argument
only to circumvent the (admittedly remote) possibility that the value of "arg" might be a
valid "ioa " control string; otherwise, the third argument could be specified as simply
“arg". If the control argument "-fred" were supplied on the command line, the error mes-
sage generated here would read:

do_good_stuff: Specified control argument is not implemented by this command.
-fred

Although one is tempted to overlook a multiple specification of the same control argument,
such a case can indicate a typing mistake. It's usually safer, therefore, to report it as
an error (lines 27-32). And if you might have many cases of the sequence:

2
then do;

call com_err (,..);
return;

end;

it's reasonable to replace them with calls to one or more internal procedures which ecall
"com_err " and then perform a non-local "goto", transferring control to a "return" state-
ment in the main procedure.

Once you have the arguments, which are all character values, you may need to transform
some of them into numeric values. Do this with a sequence like:

declare error_table $bad conversion fixed binary (35) external;
declare (conversion, -
size) condition;
declare number fixed binary; /* a number ¥/
declare binary builtin;

on conversion begin; /* handler for invalid number ¥/
call com_err_ (error_table $bad conversion, "do good stuff", "“a", arg);
7% report error ¥/

goto exit; /% abort command */
end;
on size begin; /* handler for too-large number ¥*/

call com_err_ (0, "do_good stuff",
"Magnitude of “a greater than 131071.", arg);
/* report error */

goto exit; /% abort command */
end;
number = binary (arg, 17, 0); /* convert the argument */
revert conversion, size; /% disable the handlers #*/
exit:
return; /* abort command */

Writing Multies Commands, Part I Page H

M5-99 Multics Bulletin Reprints

The "on" statements and "begin" blocks are condition handlers for the '"conversion" and
"size" conditions that might be raised if the value of "arg" could not be properly trans-
formed into a numeric value. For example, if "arg" were "2%" instead of "25" (due to a
typo), the wecall to "com _err " in the "begin" block for the "conversion" condition would
print the message: =

do_good_stuff: Error in conversion. 2%
A well-written command provides handlers for a wide range of possible error conditions,

seldom (if ever) letting control pass to the system handlers. Even cleaner (though more
complex) approaches attempt to "catch™ illegal values before they raise error conditions.

Writing Multics Commands, Part I Page 5

M5-99 Multies Bulletin Reprints

WRITING MULTICS COMMANDS
PART II: ACCESSING AND CREATING SEGMENTS

by Richard Scott
reprinted from the March-April 1979 Bulletin

Last time we talked about obtaining arguments and reporting errors. These operations are
fundamental to all commands--even those that get all their input from the terminal. For
commands that process a lot of input data or produce a lot of ocutput, the terminal is not
usually a suitable I/0 device. 1In this article we will talk about the most efficient way
of doing I/0 to and from Multics segments.

You could, of course, use PL/I I/0 statements to read data from segments and write results
into them. For operations on databases bigger than (roughly) one million bytes, this may
be the easiest approach.<9> To handle smaller amounts of data, however, it's more effi-
cient to make use of Multies' virtual memory and treat segments' contents as based vari-
ables in the program.

In standard PL/I, a pointer is a locator value used to designate a generation of storage
of a program variable., Since, in Multics, all generations of storage occur in segments,
Multies PL/I extends the pointer concept somewhat. In Multies, the internal representa-
tion of a pointer is a combination of a segment number and an offset within the corre-
sponding segment, commonly written "segnol|offset"--e.g., 244104, where "244" and "104"
are octal numbers.

In a given process,<10> the Multics supervisor assigns a unique (for that time and proc=-
ess) segment number to each segment referenced. Asking the supervisor to assign such a
number to a given segment is called initiating the segment or making the segment known to
the process. And asking the supervisor to disassociate the segment number from a given
segment, so that the number may be re-used, is called terminating the segment, or making
the segment unknown.

GETTING A POINTER TO A SEGMENT

In Multies PL/I, as in standard PL/I, you can obtain a pointer to an existing generation
of storage by using the "addr" or "pointer" builtin functions, or to a new generation of
storage by using the "allocate" statement. However, in Multies PL/I you can also get a
pointer to a named segment by calling the supervisor. The subroutine most commonly used
for this purpose is "hecs_$initiate count",<{11> which must be declared:

declare hes $initiate count entry (character (*), character (*), character (%),
fixed binary T24), fixed binary (2), pointer, fixed binary (35));

If you declare this and the following variables:

declare bit_count fixed binary (24); /% segment length in bits */

declare seg_ptr pointer initial (null ());
/* pointer to base of segment ¥*/

declare code fixed binary (35); /* system status code */
then executing:

call hes _$initiate_count (">udd>ARK>Noah", "hippo.data", "", bit count, 1,
seg_ptr, code); /* get pointer to base of segment ¥/

sets '"seg ptr" to the location of the segment "hippo.data" in the directory
">udd>ARK>Noah"--i.e., to ">udd>ARK>Noah>hippo.data", provided that the segment exists and
you have at least "r" ('"read") access to it. It also sets "bit count" to the length of
the segment, in bits.

If the segment is not already initiated, this call initiates it. The null string ("")
passed as the third argument tells the supervisor to associate a null reference name with
the segment. If you pass a non-null character string here, the supervisor associates that
string with the segment as a reference name. A segment may have many reference names, but

<9> Another approach would use the entry points to "msf_manager_", documented in the MPM
Subsystem Writers' Guide (AK92).

<10> "Process" refers to the complex of virtual address space and programs in execution
associated with a given Multies user at a given time. Except that it calls upon the
Multiecs supervisor to perform certain functions, it is very much like a "virtual machine".

<11> Supervisor calls are usually entry points of "hes " ("hardecore supervisor").

Writing Multics Commands, Part II Page 1

MS=-99 Multies Bulletin Reprints

each non-null reference name in a process may be associated with only one segment at a
time. Other programs in the same process (including the dynamic linker) may then refer to
the segment by one of its reference names until that reference name (or the segment) is
terminated. For most purposes, however, a null reference name will suffice,

The constant ™1", passed as the fifth argument, tells the supervisor to give you a pointer
to the original segment. If you pass "2" instead, the supervisor creates a temporary copy
of the segment in your process directory and sets "seg ptr" to that segment's location.

You might think that you have an error if the supervisor returns a nonzero value in

"code", However, that isn't necessarily the case. For example, if "hippo.data" has al-
ready been initiated, the supervisor returns the value of "error_table $segknown", whose
corresponding message (as printed by "com err_"; see Part I of this series, in the
January-February issue) is "Segment already known to process." However, "seg ptr" is

still set te the 1loecation of "hippo.data". This is why we call the value returned in
"code" a status code, not an error code. The test for whether initiation has failed 1is
the wvalue of "seg ptr": if it is null, then the supervisor could not initiate the segment
for you, and you should call "ecom err " with the value of "code" to find out why. (See
the example under INTERPRETING PATHNAME ARGUMENTS, below.)

Once you have a pointer to "hippo.data", you can use a based variable to overlay the stor-
age however you like. If there are already data in the segment, the value of "bit_count"
will tell you how many bits of data there are, However, the bit count of a segment may
not necessarily reflect the actual contents of the segment. It's kind of like the label
on a package, which may claim there are 7 ounces of potato chips inside, when in fact
there may really be only 5 (or even 9--a somewhat rarer case with potato chips). But we
assume that this value is correct. It is the duty of any command that changes the con-
tents of a segment that may be used by other commands to reset that segment's bit count
correctly. So if you expect the segment to contain ASCII (character) data, you can calcu-
late the number of characters from the bit count by dividing by 9 (since there are 9 bits
in each character on Multics). For example, if we declare the following variables:

declare nchars fixed binary (20); /* number of characters in segment */
declare hippo_string character (nchars) based (seg_ptr);

/* segment contents as one long ¥*/

/* eharacter string */

then executing:

nchars = divide (bit count + 8, 9, 20, 0);
/* pet number of characters in segment */

lets us treat the contents of "hippo.data™ as one long character string, which we can then
manipulate with the PL/I string builtin functions such as "index" and "substr". The vari-
able "nchars" is declared with a precision of 20 bits because the maximum number of char-
acters a segment can hold is between 2!*% and 22", We used the "divide" builtin function
instead of just saying:

nchars = (bit count + 8)/9;
because the builtin function is more efficient.

On the other hand, if you expect the segment to contain an array of aligned, single-
precision, floating-point, binary numbers, the declarations and executable code are analo-
gous:

declare nvalues fixed binary (18); /% length of array ¥/

declare hippo_array (nvalues) float binary based (seg_ptr);
/* segment as array of numbers ¥/

nvalues = divide (bit_count + 35, 36, 18, 0);
/* get number of words in segment ¥/

Here, the largest number of 36-bit words a segment can hold is between 2'7 and 2%, You
can do the same sort of thing with any imaginable type of data; just keep in mind that in
most cases (unless it has been set otherwise) the maximum length of a segment 1is 261,120
36-bit words (9,400,320 bits). Of course, with complicated structure variables, the cal-
culations get worse.

Now you can read the contents of the segment by referring to the associated based variable
on the right-hand side of an assignment statement:

x = hippo_array (7);
or as an argument to a function or subroutine:

call print values (hippo array);

Writing Multics Commands, Part II Page 2

M3-99 Multics Bulletin Reprints

And you can write into the segment by referring to the associated based variable on the
left-hand side of an assignment statement:

hippo_array (11) = x * y;

or as arguments to subroutines. The supervisor takes care of bringing the data into main
memory as it is needed, and you can forget about "read" and "write" statements.

VERIFYING ACCESS

Of course, to read from or write into a segment, you must have the appropriate access to
it.<12> If you do not, the supervisor raises the "no_read_permission" or
"no write permission" conditions. Many commands assume that, if you have any access at
all to a segment (so that "hes $initiate_count" returns a pointer to it), you have at
least "r"™ ("read") access; this is usually true. However, "u" ("wribe") access is more
likely to be lacking, so you should check for it before trying to change the contents of
the segment. You can do this by calling "hes_$fs_get_mode" as follows:

declare hcs_$fs_get mode entry (pointer, fixed binary (5), fixed binary (35));

declare mode fixed binary (5); /¥ access mode ¥/

declare write_ok bit (5) internal statie initial ("00010"b) options (constant);
/% bit pattern for "w" access */

call hes _$fs_get mode entry (seg_ptr, mode, code);
/¥ get access mode */

if code "= 0 /% can't get mode ¥/
then... /* report problem somehow */
if “(bit (mode, 5) & write ok) /% no "w" access ¥/
then... /* report problem somehow */

The call to "hes _$fs_get mode" sets "mode" to a fixed binary value whose bit pattern rep-
resents the access mode to "hippo.data" for the person using your command. A 2's bit of
" (e.g., a "mode" of 00010b, 01010b, or 01110b) indicates that the calling process has
"w" access. We wuse the "blt“ builtin function to transform the binary number to a bit
string and "and" this bit strlng with the bit string constant "write ok", in which only
the value of the 2's bit is "1"., The result of the "and-ing" is a strlng of all zero
bits, "false", unless the value of the 2's bit in the bit-string representation of "mode"
is also "1". The person using your command has "r" access to "hippo.data" if the 8's bit
of the bit-string representation of "mode" is "1"; you can make an analogous test for that
by declaring and using a constant like the following

declare read_ok bit (5) internal static initial ("01000"b) options (constant);
/¥ bit pattern for "r" access ¥/

The status code with which to call "com err " in the case of insufficient access is the
value of "error tablm $moderr" (whose associated message is "Incorrect access on entry.").
You should include the full pathname of the segment in the error message, as we will il-
lustrate later.

CREATING SEGMENTS

So far we have discussed only segments that already exist. You can also ask the supervi-
sor to create segments by calling "hcs $make_seg" as follows:

declare hcs_$make_seg entry (character (*), character (*), character (*),
fixed binary (5), pointer, fixed binary (35));

mode = 01010b; /¥ request "ruw" access mode */
call hes_$make seg (">udd>ARK>Noah", "chicken.data", "", mode, seg_ptr, code);
/% make and/or get p01nber to segment *)

Here the first three arguments are the same as those described for "hes_$initiate count”
above. And "mode" is declared the same as for the call to "hes $fs get mode" above; but
in this case it is an input argument indicating what you want the access mode of the seg-
ment to be for the process that creates it. In the example above, the values of both the
8's bit and the 2's bit are "1", indicating "rw" access.

If the value of "code" is set to zero, the supervisor has created the segment and set the

e e e e e e e

<12> See Section VIII of the Multics Introductory Users' Guide (ALUO), or Section IV of
the MPM Reference Guide (AG91), for an explanation of access modes.

Writing Multics Commands, Part II Page 3

M5-99 Multies Bulletin Reprints

access as requested. However, even if "code" is nonzero, the value of "seg_ptr" may still
be non-null., This happens when either (a) there is already a segment named "chicken.data"
in ">udd>ARK>Noah" or (b) the reference-name (third) argument to "hcs_ $make_seg" was non-
null and a segment was already initiated with that name. We will assume that the
reference-name argument was null; then the value of "code" will be either the same as
"error_table $namedup" (if the segment exists) or "error table $segknown" (if the segment
exists and has been initiated). In either case, you must decide whether to reject the
segment If you can't get a new one, or use the one that's already there. If the latter,
you can get your access mode by calling "hes_$fs_get_mode", and the segment's length by
calling "hes $status_mins":

declare hes_$status_mins entry (pointer, fixed binary (2), fixed binary (24),
fixed binary (35)):
declare type fixed binary (2); /* type of directory entry #*/
declare (error_table $namedup, /* entryname already in directory */
error_table_$segknown) fixed binary (35) external;
/% segment already known to process */

call hes $make seg (">udd>ARK>Noah", "chicken.data", "", mode, seg_ptr, code);
- /¥ make and/or get pointer to segment */

if seg ptr = null () /* can't get a segment */
then... /* handle the error ¥/

if code = error_table $namedup | code = error_table_ $segknown
/* segment already exists ¥/
then do; /% get needed information */
call hes_$fs_get_mode (seg_ptr, mode, code);
/* get access mode */
/% handle errors */

cali hes_$status mins (seg ptr, type, bit count, code);
/% get length *®/
/* handle errors */

end;
else... /* handle the error %/

TEMPORARY ("SCRATCH") SEGMENTS

To get temporary segments for scratch space, call "get temp segments ", For example, if
you need three temporary segments, you can get them as follows:

declare get temp segments entry (character (*), (*) pointer,
fixed binary (35)7;
declare temp_seg_ptrs (3) pointer initial ((3) null ());
/* array of po1nters *®/

call get_ temp segments_ ("do_good_stuff", temp_seg ptrs, code);
/* get scratch segments */

if code "= 0O /¥ can't get segments ¥/

then... /* handle the error ¥/
The first argument to "get_ temp segments " must be the name of your command (here,
"do_good_stuff"). You tell "get temp segments " how many segments you need by the extent
of the pointer array "temp_se&_ptrs" This must be an array, even if you want only one
segment:

declare temp seg ptrs (1) pointer initial ((1) null ());
/¥ array of extent 1 ¥/

The advantage of using "get temp segments " instead of "hcs $make_seg" is that, once you
are finished with the segments, another program may reuse them (see CLEANING UP, below)
and thereby avoid the cost of creating new segments.

MODIFYING SEGMENTS SAFELY

One important use of temporary segments is for making extensive modifications to permanent
segments. If a command were to make massive changes directly to a permanent segment, a
program error or system crash might leave the segment's contents mangled or otherwise use-
less. You can considerably reduce the likelihood of this kind of catastrophe by copying
the contents of the permanent segment into a temporary segment, modifying the temporary

Writing Multies Commands, Part II Page 4

M5-99 Multies Bulletin Reprints

segment, and then copying the new temporary segment back into the permanent segment, ei-
ther upon completing all the modifications or at strategic points in the modlflcation
process. Thus, if something goes wrong, the contents of the permanent segment are left in
a manageable state. You can copy the permanent segment into the temporary segment with a
single assignment statement, e.g.:

temp_seg_ptrs (1) -> hippo_array = seg ptr -> hippo_array;
7% copy segment contents to ¥/
/* temporary segment ¥/

or after making the modifications:

seg_ptr -> hippo_array = temp seg ptrs (1) -> hippo_array;
/* copy modifications back into */
/* original segment */

Truncate the original segment and reset its bit count (see CLEANING UP, below) after each
copy from the temporary segment to the original.

INTERPRETING PATHNAME ARGUMENTS

The above examples used character-string constants for the directory and entryname argu-
ments. However, you do not usually want to program in constant values; you want to get
the pathnames from command arguments. In the preceding article in this series (January-
February issue), we obtained such an argument and stored its pointer and length:

declare pathp pointer initial (null ());

/* pointer to pathname */
declare pathl fixed binary; /* length of pathname ¥/
declare path character (pathl) based (pathp):

/* the pathname */

The pointer and length were obtained by calling "cu_$arg ptr". To transform this path-
name, which could be an entryname ("giraffe stats"), a relative pathname
("<{Noah>giraffe stats"), or an absolute pathname (">udd>ARK>Noah>giraffe stats"), into the
absolute directory pathname and entryname required by "hes $1n1txate_count" and
"hes_$make_seg", call "expand_pathname ": -

declare expand pathname_ entry (character (*), character (%), character (%),
fixed binary (35));

declare dirpath character (168); /* absolute pathname of directory */

declare entryname character (32);

call expand pathname_ (path, dirpath, entryname, code);
/% get directory and entry ¥/

if code "= 0 /% couldn't interpret "path" ¥/
then do; /% handle error */
call com_err_ (code, "do good stuff", ""a", 6 path);
- - - /* include value of "path" in message */

return; /% abort command */
end;

This sets the value of "dirpath" to the directory portion of the absolute pathname of
"path" and sets the value of "entryname" to the entry portion. The lengths of "dirpath"

(168) and "entryname" (32) are the respective maximum lengths for an absolute pathname and
an entryname.

Now you can use "hes_$initiate count", for example, to get a pointer to "giraffe stats":
declare rtrim builtin; /% trims trailing blanks */

call hes_$initiate_count (dirpath, entryname, "", bit count, 1, seg_ptr, code);
/* get pointer to segment */

if seg_ptr = null () /% couldn't get it */
then do; /% handle the error */
call com_err_ (code, "do_good stuff", "“a>"a", rtrim (dirpath),
rerim (entryname)), /* include full pathname in message */
return; /* abort command */
end;

The builtin function "rtrim" removes trailing blanks from the values of "dirpath" and
"entryname" so that, if an error oceurs, the message comes out looking like, for example,

do_good _stuff: Entry not found. >udd>ARK>Noah>giraffe data

Writing Multics Commands, Part II Page 5

MS=99 Multies Bulletin Reprints

without a lot of extra blanks after ">udd>ARK>Ncah"™ and "giraffe.data". You should always
include the full absolute pathname in error messages as soon as it becomes available from
"expand pathname ", Doing so makes it much easier for the person using your command to
figure out what's wrong when he or she mistypes a pathname or thinks the working directory
1s sommthing other than what it is.

CLEANING UP

When your command is finished working with segments, it is important that it "eclean them
up." This invelves four things:

truncating meodified permanent segments,
resetting these segments' bit counts,
terminating all permanent segments, and
releasing all temporary segments.

LR

If you have reduced the number of words of data in the segment, truncate it to its new
length. This means setting to zero all the words beyond those containing actual data.
First, calculate the bit count (which you will use later) from the new data size. (This
operation is essentially the reverse of getting the size of the data structure from the
bit count.) Next, calculate the new length of the segment in words from the bit count (if
you don't have it already) and call "hes_$truncate_seg" to do the truncating:

declare nwords fixed binary (18); /% length of data structure in words */

bit_count = 9 * nchars; /% calculate bits from characters */
nwords = divide (bit count + 35, 36, 18, 0);
- /* get integral number of words */
call hes $truncate seg (seg ptr, nwords, code);
B - - /* zero out unused words ¥/

if code “= 0 /% couldn't truncate ¥/
then... /* report error ¥/

You truncate the segment because this frees the unneeded storage so that it can be reused
and so that the person using your command doesn't have to pay for it.

Resetting the bit count on a permanent segment is important, because the bit count will be
used later by other commands to determine that segment's length. A call to
"hes $set _be _seg" sets the count, For example, using the value of "nwords" calculated
above, we set the bit count as follows:

declare hes $set_bec_seg entry (pointer, fixed binary (24), fixed binary (35));

call hes_$set be_seg (seg_ptr, bit count, code);

- /¥ set the bit count */
if code "= O /% couldn't set it ¥/
then do; /* handle error */

Finally, terminate the permanent segments and release the temporary segments you have
used. You terminate segments so that their numbers may be re-assigned and, more impor-
tant, because the efficiency of your process decreases if the number of segments known to
it (called the working set) becomes too large. To terminate segments initiated by
"hes $initiate count" with null reference names, call "hes_$terminate _noname:"<13>

declare hecs_$terminate_noname entry (pointer, fixed binary (35));

call hcs_$terminate_noname Cseg_ptr, code);
/% terminate segment */

To release the temporary segments, call "release temp segments ":

declare release temp segments entry (character (*), (¥*) pointer,
fixed binary (35));

call release_temp segments_ ("do_good_ stuff", temp seg ptrs, code);

€13> If a command initiates a segment before an earlier command has terminated it, a call
to "hes_$terminate noname"™ by the second command does not terminate the segment; it re-
mains accessible to the first command.

Writing Multics Commands, Part II Page 6

M3-99 J Multies Bulletin Reprints

/* return temporary segments to pool */

The arguments to '"release_temp_segments_" are exactly the same as those passed to
"get_temp_segments_" to obtain the pointers.

The terminating and releasing of segments is so important that you should take steps to
see that they are performed even when your command is interrupted. As soon as you initi-
ate your first segment or get the pointer to your first temporary segment, set up a han-
dler for the "eleanup" condition.

The "cleanup" condition is signalled whenever a PL/I procedure performs a nonlocal
"goto"--i.,e., when it transfers to some statement outside its scope. For example, if Pro-
cedure A calls Procedure B, and Procedure B (instead of returning) transfers to a label in
Procedure A, the "cleanup" condition is signalled. A common example of this is when you
interrupt a command and type "release". The "release" command performs a nonlocal trans-
fer to a label in the system subroutine that reads command lines from the terminal
("listen "). However, when a command is aborted because of a nonlocal transfer, it
doesn't have a chance to do the cleaning up it would normally have done before the "re-
turn" or "end" statement. The "cleanup" handler gives it a second chance to do this.
When a procedure finishes because of a nonlocal transfer, its "kleanup" handler, if any,
is invoked. There can be only one active "eleanup" handler in a PL/I procedure or "begin"
block, so it has to handle everything:

call hes_$initiate count (dirpath, entryname, "", bit _count, 1, seg_ptr,
code); /% get pointer to segment ¥/

if seg ptr = null () /% couldn't get it */

then do; /* handle error */

endg

on cleanup call cleanup_handler ();
/% establish cleanup handler */

cleanﬁp_handler:
procedure ();

/* This gets called in case of a nonlocal transfer %/

if seg_ptr "= null () /* segment was initiated */
then call hes $terminate noname (seg_ptr, code);
/¥ so terminate it ¥/

call release_temp_segments_ ("do_good stuff", temp seg ptrs, code);
/% back to the pool ¥/
return;
end cleanup handler;

end do_good_stuff;

Notice the test "if seg ptr®=null ()" in the internal procedure '"ecleanup handler". This
is why we initialized "seg_ptr" to "null ()", Likewise we initialized "temp seg_ptrs" to
null pointers because "release temp segments " does not mind being called with null point-
ers but does complain about invalid ones. We don't examine error codes here because there

is not much we could do if they were nonzero.

This is essentially what you need to know to manipulate segments with your commands.
There are variations on the procedures we have discussed, and additional operations--such
as manipulating a segment's access control list (ACL)--which are beyond the scope of this
article. A perusal of the entry points to "hes " in the MPM Subroutines (AG93) will givm

you an idea of the range of possibilities.

Writing Multics Commands, Part II Page T

MS5-99 Multics Bulletin Reprints

THE NEW MULTICS MAIL SYSTEM

by W. 0lin Sibert
reprinted from the May-June 1979 Bulletin

The three commands that make up the new Multics Mail System ("print mail", "send mail",
and "read_mail") were installed in March. They provide a far more powerful and flexible
interface for sending and receiving Multics mail than did the old "mail" command, and also
contain several improvements over the older (experimental) versions of "read _mail" and
"send_mail", with which some users may already be familiar.

THE "print_mail™ COMMAND

The simplest of these new commands is "print_mail"™ (prm). It is designed to replace the
mail-reading capability of the old "mail" command, but differs in one important respect:
rather than waiting until you have read all the messages in your mailbox and then asking
if you want to delete all of them, it prints your messages one by one and asks, after
each, whether you want to delete just that one. This way, you are spared the
Tall-or-nothing” decision, and can keep individual messages around as long as you want.
Here is a sample session using "print mail". User typing is preceded by an arrow (=>).
In the example, the Multics ID of the user checking his mail is PJamison.DATA.

=> print mail
You have 3 messages.

#1 (5 lines) 03/22/79 23:32 Mailed by: AMandel .DATA
Date: 22 March 1979 11:35 est
From: AMandel .DATA at MIT-Multics (Albert Mandel)
Subject: set_database command
To: Michaels.DATA at MIT-Multies, PJamison.DATA at MIT-Multics

I have a new version of the set_database command--try it.

It's in >udd>DATA>AMandel>new, and has most of the new options
we talked about at the last meeting. It also implements the new
multiplex locking protocol.

-- Al

print mail: Delete #1? => yes

#2 (2 lines) 03/22/79 23:33 Mailed by: Michaels.DATA
Date: 22 March 1979 .11:47 est
From: Michaels.DATA at MIT-Multics
Subject: Re: set database command
To: AMandel.DATA at MIT-Multies
ce: PJamison.DATA at MIT-Multies

I tried it, but all it did was take faults. Looks
like we shouldn't switch just yet.... --Carl

print_mail: Delete #2? => yes

#3 (3 lines) 03/22/79 23:34 Mailed by: AMandel.DATA
Date: 22 March 1979 16:02 est
From: AMandel.DATA at MIT-Multiecs (Albert Mandel)
Subject: Re: set_database command
To: Michaels.DATA at MIT-Multics, PJamison.DATA at MIT-Multics

You may have tried it while I was recompiling it.
Try it again & see if it works this time.
Al

print mail: Delete #37 => yes
r 1036 1.023 4,496 117

The session above shows the common types of message headers produced both in Multies mail
by the new "send mail" command (see below) and by the mail-sending programs on other
ARPANET host computers. The field names ("Date™, "From", "Subject", "To", and "ce") are
largely self-explanatory.

The "print mail"™ command has several control arguments; of particular interest to many
users is the "-no_interactive messages" (-nim) option, which causes "print mail" to ignore
any interactive messages being held in the mailbox, and the "-no_header" (-nhe) option,
which suppresses most of the message headers, printing only the "From:" and "Subjeet:"

Multies Mail System Page 1

M3-99 Multics Bulletin Reprints

fields. Further information about these headers can be found 1in a deseription of
"print_mail" in a forthcoming addendum to the MPM Commands and Active Functions (AG92).

Because "print mail" is designed to be very simple to use, it has none of the more ad-
vanced features provided by "read_mail"™ (logging, forwarding, etc.) When you need these
facilities, you will want to use "read_mail" rather than "print_mail".

THE "send_mail" COMMAND

Use the new "send_mail" (sdm) command to send mail. PJamison.DATA might use "send_mail"
like this, after printing the mail seen above:

=> send_mail AMandel.DATA -cc Michaels.DATA -log
Subject: => new set_database command
Message:
=> I tried it, and it seems to work fine for me.
=> Did you fix the bug that caused it to randomly
=> delete directories?
=> Also, I think it should have a "-brief" control argument to
=> suppress the messages.

=> Pete

Mail delivered to your logbox.
Mail delivered to AMandel .DATA.
Mail delivered to Michaels.DATA
r 1043 0.571 3.585 56

Here, "send mail" was used to send a message to two people, and to send a copy to the
user's "logbox" (a segment in his home directory named "PersonID.sv.mbx", in which the
message is retained for posterity). The header for that mail would look like this:

Date: 23 March 1979 10:42 est

From: PJamison.DATA at MIT-Multics

Subject: new set database command

To: AMandel.DATA at MIT-Multiecs

cc: Michaels.DATA at MIT-Multies, PJamison.DATA at MIT-Multies

PJamison.DATA appears in the "cc:" field because he specified the "-log" control argument
in the "send mail" command 1line. There are many more options and frills available for
"send_mail"; they are described fully in the new MPM addendum.

One other feature deserves mention here: you can define an abbrev that inserts your full
name in the "From:" field as a comment (as is shown in messages 1 and 3 above):*

.ab Sdm send mail -from AMandel .DATA -comment "Albert Mandel"

This kind of abbrev could also be used to set various other options. Since all options
are available in both the positive and negative forms (e.g., "-fill" and "-no_ fill"), any
option specified in an abbrev can be overridden by specifying its opposite form later on
the command line. In particular, the "-fill" control argument is recommended; it automat-
ically "fills" the input text to a line length of 72 characters before sending it, greatly
improving the message's readability.

The "send mail" command also allows you to edit your message before sending it. To do
this, type the characters "\f" (rather than ".") as the last line of input. This puts you
into the "gedx" editor, with the main buffer containing the text of the message (which you
can then edit). When you give the editor's "q" (quit) request, you enter "send_mail" com=-
mand level, and your message contains the newly edited text. If all you want to do at
that point is send the message, type the two requests "send" and "quit". However, a large
variety of other "send mail" requests (all described in the new MPM) are available for do-
ing other things (adding or removing recipients, ete.).

o S N S S A S S S N S =

#¥For more information on the Multics "abbrev" facility, see the MPM description of the
"abbrev" command, and the article "MULTICS TIME-SAVERS: A BEGINNER'S GUIDE TO (PERSONAL)
ENERGY CONSERVATION" in the May 1978 issue of the Bulletin.

Multics Mail System Page 2

M5-99 Multics Bulletin Reprints

ABOUT THE "read_mail" COMMAND

The "read_mail" (rdm) command is quite powerful. It lets you peruse the contents of a
mailbox; selectively delete, print, or list messages; save copies of messages in other
mailboxes; "forward" mail to other users; and invoke the "send_mail" subsystem to compose
replies. Fer complete information on wusing the "read mail" command, type "help
read mail".

Multies Mail System Page 3

M3-99 Multics Bulletin Reprints

MULTICS TAPES FROM SCRATCH

e e o o

Adapted with permission from Two Bits Worth, the newsletter of the University of South-
western Louisiana Computing Center. HRlicia Towster wrote the original article on the ba-
sis of interviews with Sam Bullard, Bob Sonnier, and James Dugal. Appeared in the Septem-
ber-October 1979 Bulletin.

e o e e e 52 555 55 5 o o e o e S S o o 1 o S o o o o

Magnetic tapes are simply very long thin strips of mylar backing coated with a thin layer
of some material which can retain magnetic information. They are an economical and rela-
tively durable way to store infermation; for less than $20 you can acquire a tape capable
of storing (on Multiecs) up to about 45 million bytes of useful information; and, if you
are able to keep this tape away from heat, humidity, dirt, magnetic fields, and malfunc-
tioning tape drives, it can give you reliable service for several years. (Even under the

best circumstances, tapes will eventually begin to show signs of wear. Thus, cautious
tape users will often keep more than one copy of their important data.) Magnetic tapes
have a standard width of one-half ineh; several 1lengths are available: 4oor, 1200',

2400', and 3200'. At either end of a tape is a shiny aluminum patch to mark the Beginning
of Tape (BOT) and End of Tape (EOT).

It sounds simple encugh.

Why, then, when you approach a computer installation carrying a "foreign tape" (that is,
one which was not created on that particular computer), does the staff eye you with mis-
givings, rather as though you were carrying a foreign virus? They are hoping that you can
describe it clearly enough that they will quickly know what treatment to prescribe.

You see, it is not nearly as simple as tape cassettes--tape them on one machine, play them
back on another. There is a considerable variety of ways that information can be written
on a magnetic tape. And it is entirely possible to produce a tape which is totally incom-
patible with the machine on which you desire to use it. These incompatibilities may be
due to either hardware (the kinds of tape drives which are available) or software {(pro-
grams which read and write tapes, normally supplied by the manufacturer).

First, there are differences in the ways that tape drives can physically arrange and/or
access information on a tape. Some drives will read or write nine bits (binary digits,
either a zero or one) in a row across the width of the tape; these are called "nine-track"
drives, and the tapes they produce are called, reasonably enough, nine-track tapes. There
are also seven-track drives which deal with seven-track tapes on which rows of seven bits
are stored.

Information can also be arranged differently down the length of the tape: this is called
tape "density" and is measured in "bpi"™ which stands either for bits per inch (if you
think in terms of only one track at a time) or bytes per inch (if you think of the entire
row of tracks as a byte). Possible densities are 200 bpi, 556 bpi, 800 bpi, 1600 bpi, and
6250 bpi. A particular drive is limited in the number of different densities that it can
handle.

Higher densities are not simply more compressed than lower densities--they also contain
additional information that enables the drives to continually be checking on whether or
not they are reading your data successfully. For example, on a nine-track 800 bpi tape,
one bit in each row is used as a "parity bit"--that is, it is not actually part of your
data; rather, its value is a function of the value of the other bits in the same row.

Most typically, "odd parity" is used; that is, the ninth bit is set so that the sum of the
bits in the row will be an odd number, On 1600 bpi tape, parity information is also com-
puted for groups of rows and written at regular intervals along the tape. In addition,
unique patterns of bits are written at intervals for the purpose of synchronization. Nor-
mally you can remain totally unaware of these extra bits; the tape drive hardware/firmware
generates them and/or checks them automatically. If they fail to check out, the proper
action 1is left to the program which is controlling the attempted read. Often such a pro-
gram will elect to retry the read; if this does not work, you will, of course, get an er-
ror message. Such a message could indicate a bad tape, a malfunctioning drive, or a mis-
match between the way your tape actually is (tracks, density, or parity type) and what the
drive expects it to be.

Information is not written continuously along the length of the tape; it 1is written in
"blocks"™ or "physical records". These physical records may well differ in size from the
logical divisions of the data ("logical records") which you have placed on the tape. If
logical records are short, several may be grouped together into one physical record; long
logical records may also span several physical records. Most typically, physical records
will be of a uniform size ("fixed block"), but it is also possible for their sizes to vary
("variable block"). At the end of a physical record is a unique bit pattern (the End of
Record Mark), as well as any bit patterns used for synchronization. The space between
records is called the "interrecord gap".

Multics Tapes From Scratch Page 1

M3-99 Multiecs Bulletin Reprints

The tape drive itself deals only in terms of these physical records, moving them from the
tape to a buffer in the computer's memory (or vice versa, in the case of writing a tape).
As information is transferred between the tape drives and the buffer, the programs which
control the tape usage deal with the current buffer and get ready to handle the next
buffer. Because one or more of these buffers must reside in the computer's real memory,
many installations will have some upper limit on the size of physical tape records that
they can handle.

But this is only a small part of what makes tapes difficult. Consider--how are those
meaningful bits of data to be interpreted? Remember that a Multics word consists of 36
bits and your tape consists of numerous rows of 8 bits and 8 dees not go evenly inte
36....And if your tape was perhaps created on some other computer with a different word
size?

Well, luckily there are standards. But unfortunately there are more of these than we
might like. First there is the theoretical standard: the American National Standards In-
stitute's specification of how to map those rows of bits on tape back and forth between
words on the computer; this accounts for the Multics i/o module tape ansi . Then there is
the de facto standard, which has sheer numbers on its side; that accounts for tape ibm_
But there 1is nothing to prevent any of the computer manufacturers from developing their
own internal standards, tailored to their own hardware, and so they do. This can poten-
tially produce more efficient or appropriate use of tapes so long as you are committed to
a particular brand of computer, but will almost certainly cause problems if you ¢try to
switeh brands and take your data with you. To deal with these standards fiefdoms, Multics
has two more tape-handling i/o0 modules: tape mult (for Multics Standard Tapes) and
tape _nstd_ ("tape nonstandard" for everybody else). =

"Gee," you may be saying, "I use tapes a lot and I never even heard of those i/o modules;
I ecan't be wusing any of them." Yes, you are; they just get invoked for you behind the
command-level scene. If you have switched to tape-archive, you will normally be using
tape ansi .

To complicate matters still further, these various standard tapes can have subtypes.
Tapes may be either labeled or unlabeled. Labels are, in theory, extremely helpful, since
the information encoded in a tape label will, among other things, tell you what kind of a
tape you are actually dealing with. But there's a catch: 1label formats can vary, too,
and some computer installations may not have programs available to interpret tape labels.
Thus, they could actually make your tape harder to read. (For further information, see
"NOTES ON USING MULTICS TAPES", elsewhere this issue.)

Another complication arises from the different ways that information can be represented
inside wvarious computers. The internal binary representation of machine instructions or
data will normally be specific to a particular computer; thus, it is useful to tape such
binary information only if the tape will be reread on exactly the same sort of computer.
"Portable tapes" (that is, tapes which are to be carried to a different sort of computer)
should use one of the standard sets of character codes to represent the information; there
are two widely used standards: EBCDIC, which is promulgated by IBM, and ASCII, the Ameri-
can Standard Code for Information Interchange. In the absence of other information, you
may expect most IBM format tapes to use EBCDIC and most ANSI tapes to use ASCII.

With so many variables involved, clearly it is only sensible to write down the appropriate
information about the tape when it is created and to keep this information with the tape.
However, this does not ensure that it can be read by the computer of your choice, which
simply may lack the hardware or software that you need.

This is a lot of information to keep straight, so here are some checklists.
Ways in which tapes (and installations) can vary:

-number of tracks
-density

-type of parity

-size of records
-size of block

-type of format
~labeled or unlabeled
-type of encoding

Portable tapes which Multies can handle:

-nine-track

-800 or 1600 bpi

-odd parity

-any record size

-any block size between 20 and 8192 characters (for output, block size must be evenly
divisible by U4)

-a variety of formats, but IBM and ANSI are safest

Multics Tapes From Scratch Page 2

M3-99 Multies Bulletin Reprints

-most types of labels
~ASCII or EBCDIC encoding

A tape of this sort could be read at many installations:

-nine-track

-800 bpi

-odd parity

-a fixed record size

-a fixed block size no larger than 2048 characters
-IBM format

-unlabeled

-EBCDIC encoding

If you need an unlabeled tape, you must use the "copy file™ command which will copy a
structured file from one place to another. Suppose you have an ASCII segment called
"random thoughts" con31st1ng of lines of various lengths, none of them longer than 136
characters. Now, this is not a structured file, but you can temporarily create a struc-
tured version of it by using the records stream 1/0 module. Thus, you could create a file
in a generally portable format on tape reel number 1234 by the command line:

copy file -input_deseription "record_stream_ -target vfile_ random _thoughts™ \
-output description "tape ibm 1234 Zcreate -no labels -format fb —record \
136 -block 1360 -density 800 -mode ebedic -number 1"

Yes, that is one command line; you can shorten it a little by taking advantage of the de-
faults and short forms of the various options. This would produce:

cpf -ids "record_stream_ -target vfile random thoughts" -ods "tape_ibm_
1234 -er -nlb -fmt fb -rec 136 -bk 1360 -den 800 -nb 1"

But this is still a lot to type, so you may well want to make sure there is a tape drive
available before you type it. For an explanation of all the options which tape _ibm_ can
use, see the MPM Peripheral Input/Output Manual.

The "copy file" command can also be used to read a foreign tape onto Multics. Suppose a
friend has sent you a labeled ANSI tape; he tells you that it contains two files consist-
ing of 80 character records in blocks of 800 characters written at 1600 bpi. He neglected
to tell you what character set was used, but since it is an ANSI tape, it is probably
ASCII. You vregister the tape as reel number 4321 and attempt to persuade copy_file to
read the second file from the tape by typing:

epf -ids "tape ansi_ 4321 -nb 2 -fmt fb -rec 80 -bk 800 -den 1600" -ods \
"reoorqﬁstream -target viile file2"

Looks good. But it doesn't work at all; you get read errors whatever drive you use.
Since it's a labeled tape, you decide to try:

list_tape_contents 004321 -io_module tape ansi_
And guess what! It turns out that it's really an 800 bpi tape.

Tapes may be a little difficult, but misinformation about them can make them much, much
worse.

Multies Tapes From Scratch Page 3

M3-99 Multies Bulletin Reprints

NOTES ON USING MULTICS TAPES

reprinted from the September-October 1979 Bulletin

If you've ever tried to use tapes on Multies, you've probably discovered that, while it's
not quite as difficult as stealing the Golden Fleece, it's no picnic either. This can be
a real problem, but Honeywell is working to try and solve it for you. In fact, several
programs have recently been installed that improve the process significantly; they make it
easy to do things that were once impossible.

"I have a tape with a FORTRAN program on it., It came in the mail yesterday, and
I don't know anything about it. How can I read it onto Multics?"

Well, if you are fairly certain you know the tape's density, format, and 1label standard,
the easiest thing to do is to use the "tape_in" command. This command is documented in
the Multics Programmer's Manual Peripheral I/0 (AX49) and on 1line (type "help tape in
-title™). However, rarely will you be fortunate enough to have this much information
about a random tape. Frequently, you may even be uncertain about the kind of machine on
which it was written--let alone how it's labeled or how big the records are. If this hap-

pens to you, cheer up! Relief is available, in the form of a new program named
"read tape_and_query" (rtq).¥ (You need to be somewhat knowledgeable about tape formats
to wuse this program, An alternative possibility is to use the "Mystery Tape" service

available from Operations at a cost of $10.00.)
To examine a tape from slot 064437, you must type:
rtq 064437

There is no MPM deocumentation yet available for this command; to learn how to use it, get
a dprint of the file >dox>isdrtq.info or type "help rtq".

The "read tape and query" command is extremely handy for examining tapes of unknown ori-
gin. Since it alTows you to change the density at which the tape is being read, you can
figure out the density at which the tape was recorded by reading at different densities
until you find the one that doesn't get read errors. You can alsc have
"read_tape_and_query" read a record into its internal buffer and dump it in a variety of
formats, using 6-bit, 8-bit, or 9-bit characters. Finally, it has facilities for "guess-
ing" what kind of label (if any) is on the tape.

|
|
"I have a lot of large files that I hardly ever use, but I don't want to delete i
them. How can I get them off my disk space?"

1

The best solution for this problem is to use the "tape_ archive" command, documented in the
latest edition of the MPM. This lets you maintain a tape in much the same manner as you
would a Multies "archive" segment: you can add, delete, and replace files, without ever
having to worry about tape format, density, and so on.

The "tape archive" program creates and maintains an on-line control segment (with suffix
".ta"), in which it records the contents of each tape. It is not absolutely necessary for
you to keep this segment; it can be re-created by giving "tape_archive" with the
"load_table"™ key. It must, however, be available whenever you prepare to modify the con-
tents of the tape, so it may be more convenient for you to keep it on line.

The basic method of use is this: you issue a series of "tape archive" commands specifying
the appropriate keys for adding, deleting, or replacing files; these operations are "re-
membered" in the control segment, and are all executed before the tape is mounted. When
you have requested all the changes you want made to the tape at this time, give the
"tape_ archive" command with the "go" key. This mounts your tape and makes all the speci-
fied changes.

You can perform a number of other operations on a control segment: you can get a 1list of
the tape's current contents, or a list of the requests you have issued so far, but which
have not yet been fulfilled, and you can cancel requests not yet performed.

The "tape_archive" command does a lot of your worrying for you (e.g., about a tape's con-
tent and format). When it needs a new tape (for instance, the first time it is run with a
new control segment), it asks you for the slot number.

o N R M M M M M T M M M M T M e

*¥As of this writing, "read_tape_and_query" is scheduled to be installed by early October.

Notes On Using Multics Tapes Page 1

M2-99 Multics Bulletin Reprints

At the end of a tape, "tape archive" may inquire whether you want to overwrite an
unexpired file. If this " happens to you, answer "no". When you reach Multies command
level, use the tape_archive "t" key with the control argument "-pending" to find ocut what
requests are pending. Use the tape_archive "cancel" key to cancel those reguests. You
can then use the tape archive "t" key with the control argument "-long" to find out about
wasted space (the "waste factor") on the tape. If this waste factor is high, you may want
Eo get another tape and use the tape_archive "compact" key to copy your useful files onto
the new tape. If the waste factor is low, and if you don't plan to medify the files on
the original tape, vyou can use it as is. The tape_archive "alter" key could be used to
make this archive more than one tape volume long, but this is likely to prove less effi-
cient than maintaining a separate archive in each tape volume.

A number of other facilities are available from "tape_archive"; they are described in the
MPM and in the on-line info file. (Type "help ta"™ for complete information.) At this
writing, the "reconstruct" operation is not yet implemented; thus, you cannot recover au-
tomatically if am "archived" tape becomes mangled.

i
"I'm going away for the summer, and I don't want to pay storage charges for my |
project all that time." i
i

1

You could use "tape archive" here; however, the best way to solve this problem is with
“bachpﬁdump" and "backup_lecad", the same programs used by the Multics Hierarchy Backup
System. Essentially, this allows you to put a "snapshot" of a hierarchy on a tape. When
you retrieve it from the tape, it is recovered in exactly the form it had originally--all
the ACLs are the same, all segments and directories have the same contents, and so on.
Unfortunately, using these programs is a rather arcane process, and the Honeywell documen-
tation (in the Multics Operators' Handbook, AM81) is designed for operators rather than
for ordinary users. We therefore recommend that you contact IPS Consulting Services at
253-7020 if you are interested in using the programs.

"Help--I don't understand!"

You can always direct questions about Multics tapes to the on-line consultant. (Type
"help ole" for details.) The consultant will often refer you to a manual or to another
consultant, or ask that you make an appointment. Before sending a distress cry, please be
sure to examine the appropriate documentation carefully.

Notes On Using Multies Tapes Page 2

M3-99 Multies Bulletin Reprints

FUN WITH READ_MAIL
by Dorothy Corbett

reprinted from the March-April 1980 Bulletin

Last year, when the new Multics mail system first came out, we ran an article describing
two of its three commands.* We managed to cover "print_mail" and "send_mail", but we de-
cided to leave "read mail", with its swarm of features, until later. Well, it's later.
What follows is a less-than-exhaustive look at some of the things read mail can do besides
printing mail, among them forwarding messages, sending replies, saving messages in an aux-
iliary mailbox, and writing them into segments.

To do any of these things, you begin by issuing the read _mail command. It responds by
telling you how many messages your mailbox contains. (If you don't have a mailbox,
read_mail autoematically ereates one.) Then it enters a read mail request loop, and
prompts you for further instructions by typing "read_mail:" Tt will remain in the loop
until you exit by giving the "gquit" request.

If your mailbox contains more than one message, you can tell Multies which message to deal
with by following each instruction with a message specifier. The easiest specifier to use
is the "message number", which is assigned by Multies and typed out when you "list" the
mailbox contents. Other valid specifiers are keywords (such as "all", "current", "first",
"last", "previous", and "next"), and ranges. For example, the request "pr 2:last" prints
all messages but the first, If you don't give a message specifier, your command applies
to the "current message", which is the first message when you enter read mail and is reset
as you delete a message or explicitly specify another in a request. The current message
is marked by an asterisk when you list messages.

By default, read _mail permits you to manipulate only messages sent by send _mail. However,
if you specify the -interactive_messages control argument (-im), read_mail will also proc-
ess those sent by the send message command.

USING read_mail TO SEND MESSAGES

You may need to reply to a message, or just to pass it along to another user, You can do
this most easily while in the read_mail request loop.

To forward mail, give the "forward" request, a message specifier, and a destination.
Multics will tell you whether the message was received.

A "reply" request ("reply" followed by the specifier of the message you're answering) puts
you in the middle of the "send_mail" command. Read _mail automatically creates the neces-
sary header, so it just prompts you for the message text. Whenever it sends messages,
"read_mail" adds extra header fields which indicate origin, topic, and date of the reply
or forwarded message. Together with the header from the original message, this informa-
tion can be very lengthy. If you receive a reply or forwarded message, you can Suppress
most of the header fields by giving the no_header (-nhe) control argument with the print
request,

USING read mail TO SAVE MESSAGES

You'll probably use "delete" more often than any other "read mail" request but "print".
Not only 1is it incomvenient and expensive to have old messages cluttering your mailbox,
but, more important, it can only hold a limited amount. Once it is full, you can no
longer receive mail. You can alter the size of your mailbox, using the mbx_set max_length
command, but you can only do this when your mailbox is empty. Use the "delete" request to
remove unwanted messages. (If you accidentally delete a message you still need, the "re-
trieve" request can bring it back. You must "retrieve" the message before you gquit
read mail, though.) Sometimes you may want both to retain a copy of a message and to de-
lete it from your mailbox. Read_mail provides you with many ways to do this. Using the
"write" request you can copy the message into a segment, to whose entryname read mail will
assign a final component of "mail", which you can then edit, execute, or dprint. Or you
store the message in a save mailbox. Use the "log" request to transfer messages to your
logbox, which is the default save box. (Use the "save" request to specify other save
boxes.) For example, to log your second message, type "log 2".

If you don't have a logbox, "read mail"™ will automatically create one, in your home direc-

tory. It will be called person_idfsv.mbx. (To examine your logbox, use the -log control
argument of read_mail.)

T o 1 T 7 o

¥See "The New Multics Mail System" in the May-June 1979 Bulletin.

Fun With Read_mail Page 1

M3-99 Multics Bulletin Reprints

ISSUING MULTICS COMMAND WITHIN read_mail

Lines typed to read_mail that are preceded by two perieds (".,.") are passed to the Multics
standard command processor. Thus, you can issue Multies commands without leaving the
read_mail request loop. For example, the following exchange shows how to write your sec-
ond message into a segment and dprint it immediately (what you type is preceded by =>):

read mail: => write 2 my_mail
read_mail: => ..dprint my mail.mail

Since you haven't left the read mail loop you can continue to process your messages.
Properly used, read_mail can make life on Multies much easier. We've described only some

of read_mail's capabilities; if you want to learn more about this command, type "help
read mail", or see the Multics Programmer's Manual: Commands and Active Functions (AG92).

Fun With Read_mail Page 2

M3-99

1
I
1
I
'
|
I
I
1
1
1
1
1
1
1
I
i
I
i
1
!
i
|
i
]
]
L]
i
]
1
'
]
I
i
I
1
i
1
|
i
I
1
1
1
1
i
1
1
]
]
]
i
I
|
1
1
1
1
1
1
1
1
i
I
1
i
'
I
I
I
]
I
!
|
1
1
1
1
1
i
1
1
1
i
]
i
I
I
!
I
!
I
I
|
|
|
H
i
1
1
1
1
1
1
1
I
1
I
'
}
I
I
!
I

]

L]

i

]

]

I

'

i

'
!
'
I
I
I
i
!
!
I
1

1

1

L]
'
1

Multics Bulletin Reprints

SNOW WHITE CHECKS HER MAIL (all user typing is preceded by ==>)

==3

mwuwumwmnmnn

mw o mwmnmmnmnm

SEOWONSN N NS

read _mail
You have 3 messages.

read_mail: ==> list

Msg Lines Date Time From Subject
1% (4) 02/21/80 13:22 Sneezy.FOREST at MIT-Mult dinner
2 (3) 02/21/80 13:56 Dopey.FOREST at MIT-Mult not sure
3 (3) 02/21/80 14:15 Grumpy.FOREST at MIT-Mult complaints

read_mail: ==> print all

1 (4 lines) 02/21/80 13:22 Mailed by: Sneezy.FOREST
Date: 21 February 1980 13:22 est
From: Sneezy.FOREST at MIT-Multics
Subject: dinner
Toe: SWhite.FOREST at MIT-Multics

Please don't hold dinner for me tonight. I'm coming down with
a cold and deon't have much of an appetite. Maybe I'll just have
a little chicken soup later on.
Sneezy
——=(1)===

2 (3 lines) 02/21/80 13:56 Mailed by: Dopey.FOREST
Date: 21 February 1980 13:56 est
From: Dopey.FOREST at MIT-Multics
Subject: not sure
Te: SWhite,FOREST at MIT-Multics

Oh I had sumthin real important to tell you but now I forgot
an now I can't remember how to get out of this send_mail
command. lessee here QUIT STOP how about a period ummm
-——=(2)===

3 (3 lines) 02/21/80 14:15 Mailed by: Grumpy.FOREST
Date: 21 February 198014:15 est
From: Grumpy.FOREST at MIT-Multics
Subject: complaints
To: SWhite.FOREST at MIT-Multics

I'm really fed up with conditions in the commune. Sleepy never
does his share. Sneezy keeps me awake all night. And all this
whistling is driving me nuts. --Grumpy

===(3)=--

read mail: ==> forward 1 Doc.FOREST
Mail delivered to Doc.FOREST.

read_mail: ==> reply 2

read_mail (reply): Replying to 1 total recipient,

Message:

I guess you figured out that a period on a new line will
get you out of send mail. But you could have typed the
character sequence "\fq". This would have put you into
the send_mail request loop, from which you could have quit
without sending me junk mail. =-=Snow White

Mail delivered to Dopey.FOREST.
read_mail: ==> log 3

read mail: ==> delete all
All messages have been deleted.

read_mail: ==> quit

Fun With Read _mail

Page 3

M5-99 Multies Bulletin Reprints

BAFFLED BY BUFFERS
by Michael Thornton

reprinted from the May-June 1980 Bulletin

[The scene: Emanuel Amanuensis, his eyelids finally dropping shut, is lapsing into
sleep when he hears a knock at the door. He hobbles across his monastic quarters,
dimly 1it by the blue glow of his CRT--left on once again. Emanuel opens the door
to discover his boss, Dante Alighieri.]

DANTE [stepping in with another man]:
Sorry to bother you so late, but we've got a problem. This is Cardinal Awesome. He's
just come from the Council with a ruling on the Inferno. They say we can't have the
simoniaes in a lower circle than that of the grafters and thieves, Looks 1like we'll
have to switch Cantos 18 to 22 with Cantos 23 to 25.

EMANUEL:
But that means I have to retype 441 lines!

DANTE:
There's an easier way. I guess it's time you learned about buffers.

THE CARDINAL:
You mean your man doesn't know about buffers? 1I've been using buffers for over five
years.

EMANUEL:
Well, I've been using gedx ever since Saint Edm was pronounced insane, and have fared
perfectly well without them.

DANTE [who, while the others bickered, has logged into Multiecs]:
Think of a buffer simply as another, separate editing area just like the one you find
yourself in when you enter gedx as usual. 1In fact, your usual working area is a buffer
too; its name is "0" (zero). You get buffer "0O" by default, but gedx automatically cre-
ates others for you as you move stuff into them, or go to them to create their contents.

Okay, Emanuel, let's try removing those four cantos from their current place in the poem
and putting them into a buffer. Invoke qedx, read in the poem, and find the 1line num-
bers of the beginning and end of the section we want to move:

qedx

r inferno.runoff

/Cosi di ponte in ponte/

Cosi di ponte in ponte, altro parlando

2901

/quel che tu, Gaville/

1'altr' era quel che tu, Gaville, piagni
3342

Now give the gedx request "m" (for move) preceded by the address that delimits the block
you want to move and followed by the name of the buffer into which you want the block to
go. So, to move the section to buffer "2", type:

2901,3342m2
One-character buffer names are easiest to use. You can use longer names, but you must
enclose them in parentheses. (If you ever work with many buffers in one session, you'll

appreciate the mnemoniec wvalue of long names.) You could have moved the section to a
buffer named "deceit" by typing:

2901,3342m(deceit)
We can verify that we in fact did move the section to buffer "2" by going there, that
is, by making buffer "2" (rather than buffer "0") our current working area. Give the
"b" request, followed by the name of the buffer to which you want to go:

b2

Now we are in buffer "2"., We can edit, print, or save its contents, just as we could
the poem when we were in buffer "0"., Let's just print a few lines:

226,228p
Ed ei rispose: Fu fate la loona

Baffled By Buffers Page 1

M3-99 Multics Bulletin Reprints

quel di Albina, vasel d'ogne froda,
ch'ebbe i nemici di suo donno in manno,

EMANUEL:
That's from the grafters Canto, awright. But how do we append this stuff behind the
simoniacs and soothsayers Cantos?

DANTE:
First, go back to buffer "0", which still contains the bulk of the poem, and locate the
line after which we want to append the stuff we moved to buffer "2w,

b0
/e andavamo introcque/
31 mi parlava, e andavamo introcque.

Now type:
a\ba2\f

You're familiar with "a" and "\f"; one is the gedx append request, and the other is the
return-to-edit-mode signal. The "\b2" essentially means "put the contents of buffer '2°!
here", The result is the same as if you had actually typed every character (including
newline characters, or "carriage returns") that is currently in buffer '2',

THE CARDINAL:
I think it would be useful if we utilized a summarization strategy at this point in
time. Subsequent to reading the segment "inferno.runoff" into gedx's buffer "O", Dante
moved a portion of it to buffer "2", and then appended that portion at new location in
the segment contained in buffer "ow,

EMANUEL:
Wonderful. Now we can all get back to bed,

THE CARDINAL (to Dante):
It might enhance performance facility if you taught him how to list
currently-established existent buffers.

DANTE:
Uh, yeah. You can list buffers you have around by typing "x". Behold:

X
4785 -> (0) >udd>Dante>Dante>inferno.runoff
yy2 (2)

Here you can see we've used two buffers; their names are listed in parentheses, The
number of lines in the buffer is listed to the left; to the right is listed the path-
name, if any, associated with the buffer,

THE CARDIMNAL:
When I type "x" I see at least six or seven buffers listed because I have qedx macros
set up automatically.

EMANUEL [with trepidation]:
What are macros?

DANTE:
Remember when we used "\b" to call forth the contents of a buffer (as if it were typed
literally) when in input mode? You can also, while in edit mode, invoke a buffer con-
taining editing requests. By doing so, you can easily execute the series of editing re-
quests contained in the buffer.

Suppose I gave you the tedious task of marking the first and last lines of, say, thirty
tercets with asterisks. You ecould ge to buffer "9" and create a two-line macro:

b9

a

s/t %R/
+28/8/ KRRy
\f

This makes the contents of buffer "9" these two lines:

s/ /RER
+28/8/ RERy

(If you don't believe me, type "1,$p".) Now you can go back to buffer "0", and, once
vou've located a selected tercet, execute the macro by typing:

Baffled By Buffers Page 2

M5-99 Multics Bulletin Reprints

\b9

This has the same effect as issuing the substitute requests directly, but (if you have
to do it thirty times) requires less typing. Let's try it on the tercet that begins
"Venir se", and then print the three lines to see how they've changed:

/Venir se/

Venir se ne dee giu tra miei meschini

\b9

=2,.p

¥%¥% Venir se ne dee giu tra miei meschini
perche diede 'l vsi e cms systemata,

dal quale in qua stato 1i sono a' crini; #%%

Obviously, the macro used here has limited application, but I have more complicated ones
that do such things as underscoring and capitalization,

THE CARDINAL:
S0 do I, and, as I said before, I arrange for them to be set up automatically each time
I invoke gqedx.

EMANUEL:
And how, pray tell, does one do that?

DANTE :
Here things get complicated. You have to understand that qedx behaves a little differ-
ently when you invoke it with arguments. If you type:

gqedx read sloth lust
gedx will first go to a buffer named "exec" and read in a segment named '"read.qedx".
Then qedx goes to a buffer named "args" and puts the remaining arguments (two in this
instance, "sloth" and "lust") on separate lines in this buffer. Finally, qedx goes to
buffer "0" and executes buffer "exee" as a macro.

Now suppose you've created a segment "read.gedx"™ which eontains this line:

r \b(args)
EMANUEL:
What a minute! How can I enter a backslash as a line of text?
DANTE:
Well, you can type "\c" in front of the backslash, For example:
a
r \e\b(args)
AT

Anyway, you have a segment containing that line. If you invoke gedx thus:

gedx read gluttony.runoff
the following occurs: the line "r \b(args)" is put into buffer '"exeec", and the line
"gluttony.runeff" is put into buffer "args". Then gedx goes to buffer "0" and executes
buffer "exec", which is equivalent to typing:

r gluttony.runoff

You can use this feature to initialize macros and to abbreviate the typing of the names
of segments you want to edit. Suppose your "read.qedx" segment contains these line:

bu
r underliner_macro

b0
r \b(args)

(We'll assume you have a macro stored in the segment "underliner_macro".} Suppose fur-
ther that you have an abbrev "gr" that stands for:

do "gedx read &1.runoff &rf2"

Then you can establish your underlining macro in buffer "u" and read in the segment
"gluttony.runoff" into buffer "0O" by typing:

qr gluttony

Baffled By Buffers Page 3

M53-99 Multics Bulletin Reprints

THE CARDINAL:
This fellow has had a great deal to absorb tonight; we don't want to overload his mind.
After all, he's only a typist. Besides, I must be off: I'm to interface with His Holi-
ness on matters that will greatly impact end-communicants, But keep with 1it, Samuel;
I'm sure that with perseverance someday you'll become a great buffoon.

EMANUEL [after waiting for the chortling Cardinal to leavel:
Did you hear that? I swear, he's gonna need Bufferin and a lot more when I----

DANTE:
You may as well calm yourself. He has the Pope's ear. There's no toleration for those,
however rational, who oppose him. His rise to favor was rapid, even for these unsettled
times. I suggest you use buffers while you can, Emanuel., Over in Tuscany, Emacs the
Unquenchable 1is amassing his forces, and many rejoice his advent. Before long, the
world may be very different from the one we know today.

Baffled By Buffers Page U4

M5-99 Multics Bulletin Reprints

MINE!
by Steven H. Schwartz

reprinted from the September-October 1980 Bulletin

Multies access controls are a popular topie of conversation between users and consultants.
Although at first glance access controls may seem to be a hodge-podge of random letters,
they are really quite easy to use.

Basically, segments on Multics can only be used by those who have access (permission).
Multies grants some access by default and allows you to grant more. For instance, when
you create a segment, you are automatically given "ruw" access to it. This means you can
"read" it--look at and copy it--and "write" it--change its contents. Or, if the segment
is a compiled program, you are given "re" ("read" and "execute") access.

Directories are also subject to access contreols. When you create one, you are given all
three kinds of access: status (s), which lets you list the names and characteristics of
its entries (i.e., segments and subdirectories); modify (m), which 1lets you change the
characteristics of (and delete) existing entries; and append (a), which lets you add en-
tries.

Multics knows who has access to what, because each segment and directory has an access
control 1list (ACL)--a list of users who have been given access, and what access they have
been given.

Each name (access identifier) on an ACL has three parts: a person_id, a project_id, and
an "instance tag"--a letter which represents a process type. For example, an instance tag
of "a" stands for an interactive user; "m" for an absentee user; and "z" for daemon and
other systems processes. An asterisk can replace any part of an access identifier to in-
dicate that that part matches any user. Instance tags, for example, are usually set to
n#n . Multics determines a user's access by trying to match his access identifier with one
on the access control list. For instance, an interactive user called Pinoccchioc.NOSEY
would match any of the following access identifiers on an ACL:

Pinocchio.NOSEY.a
¥ NOSEY.*
Pinocchio.¥*.a

Pinocchio.NOSEY.*
% % %

Note that *.* % matches any user.

Frequently a person's user_id matches more than one access identifier in the ACL. Multics
arranges the access identifiers on the ACL in order of specificity, with person_id,
project id, and instance tag considered in that order. Multics uses the first cccurrence
of a mateh to determine access. If a person's user_id does not match any of the access
identifiers on the ACL, that person is not given access to the segment or directory. Here
is how Multics would arrange the access identifiers given above:

Pinocchio.NOSEY.a
Pinocchio.NOSEY.*¥
Pinocchioc.¥*.a

¥ NOSEY.*
IR

If you have "sm" access to a directory, then you can modify the access control 1lists for
that directory's segments and subdirectories. As mentioned previously, when you create a
segment or directory, you are automatically given access to it. Users on the project
SysDaemon are also given access to all segments and directories. They need this access in
order to back up your files, print them, punch them onto cards, and so¢ forth--this should
not present a security problem. If necessary, you can delete the access for
¥ . SysDaemon.*, but then these services will not be provided for you.

Three commands are used to manipulate ACLs. "list acl" (la) lists the ACL for any segment
or directory whose pathname is specified. If you omit the pathname, Multies prints the

Mine! Page 1

M3=99 Multics Bulletin Reprints
ACL for your working directory.

The "set acl" ("sa") command both adds an access identifier to an ACL and changes the ac-
cess for an access identifier already on the ACL. For instance, to give Hatfield.MCCOY
"read" access to a segment called "cannons", you enter:

set_acl cannons r Hatfield.MCCOY

You don't need to include the instance tag; Multics assumes it to be "#¥n, And, you can
include more than one access=-access identifier pair in the same command. If you want to
change your own access you can omit the access identifier.

You can assign users any of the appropriate types of access mentioned above ("r" M"e" "y"
and "s" "m" "a" for segments and directories respectively) in any combination, except that
"m" access to a directory must be given with "s"™ access. For instance, you can assign a
user "r" access to permit him to read, but not alter, a segment, You can also assign a
user "null" (n) access, a valid access type on both directories and segments. This pre-
vents the user from having any access at all, and is particularly useful if you have set
access for ¥ ¥ %,

To delete an access identifier from an ACL, use "delete acl" ("da"). For instance:
delete_acl mink Gold.DIGGER

removes Gold.DIGGER from the access list for segment mink. If you omit an access identi-
fier, Multics assumes you mean yourself.

Mailboxes are also subject to access control lists. However, mailboxes have seven kinds
of access modes instead of just three. "append" (a) allows users to send messages to a
mailbox. "delete" (d) access lets users delete any messages from a mailbox; "read" (r)
lets them read any messages in it; "own" (o) access allows users to read and delete only
messages they have sent. "status" (s) access lets them find out how many messages a mail-
box contains. "wakeup" (w) permits users to send interactive messages. (Messages sent by
users who lack "w" status are shunted into the mailbox; they are not printed immediately.)
"null" (n) access prevents users from having any access to a mailbox.

When you create a mailbox, your initial access is "adrosw". This allows you complete con-
trol. Everyone else, including *.SysDaemon.*, is given "aow" access--they can send you
mail and interactive messages, and read and delete the mail and interactive messages they
send.

To manipulate the ACL's on mailboxes, use the three commands "mbx_list _acl" ("mbla"),
"mbx_set_acl" ("mbsa"} and "mbx_delete_acl" ("mbda"). These work in the same way as the
eguivalent commands for segments and directories.

You can find more information about access control 1lists in the Multics Programmer's
Manual--Commands and Active Functions (AG93), and in the Multies Programmer's Manual--
Reference Guide (AG92).

Mine! Page 2

MS-99 Multies Bulletin Reprints

MULTICS BACKUP SYSTEM
by Roger Roach

reprinted from the September-0October Bulletin

The Multics backup system is actually two backup systems used together to provide the most
comprehensive backup available on any commercial computer system. The backup system al-
lows us to restore files in the event of hardware or software problems. And, it allows
you to retrieve files that you have deleted or otherwise destroyed by accident. Here we
explain how to use the backup system to retrieve files, and when you may want to supple-
ment our backup system with one of your own.

The two backup systems are the hierarchy dumper and the volume dumper. Each of these has
three modes of dumping (incremental, consolidated and complete) and each has a reloader
and retrieval mechanism., The hierarchy dumper references data in a way similar to the
method that you do. It uses the tree structure that links all segments and directories,
and that Multies labels "hierarchy". The volume dumper references data by volume, or by
the actual physical disk drive/pack on which the data (either segments or directories) re-
sides.

The hierarchy dumper is the older of the two. It was available when Multics went public
and is based on the CTSS backup facility. It works by scanning the hierarchy and dumping
the directories and segments in alphabetical order (actually, ASCII collating sequence).
When in ineremental mode, it dumps only those segments (and directories) which have been
modified (date/time modified) since they were last dumped incrementally (date/time branch
dumped) . It then wupdates the time. (The hierarchy dumper only updates this date/time
when running in incremental mode, not in any of the other modes.) Currently we make one
incremental pass with the hierarchy dumper each day. These tapes are saved for approxi-
mately one month.<1> The hierarchy complete dumper will dump all segments and directories
in the hierarchy being dumped. For this purpose, the hierarchy has been divided into five
sections. The user files are dumped once a week, usually on Friday night. These tapes
are saved for approximately six months:; however, the dumps done during the first week of
each month are saved for a year. Also, the January complete dump is saved for five years.

The hierarchy consolidated dumper (sometimes called "catchup") dumps those segments (and
directories) which were modified after a time supplied by the operator. Currently, IPS
does not use this mode, but we may use it in the future to replace some of the weekly com-
plete dumps.

Since the hierarchy dumper dumps files in hierarchical order and produces maps of what is
dumped, these tapes are most useful for retrieving parts of the hierarchy that have been
lost through deletion, or files that were destroyed more than five days earlier. This
dumper 1is not efficient due to the nature of its scanning and is very clumsy when used to
restore a damaged disk pack. For that reason, the volume dumper was implemented.

The incremental volume dumper scans each physical disk volume (disk pack) and dumps only
those segments that have been modified on the volume since the last pass. This dumper
makes a pass approximately once an hour and the tapes are saved for five days or until a
complete dump is done, whichever occurs first. The consolidated volume dumper is used to
dump those segments which were modified since the last consolidated volume dump. cur-
rently we make a consolidated pass once a night and the tapes are saved for a month (back
to the complete dump prior to the last complete dump). The complete volume dumps are done
on the first and third weeks of each month, usually on Friday night. Two sets of complete
dumps are saved, providing between 2 and 4 weeks of coverage.

The volume dumper does not generate maps. Instead, it keeps on-line tables of what disk
volumes were dumped on what tapes and when. When a volume has to be restored, these
tables allow the system to reconstruct the volume with a minimum number of tape mounts.
Likewise, when a segment has been destroyed, these tables can be used to determine what
tape was being used for backup on the volume on which the segment resides. Since the vol-
ume dumper was designed mainly for restoring a volume, its retrieval capabilities are not
as complete as those of the hierarchy dumpers. For that reason, we recommend using the
hierarchy retriever whenever the segment being retrieved has been in its desired state for
more than 24 hours or whenever a hierarchy is being retrieved. If a segment has been dam-
aged or if you need a particular copy of the segment that was only available for a few
hours, then you should use the volume retriever.

To do a hierarchy retrieval, either go to Building 39 and fill out a Retrieval Request
Form or use the "retrieval_request" ("rr") command. The hierarchy retriever requires the
primary pathname to be used for all directories and segments specified in the retrieval

A S e S . S-S i s s e e Y A . e T A

<1> Although Operations tries to maintain the schedule, circumstances may require changes.
If you want to make sure a certain dump has been done, you should contact Operations at
x3-7739.

Multics Backup System Page 1

MS-499 Multies Bulletin Reprints

request. For that reason, you should go to Building 39 and check the maps to make sure
you have the correct pathname. The request (whether done with the "retrieval request"
command or on the form) must contain the pathname and the dump to be used (e.g., "complete
dump from last weekend"). If you are retrieving a hierarchy, then put ">*#" after the
name of the directory. For example ">udd>Project>Username>subdir>**¥" would retrieve the
contents of subdir. If the ">**¥" js not used, only the directory (not its segments) will
be retrieved. Not very useful!

It is also possible to retrieve segments and hierarchies into new directories. This 1is
called "cross-directory retrievals". To do this, you use an "=" followed by the new path-
name. For example, to retrieve a file called "program.pll1" and store the retrieved copy
in a file ealled "program.pli.retrieved", you'd enter:

>udd>Project>Username>program.pli=>udd>Project>Usernamedprogram.pli.retrieved

You could retrieve a hierarchy originally in a directory called subdir and store it in a
new directory called newdir by typing:

>udd>Project>Username>subdir>*¥*=>udd>Project>Username>newdir
(Note, the ">¥%" js not used on the "to directory".)

In order to prevent unauthorized cross-directory retrievals, the Operations staff checks
with the owner of the segment or hierarchy whenever the retrieval will go to a new user.
This may delay the retrieval for a day or so while permission is being obtained. Other-
wise, retrievals will be done twice a day on weekdays (noon and 8 PM) and once a day on
weekends (about 2 PM). (The times are not exact and depend upon the workload of the oper-
ator.) Type "help retrieval request" for more information on submitting on-line hierarchy
retrieval requests. -

The volume retriever is best used to retrieve a segment which has been damaged or for
which the date/time modified is known. To submit a volume retrieval request, use the
"enter retrieval request"™ ("err") command. You should leave the damaged segment on line
so that the retriever can obtain the date/time modified from its directory entry. Usually
you will want to use the "-previous" argument to err to specify that you want the previous
version of the file retrieved. If the segment is no longer on line, you will alsec have to
specify a time range covering the time it was last modified (use the "-from" and "-to" ar-
guments). Otherwise, the retriever will mount the most recent tape and work backwards un-
til it finds your file. Since we generate about 20 tapes a day, the operator may get worn
out mounting tapes before the retriever finds your file.

The volume retriever attempts to notify you of what it has done. You may get a notice
that a branch 1is being appended. This means that the retriever has found the directory
entry for your file and has appended the entry to your directory. If you try to use the
file before the "object is loaded" you will get an error message saying that the contents
are not in the VTOC (Volume Table of Contents). This means that data has not been loaded
onto disk yet. If the volume retriever cannot load your file, it will tell you that the
object was not found. This might be due to an incorrect time range specification or to
the tapes not being saved. Type "help err" for more details on submitting a volume re=
trieval request.

If you are dealing with super secure data and do not want to have your files put on our
backup tapes at all, you may prevent the dumpers from backing up your files. The hierar-
chy dumpers respect normal access control, Therefore, you may set the ACL of the segments
you don't want dumped te null feor the appropriate SysDaemon. (Backup.SysDaemon feor the
incremental dumper, Dumper.SysDaemon for the complete dumper or *.SysDaemon for all
SysDaemons including the IO SysDaemon,)<2> The volume dumpers, on the other hand, dump
volumes and thus bypass normal access contrel. To keep them from dumping your files, use
the "volume dump switch off" command with either the "-incremental" or "-complete" argu-
ments to specify that you don't want ineremental or complete volume dumps for the file.

If you want to do your own backup, use "tape_ archive". This command allows you to append
and extract files from a tape much as you would do with a regular archive command. We
feel that this is the best solution for the general problem of keeping files off line. If
you are dumping a whole hierarchy (because, for instance, you are going away for a year)
you may want to use "backup dump". This is the same code as used by the hierarchy dumper.
It is reasonably easy to Use and uses Multics standard format tapes which are a bit more
reliable than other formats. However, these tapes can only be read on a Multies system
and you cannot add more files to the tape later. Also the code has less support than does
tape_archive. If you want tc use backup_dump, please see one of our consultants.

<2> See "Take Contreol", in this issue, for information about ACLs.

Multics Backup System Page 2

MS5-99 Multics Bulletin Reprints

EC'S AND ALL THAT

This is a slightly modified version of an artiecle that appeared in the
October-November 1979 issue of Two Bits Worth, a newsletter published by the Uni-
versity of Southwestern Louisiana Computing Center It is reprinted from the
November-December 1980 Bulletin.

User TJefferson is determined to master "exec_coms" since he believes they can help him
with some of his routine tasks. An "exec com" ("ec") can be as simple as a sequence of
command lines stored in a segment whose name ends in ".ee". 1In fact, TJefferson's first
attempt consists of:

accept messages

generaT“ready -set -inc_cost -total_cost
print motd -
check _info_segs

read mail -~immediate_messages

which he stores in a segment called "knowledge.ec". Then, whenever he wants to execute
this sequence of commands, he simply types:

ec knowledge

Actually, this ec is so simple that he might have been better. off simply defining an
"abbrev" to represent this sequence of commands. However, since it's already an "ec", he
decides to keep it and rename it "start_up.ec":

rename knowledge.ec start_up.ec

This name has a special meaning for Multics. Now, whenever he logs in (so long as he does
not use the '"-no_start up" or "-ns" option), Multics will automatically run the
start_up.ec for him. It will alse rerun it whenever he does a '"new_proc" or gets a fatal
process error, which is sometimes more than he really cares for, but he is mainly satis-
fied with this technique.

However, one day while he has a great deal of work to do, he decides to compile a large
PL/I program called "purchase" as an absentee job. He types:

pl1_abs purchase

He is fortunate that no one else is using the absentee facility at this time, so his com-
pilation begins immediately. He 1is now free to continue with interactive tasks at his
terminal.

However, something odd seems to be happening. A sequence of messages which he had been in
the process of receiving from MLewis and WClark suddenly stops. He has not deferred mes-
sages; he does a "who" and notices that they are both still logged in, but his absentee
job is no longer running. This cannot be correct; the compilation should have taken much
longer. He Lknows that the record of what happened during the absentee job will be saved
in an "absout" segment called (in this case) "purchase.absout", so he quickly displays
this segment at his terminal screen. There are his missing messages; the absentee job has
pre-empted them. In addition, the absentee job has invoked the "read mail" command; since
"read mail" is totally confused by the commands which attempt to initTate the compllatlon
the remainder of the file consists of error messages.

Clearly the absentee job is also using TJeffersen's start_up.ec. Now, while it might na-
ively seem that an absentee job should be able to login without using any start_up.ec
which may exist, this is not the case. What actually must be done is to construet the
start_up.ec in such a way that it will not interfere with an absentee job.

After considerable research, TJefferson alters and expands his start_up.ec to 1look like
this:

abbrev

&goto &2

&label interactive

accept messages

general_ready -set -inc_cost -total_cost
&goto &1

&label login

print_motd

check info_segs

read_mail -immediate messages
&label new proc

klabel absentee

Ee's and All That Page 1

M5-9G Multies Bulletin Reprints

&quit

The items beginning with "&" are control statements which the exec_com facility recog-
nizes; many of them are fairly self-explanatory. Others ("&1" and "&2") indicate the two
arguments which Multies supplies to any start up.ec and which describe the conditions
under whieh the start up.ec was invoked; "&1" may have the value "login" or "new proc'";
and "&2" may be either "Interactive" or "absentee". Thus, you can use the "&goto" control
statement to direct the exec_com facility to skip any inappropriate commands.

Thus, this start up will turn on abbrevs regardless of the type of process; and if
TJefferson gets a new interactive process (during a session in which he did not login with
the "-ns" option), the start up will also accept messages and tailor his ready message,
But the expensive and time consuming portion of the ec will only be executed on his ini-
tial interactive login.

Ec's are useful in other situations, too. For example, to run TJefferson's program "pur-
chase", it is necessary to use a temporary work file "work file". To have this file auto-
matically deleted on logout or at the end of a process, he creates the associated segment
"purchase work" in the process directory. So he writes a segment called "acquire.ec" con-

taining:

io_call attach work file vfile [pdl>purchase_work
purchase
&quit

However, TJefferson discovers that he is still doing a fair amount of typing because "pur-
chase" asks him for input. WNormally his responses do not vary greatly from one execution
to another, although he is still experimenting with a few of the parameters to get the re-
sults he prefers. He decides to add his more standard responses to the ec itself and to
pass the others in as arguments to the ec. This produces:

io_call attach work file vfile [pd]l>purchase_work
&attach

purchase

France

Monroe

&1

&2

&detach

&quit

The "&attach" statement causes "purchase" to read its input from the ec, and the "&detach"
reverts to terminal input. Now TJefferson can control the entire execution of this pro-
gram by typing, for example:

ec acguire 1803 15000000

TJefferson feels the amount of typing he must do is now guite reasonable. However, he be-
lieves that he has much more important things to do than sit at a terminal waiting for
"purchase" to complete.

The solution? Run it "absentee",

And this is extremely simple to do, The major difference between an "ec" segment and an
"absin" segment (one that can control an absentee job) is in the segment name, so all he
needs to do is:

add_name acquire.ec acquire.absin
enter_abs_request acquire -arguments 1803 15000000

Since his segment now has both the name "acquire.ec" and "acquire.absin", he ecan run it
either interactively or absentee without further change.

For additional information on ec's and absentee processing, see the MPM Commands and Ac-
tive Functions manual (AG92). There are also a number of relevant "info segs". Try "help
ec"™ and "help start up.ec"; for a list of info segs of interest to absentee users, type
"list help abs". And Tor further uses of "&", type "help do".

Ec's and All That Page 2

M5-99 Multies Bulletin Reprints

SEND_MAIL FOR BEGINNERS

reprinted from the January-February 1981 Bulletin

Let's say you want to tell another Multies user something. One easy way is to send a mes-
sage with the "send_mail" command. Just type "send mail", followed by the userid of the
recipient, and then answer the prompts for the subject and text of the message. You sig-
nal the completion of your message by entering a period (.) on a line by itself. For in-
stance, you might enter (your typing preceded by =>):

=> send mail Perkins.FIRKINS3

Subject: =»Saturday Night

Message:
=> Howsabout a beer down at the Rontenac Rill?
S 4

But let's say that before you typed that final period, you reconsidered. Perhaps you feel
a less flippant message would be more appropriate; perhaps you'd rather invite someone
else. Fortunately for you, "send mail" provides a way for you to change almost everything
about your message after you've typed it and before you've sent it. Not only can you mod-
ify the message text, you can add or delete recipients, change the subject heading, re-
quest an automatic acknowledgment, and do many other things.

Just as the familiar Multics command environment accepts Multics commands, the "send_mail"
environment accepts send_mail commands, called re%uest . You can enter the send _mail en-
vironment, or request loop, by substituting "\gq or "." when you finish entering the text
of your message. You can list the send_mail requests by typing "?" from the send mail re-
quest loop, and you can find out more about individual requests by typing "help <name of
request>",

For instance, let's say you wanted to edit your invitatien to Perkins. You could enter
the "send _mail" request loop, and then call up the "send mail" editor, as follows:<1>

-> Howsabout a beer down at the Rontenac Rill?
=% \q
send_mail: => gedx

As you might guess, the send mail editor resembles gedx closely. With both, you alter
character strings with an "s", display lines with "p", insert text with "i" or "a", and
so on. There are only two major differences. When you're using the send_mail editor, you
don't need to read a segment into the buffer, because the editor automatically reads in
the text of your message. And, it saves all changes automatically, too, so you don't need
to use the "w" request. You could change your message as follows:

send_mail: =>qedx
=>p

Howsabout a beer down at the Rontenaec Rill?
=> s/Howsabout/Would you join me for/

When you've finished correcting your message, you can dispatch it with the send_mail
"send" request. However, you must issue this from the send_mail request loop, not from
the send mail editer. Type "gq" to re-enter the loop from the ~editor. (You can always
tell when you're in the send mail request loop because of the send _mail prompts—-there are
no prompts when you are using the send_mail editor.) -

If the message text is like a letter, the message header (the lines that describe the mes-
sage's origin and destination) is like an address. The "send mail" command generates the
header automatically, but you can change it. By default, the header consist of four lines
that give the date the message was sent, its subject, its recipient, and its sender. You
can print the header of your message with the "print_header" ("prhe") request. (To print
the text of the message, use the "print" request; To print both the message and the
header, enter "print -header".)

send_mail: =>prhe

Date: 5 Janhuary 1981 10:17 est
From: Splash.CRASH

Subject: Saturday Night

To: Perkins.FIRKENS

You can direct your message to more than one user with the "to" request. Typing "to" fol-
lowed by a userid adds that userid to the "To:" header line, and, of course, causes the
message to be sent to that user's mailbox, when you issue the "send" request. For in-
stance:

S ———————————— SRR AT 4 44 EeEEE etk kb e

Send_mail for Beginners Page 1

MS-99 Multics Bulletin Reprints

send_mail: =>to Blink.BLUNK
To view that line, type "to" without any arguments:

send_mail: =>to
To: Perkins.FIRKENS, Blink.BLUNK

Another way to add recipients is with the "ecec" request. Intended to mimic the function of
conventional carbon copies, this request adds another line (the "ece:" line) to the header,
and sends the message to the specified destinations. It takes the same syntax as the "to"
request: "ee" alone lists the line; '"ce" followed by a userid appends that name to the
header.

The "from" request (again, same syntax) appends userids to the "From" line, useful if you
want to imply that more than one person is responsible for the message. However, if you
use this request, "send mail" will add yet another line to the header--the "Sender:" line,
which gives your userid only. This assures that the recipient will know who actually sent
the message.

To delete userids from the header, use the '"remove" request. "remove" followed by a
userid removes that userid everywhere it appears. Or, you can delete a name on a single
line by typing, for instance:

send_mail: =>remove -to Blink.BLUNK

You can replace, but not add to, the "Subject:" line by following the "subject" request
with the desired text:

send_mail: => subject "Saturday Night Bash"

Once you're satisfied with the message text and the header, you should send the message.
You ec¢an de this by typing just "send"--but you can also append any of several "send" con-
trol arguments., These perform many functions. For instance, the "-acknowledge" argument
will cause a message to be sent to you as soon as the message is read. (It also adds an-
other line to the header,) Other control arguments ("-log" and "-save") store copies of
the message in your auxiliary mailbox. And, if you follow the "send" request by a userid,
the message 1is sent only to that person. The userid is not added to the header, nor is
the message dispatched to the other users specified in the header.

You remain in the send_mail request loop even after you've 1issued the "send" request.
This allows you to modify the message further, a useful feature if, for instance, you want
to send slightly different messages to several people. To exit the send mail request
loop, type "quit".

If you decide you don't want to send the message after all, vyou can, of course, type
"quit" before you issue the "send" request. But let's say you send the message and then
realize that it contains an embarrassing error. Are you doomed to watch the news of your
gaffe spread through the office? Not at all. Mailboxes are set up so that, by default,
you "own" any messages that you send. 1In other words, you can use the "read mail" command
to process a message in another user's mailbox if you have sent that message. For in-
stance:

=> read mail Perkins.FIRKENS
You have one message.
read mail: =>delete 1
read mail: =>quit

There are many things we haven't mentioned about "send mail". For instance, we didn't ex-
plain how to use it to mail text already in a segment {the "-if" control argument). And
we didn't explain how most of the requests that modify the header can be used as control
arguments of the "send_mail" command. And we didn't even touch on advanced requests, such
as "apply", which, for instance, allows you to edit your message text with "emaecs" rather
than "qedx". You can learn about these capabilities in the pre-publication draft of the
Mail Systems Users' @ide, which details all of the Multies mail facilities; you should
also read the the Multics Programmer's Manual: Commands and Active Functions (AG92). Both
manuals are available in the Publication Office, Room 39-233.

Send mail for Beginners Page 2

M5-99 Multics Bulletin Reprints

ACTIVE FUNCTIONS

by Barbara Hughes reprinted from the March-April 1981 Bulletin

While frantically searching for an obscure control argument to a command you needed, you
may have noticed that the full name of the thick volume you were using is the Multics
Programmer's Manual--Commands and Active Functions. Commands you know about; but what are
active functions?

Like a command, an active function is actually a program. But unlike commands, which di-
rect the operating system to perform some task, active functions return values; the com-
mand then uses these values for its arguments, For example, suppose user LBMayer.MGM is
working in a subdirectory, and wants to execute program "movie_star", which is in his home
directory. Rather than having to change directories or type out Lhe long absolute path-
name, our user can just enter the command "[home_ dirl>movie_ star". The active function
"home_dir" returns the value of LBMayer's home directory, which is substituted into the
command line, giving our user just what he needed, ">udd>MGM>LBMayer>movie star". And,

since the active function "home_dir™ has an abbreviation (as do most active functlonS},
LBMayer .MGM can further simplify his typing to "[hd]l>movie_star".

As you have just seen, active functions are most often found in active strings--character
strings surrounded by square brackets. Active functions can be nested within an active
string, so that user LBMayer, who now wants to capitalize the headline found in his home
directory segment '"hollywood.gossip"™ and see what it 1looks 1like, can type "string
[upper case [contents [hd]>hollywood.gossip]l]". The innermost active function is expanded
first, so the sequence of value substitutions becomes:

string [upper_case [contents [hd]>hollywood.gossipl]

string [upper_case [contents >udd>MGM>LBMayer>hollywood.gossipl]
string [upper_case Clark Gable loves Carcle Lombard]

string CLARK GABLE LOVES CAROLE LOMBARD

The command "string" then prints its argument CLARK GABLE LOVES CAROLE LOMBARD on
LBMayer's terminal.

fActive functions can also be concatenated. Suppose you needed to find the average of two

numbers, stored in segments "first number" and "second number". You could use the
"string" command with nested and concatenated active functions to find the answer; for ex-
ample: "string [quotient [plus [contents first_number] [contents second number] 1 21" .

If first_number were 16 and second_number were 12, the command would be expanded as fol-
lows:

string [quotient [plus [contents first_number] [contents second_number]] 2]
string [quotient [plus 16 12] 2]

string [quotient 28 2]

string 14

There are some additional dimensions to the syntax of active functions,<1> but for now,
let's move on to the more interesting question, what are active functions good for, any-
way? For one thing, they can save you a lot of typing. If, for instance, you are carry-
ing on a lengthy conversation via the message facility with user
FredericktheGreat.Prussia, you will quickly get tired of typing his user-id on each line.
Instead, use the "last message sender"™ ("1lms") active function, and reply to the message:

From FredericktheGreat.Prussia 02/16/81 1436.7 est Mon:
Wie geht es Ihnen?

with the line:

sm [1lms]
Input:
Sehr gut, danke.

Using active functions in abbreviations can alsoc reduce your typing. Suppose you have a
set of ten FORTRAN programs which are frequently changed, and recompiled as a group.
Rather than typing ten commands each time, you could build a segment "prog.names" which
contained the names of your ten programs, and then define the following abbreviation:

<1> For example, the normal expansion of active functions can be partially or fully inhib-
ited. Also, some active functions can take control arguments, and some require their ar-
guments to appear within quotation marks, whereas others strip quotation marks off. A
good introduction to the basic syntax of actlve functions can be found in the New Users'
Guide to Multics, part II, section 3. Details on specifiec commands are documented fully
in the MPM Commands and Active Functions manual.

Aetive Functions Page 1

M5-99 Multies Bulletin Reprints

.ab fort do "fortran ([contents prog.names]) -table -map"

Then, whenever you type "fort", all ten programs will be compiled with the desired op-
tions. Also, 1if you should later want to add an eleventh program to the set, you need
only add its name to the segment "prog.names"--and the "contents" active function will re-
turn all eleven names when the abbreviation is next used.

The ability of many active functions to return current information leads to additional
uses. Consider this line from the start_up.ec of user Absent_minded.Professor.

&if [and [equal [month [datel] 5] [equal [day [date]] 12]]
&then &print It's your mother's birthday. Call her!!

On May 12 of each year, the active function "date" will return the value 05/12/yr, "month"
and "day" will return 5 and 12 respectively, each "equal" will return the value "true", as
its comparison succeeds, "and" will return "true" since beth its arguments are true, and
the professor will be reminded to telephone her mother and wish her a happy birthday.

Active functions can also query users and use their responses as arguments to commands or
other active functions. Suppose you were writing an exec_com which would give the user
the choice of having a program take its input data either from his terminal or from any
segment. This can be accomplished with the single command:

&if [query "Do you wish to enter data from a segment?"]
&then io_call attach file05 vfile_ [response "Enter segment name" -non_null]

Active function "query" returns true or false depending on whether the answer supplied is
"yes" or "no" (any other answer generates an error message and a repeat of the query). If
the answer is "yes", the exec com requests that the user "Enter segment name". The seg-
ment name supplied replaces the function and completes the command, attaching the
switchname file05 to the desired segment. The control argument "-non_null" requires the
user to enter something; otherwise an error message is printed, and the request is re-
peated.

These examples indicate only a fraction of the uses of active functions. Over one hundred
active functions are listed in section 2 of the MPM Commands and Active Functions manual,
indexed under a number of major groupings. They can perform basic arithmetic (e.g., plus,
mod), character string manipulation (eollate, reverse), numeric mode conversion (binary,
octal), and they can return values for current or past dates and times (day_name, minute).
Active functions do logiecal operations (greater, not), pathname manipulation (entry, suf-
fix), ask questions (query, response), provide storage system names (files, process dir),
and supply user/process information (have mail, user). They are particularly powerful
when wused with the command "do" in abbreviations, and they give the exec_com commands
nearly the flexibility of a full programming language. Take the trouble to get acquainted
with the range of Multics active functions; it will save you time later on,

Active Functions Page 2

M3-99 Multiecs Bulletin Reprints

ARCHIVES: LIVE AND ON TAPE
by Barbara J. Hughes

reprinted from the May-June 1981 Bulletin

Are your Multics storage charges beginning to resemble the national debt? Do you have so
many segments that the "list" command takes ten minutes to complete? Have you forgotten
which of the segments named "something.data"™ goes with which program? Are you going away
for the summer and need a cheap, easy way to store your segments? Do you have flat feet
and a tired aching back? For all but the last problem, the Multies archiving commands may
be your best solution.

ON-LINE ARCHIVES

Storage for your segments is allocated in records, each of whiech helds 1024 words of in-
formation. If your segment is 1100 words long, it still needs two full records of storage
and you are billed accordingly, even though most of that last record is not used, If you
have a number of relatively short segments, this wasted space at the end of each c¢an be-
come a significant portion of your record quota and your billing costs. The "archive"
command merges a specified list of segments into a single lengthy one, eliminating the
wasted space while allowing you to retrieve intact any desired segments. Archiving has
other advantages as well. It allows you to group related segments under a single descrip-
tive name, shortening and organizing the directory list. Also, archiving a set of object
segments 1is a necessary preliminary to binding them, an operatien which establishes and
saves the linkages between the programs, making their execution much more efficient. (For
information on binding, see the "bind" command in the Multiecs Programmer's Manual: Com-
mands and Active Functions),

The basie syntax of the "archive" command is:
archive key archive_path paths

"Archive path" is the name of the archive segment with which you are dealing. This name
always has the suffix ".archive", but you may omit the suffix on the command line. The
"paths" are the names of the segments to be appended, replaced, updated, deleted, or ex-
tracted from the archive, and "key" specifies which of these operations is to be performed
on the paths named.

The keys which are used with the "archive" command are documented at considerable 1length
in the MPM Commands and Active Functions manual, under the "archive" command. In brief, a
key of "a" appends, or adds, new components te the archive. (0Once segments have been
added to an archive, they are called "components",) The "r" key replaces components in
the archive with segments of the same name. If the component is not already in the ar-
chive, it is added to it. If the archive segment itself does not yet exist, the first use
of the "a" or "r" keys creates it, and a message is printed to that effect,. Update, the
"u" key, operates like "r" except that replacement occurs only when the corresponding seg-
ment was modified more recently than the archive component of the same name; the system
determines this by comparing their date-time fields, which are generated automatically
when a segment is created or changed. The "d" key deletes the named components from the
archive, and the "x" key extracts components from the archive and places them in segments
in a directory. Also, "archive" has a table-of-contents operation, with a key of "t",
that prints information about named components in the archive, or, if ne components are
named on the command line, about every component.

Additional keys can modify the actions of the append, replace, and update operations. A
"e" key preceding the basic "a", "r", or "u" keys, directs the archive command to carry
out the specified operation on a copy of the archive which will be created in the current
working directory. The original archive is left unchanged. A "d" key following the basic
key deletes from the directory all segments that were successfully added to the archive
(using append, replace, or update), provided they were not protected by a safety switch.
A "df" key following the basic key forces deletion of added segments, whether or not they
were protected. These additional keys can be used in combination, so that a key "cadf"
would copy the archive into the working directory, append to it the specified files, and
then force the deletion from the directory of the segments which were appended. The table
of contents, delete, and extract operation keys can also take certain modifiers. Note
that the deletion feature just described is used only in conjunction with the append, re-
place, or update keys, and deletes segments from the directory when they have been suc-
cessfully archived. The basic delete operation, specified by a stand-alone key of "d",
deletes components from the archive rather than segments from the directory. The T"ar-
chive" documentation covers all the keys fully and gives a lengthy example of the creation
and manipulation of archives, so only a brief example will be given here.

Suppose you have a main program called "main", three subroutines called "one", "two", and
"three", and a data file named "data" that is used by these routines. They are all short,

Archives: Live and On Tape Page 1

M5-99 Multics Bulletin Reprints

and you decide to archive them to save space. Type:

archive ad old_bones main one two three data
Multies responds:

archive: Creating >udd>Jurassic>pterodactyl>old_bones.archive
You then list your directory to verify what has happened, and see:

rw by old_bones.archive
Note that the original five segments occupied at least five records of memory (one for
each) and the archive now requires only four records. MNow suppose you later develop a new
subroutine "four" which you want to test with the main program and its data. You extract
those two components from the archive:

archive x old_bones main data
and discover a bug in the "main" program, which you correct and recompile. MNow that your
tests are successful, you want to replace the buggy copy of "main" with the correct one
and add routine "four" to the archive. To do this, type:

archive rd old_bones main four
Note that the "r" key replaces the archived copy of "main" with the segment from the di-
rectory, appends "four" to the archive since it did not already exist there, and deletes
the directory copies of both. There was no need to specify "data" in the archive command,
since it had not been changed and the extract operation makes a copy of the archived com-
ponent in the directory, but does not alter the archive itself.
You can verify this with a table-of-contents query:

archive t old_bones

The system responds:

>udd>Jurassic>pterodactyl>old_bones.archive

updated name
05/17/81 1432.2 main
05/11/81 0915.6 one
05/11/81 0915.6 two
05/11/81 0915.6 three
05/11/81 0915.6 data
05/17/81 1432.2 four

You can, of course, do many other things with this archive segment, including using it as
a component of anether archive, thus creating an archive of archives, but there is one
thing that you should NOT do. NEVER edit or otherwise alter the structure of an archive
with any command other than those designed specifically to manipulate archives.<1> The
archive segment contains certain header information which identifies the beginning and end
of each component, and if these are changed without the corresponding changes being made
in the header, the archive will be left in a chaotic state. Otherwise, the archive is
just another segment, and can be copied, printed, dprinted, etc.

Unfortunately, the archive system has one serious 1limitation--it does not support the
starname convention with the append, replace, delete, and update keys. If, for example,
you want to create an archive of all your PL/I source programs, you must specify each in-
dividually:

archive a stegosaurus_pl1_progs head.pl] spikes.pli legs.pll tail.pli

Alternatively, and more simply, use the "segments" active function, which returns the
pathname of all directory segments that match a given starname:<2>

archive a stegosaurus_pll_progs [segments ¥¥,pl1]
TAPE ARCHIVES

But what if you have so many segments that even archiving isn't going to make a signifi-
cant dent in your bill, or you are going away for a lengthy period of time and want a

e e o S R e =

<1> The "archive sort" and "reorder_archive" commands are documented in the MPM Subsystem
Writer's Guide (AK92).

<2> See the March-April Bulletin artiecle on active functions.

Archives: Live and On Tape FPage 2

M5-99 Multics Bulletin Reprints

cheap, safe, and convenient way to store all that information? Leok into the
"tape_archive" command, which operates like "archive" but creates the archive on magnetic
tape rather than within the disk storage system.

A tape archive consists of one or more reels of magnetic tape (referred to in the documen-
tation as a volume set), referenced through a table maintained in your working directory.
The tape archive system is designed so that the commands which reference or alter the vol-
ume set are accumulated in the tape archive table before being physically applied to the
tape. Thus, "tape archive" commands can be issued and verified before the tape is even
mounted. If this table is accidentally deleted, it must be loaded from the tape itself
before other commands can be issued.<3> The tape archive table always has the name of the
archive with the suffix ".ta" appended. When you have entered all the desired directives,
you issue the "tape_ arch1ve" command with the "go" key, the tape is mounted if not already
up, the requests which are pending in the tape archive table are carried out, the table
itself is copied ontc the volume set, and the tape is dismounted, all w1th0ut further user
intervention. The tape archive table is ecreated automatically the first time you issue a
"tape_archive" command that appends or replaces a component of the archive. When you
first specify the "go" key on a new tape archive, the system asks for the slot number of
the tape on which the archive is to be written; thereafter, that slot number is stored in
the table and the proper tape automatically mounted.

The basic syntax and keys of the "tape_archive" command are very similar to the "archive"
command .

tape_archive key table_path {arguments}
Keys Ma", "pn, wgnw vyt and "d" perform append, replace, update, extract, and delete op-
erations on the tape archive, just as they did on-line archives. The "d" and "df" modi-
fier keys can also be concatenated with the append, replace, and update keys to delete or
force-delete the corresponding segments. For all these keys, the "arguments" of the com-
mand line are the names of the components being referenced.

For example, suppose you want to create a tape archive called "extra_bones" containing
segments "able", "baker", and "charlie". Enter:

tape_archive a extra_bones able baker charlie
The system responds:
tape_archive: Creating >udd>Jurassic>pterodactyl>extra_bones.ta

If this is all you want to do right now, tell "tape_archive" to actually write the archive
on tape by using the "go" key:

tape archive go extra_bones
Since this is a new archive, the system replies:
Enter volume name of new first volume

When you give a valid slot number, the tape is mounted, the requests pending in the table
are carried out, and the tape is automatically dismounted.

Suppose you later want to retrieve segment "charlie", delete "able", and add a new segment
"delta". Issue the commands:

tape_archive x extra_bones charlie
tape_archive d extra bones able
tape_archive a extra bones delta

But let's say that you really meant to add segment "easy"™ rather than "delta". All is not
lost; you can cancel the pending request for "delta" and give the proper command:

tape_archive cancel extra_bones delta
tape_archive a extra_bones easy

To make sure that everything is all right now, ask for a table of contents of the tape ar-
chive:

tape_archive t extra bones

S S S M o

<3> This is done with the "load table"™ key of the "tape archive" command. The "recon-
struct" key, which 1is documented within "tape_archive", was never implemented and is,
therefore, unavailable.

Archives: Live and On Tape Page 3

MS-99 Multies Bulletin Reprints

Multics responds:

3 components in extra_bones.ta; 3 pending requests.
Mount of volume set for write pending.

REQ COMPONENT
d able
baker
X charlie {(into >udd>Jurassic>pterodactyl)
a easy (from >udd>Jurassic>pterodactyl)

All is as it should be, so you use the "go" key, and this time the tape is mounted without
you having to give its slot number.

In general, you do not have to concern yourself with the fact that your archive is being
written onto a tape rather than a disk; the system takes care of format, density, and
other tape specifications, One thing you should be aware of is that after a number of
changes, your archive tape is likely to contain a significant proportion of waste space.
Because of the nature of magnetic tape, files which are deleted or replaced cannot be
physically removed without rewriting the entire tape; therefore, they are marked as de-
leted in the table and new versions (if present) are written at the end of the tape. When
the wastage gets too large (this can be checked by using a table of contents key with the
"-long" control argument) you may compact your tape archive by writing only the active
files onto a new tape, which then automatically becomes your primary volume set. This is
done with the "compact" key of the "tape_archive" command. Other keys issue warnings when
the wastage reaches a certain level, or request that tapes be compacted automatically at
preset times.

The tape archive system allows you to specify a number of other options besides those dis-
cussed here; all are fully documented under "tape archive" in MPM Commands and Active
Functions. For most users, however, the append, replace, update, delete, extract, and go
keys, with an occasional compact, meet the need for a convenient and relatively cheap way
to store large amounts of data in the Multics system.

Archives: Live and On Tape Page U4

MS-99 Multics Bulletin Reprints

WANNA START SOMETHING?
by Michael Thornton

reprinted from the May-June 1981 Bulletin

I recently attended the First Annual Saurian Conference for Office Managers. Most of it
was boring, but one presentation really bowled everybody over. When it finished, the ap-
plause was riotous; throughout the audience, the sleeves of three-piece suits shook and
the tailored outfits from Bonwit's shimmered as scaly claws slapped together enthusiasti-
cally. At the front of'the auditorium, the speaker tried to look appreciative but ecould
only smile smugly as he bathed in the response. Obviously he knew his speech on "Emacs as
Employee-Relations Tool" was a real corker.

At last the roar died down, and a question-and-answer period began. I managed to scribble
down as much of it as I could, and what follows is a transcript of my notes. Although the
discussion is biased towards concerns that not all of our Multics customers share, there's
a lot here on Emacs start_ups that may be of general interest.

QUESTION [from a brontosaurus who used expensive cosmetics]:
My staff has been using Emacs for several months now and I think it's great. However,
my budget is limited and I don't have the money for high-speed modems. I've supplied
300-baud couplers and my staff is always complaining how long it takes for the screen to
re-arrange itself when they inszert or delete material in the middle of the text they're
working on.

ANSWER:

You ecan deal with these complaints by having your secretaries make the screen size of
their Emacs enviroments smaller. Your typical 24-line display terminal, for example, is
apportioned by Emacs into a fext area of 20 lines and a 4-line minibuffer. If you cut
the text area by one half, the time required for the redisplay will be 1less and your
secretaries will be happier. To set the text area to be, say, ten lines, have your
staff, each time they invoke Emacs, type "ESC X" and answer the prompt by giving the
following command:

set-screen-size 10

QUESTION:
Well, yes I see, but I suspect my staff would cavil some at having to type that same
command each time they invoked Emacs.

ANSWER:
You can placate your staff on that account by providing each of them with an Emacs
start_up. It automatically issues certain commands each time you invoke Emacs.

QUESTION:
How do I do that?

ANSWER:
Create a segment that contains the commands you want executed automatically. Make sure
the segment is called "start up.emacs" and is in the home directory of the person who is
to use it. A simple one, which just sets the screen-size, contains just one line:

(set-screen=size 10.)

Enclose commands in parentheses. This is because an Emacs start_up is really a small
LISP program, and LISP requires parentheses around each discrete statement. The period
after the "10" also manifests a LISP convention. You must ineclude the period to have
Emacs interpret "10" as a decimal rather than an octal number.

Then the next time you use Emacs, it automatically finds the start_up segment and exe-
cutes the instructions it contains at the start of your editing session.

QUESTION:
Thank you, that doesn't sound too hard.

ANSWER:
That's the wonderful thing about Emacs: if you don't like a particular aspect of its be-
havior, you can change it--without a major investment in new software or equipment. And
that's what makes it such an outstanding employee-relations tool. It's so cheap and
easy to satisfy complaints from your word-processing personnel. I'm sure there are
others out there whose staffs have peeves comparable to the screen-size problem--

QUESTION [from a tyranosaur, yelling]:

Goodness, yes! 1Is there any way to get rid of those ugly \010's that indicate back-
spaces in an underscored word?

Wanna Start Something? Page 1

M3-09 Multies Bulletin Reprints

QUESTION [also shouted]:
Yeah! And can't you get it to automatiecally insert a carriage return when you're typing
a line that goes past the physical right margin of the screen instead of printing those
confusing \c's?

QUESTION [in a mimicky voicel:
And can't you stop it from messing up the screen when my girlfriend sends me Multics
mail?

ANSWER:
Hold on, folks. All those complaints can be dealt with by commands given in an Emacs
start_up. Consider the following additions to the simple start up we made earlier:

(set-screen-size 10.)

(opt 'suppress-backspace-display 'on)
(fillon)

(accept-messages)

All these Emacs commands--or LISP statements, if you want to think of them that way--set
aspects of the Emacs environment that, once initially set when the start_up executes,
persist throughout the editing session. Each line corresponds to an Emacs command that
you could give interactively by pressing keys or by name after typing "ESC X". However,
keep in mind the differences in how you give a command interactively and how you present
it in a start_up. I explained the need for the parentheses and the period before; you
need the apostrophes in the second line for similar reasons. An apostrophe tells LISP
that the item immediately following is a literal name; i.e. it's a string constant
rather than the name of a variable. The effect, by the way, of setting the
"suppress-backspace-display" flag, is that Emacs displays overstruck characters more
compactly. For example, the underscored word Hypoecrisy appears as:

H . ypoeorisy

rather than:
H\010__\0TOy_\D109_\0100_\0100_\010r_\01oim\0105_\010y

The "fillon" command (on the third line) tells Emacs to automatically break long lines
by inserting newline characters rather than wrapping the lines on the screen and print-
ing "\c¢" to show that what you see is actually a single 1line. The "accept-messages"
command activates Emacs's own message-processing system; even if you do not use it for
sending or reading mail, having it in effect is nice because it prevents interactive
messages from messing up your screen.
QUESTION:

But don't these longer Emacs start_ups leave you sitting around for quite a while wait-
ing for them te finish? My staff already complains about how long it takes Emacs to get
itself revved up.

ANSWER:
Well, four lines are not going to slow you down substantially. As for longer start_ups,
there is a way to make them run more efficiently. To begin with, you should package the
constituent commands together as a single LISP procedure (called a "function") and then
execute the function. Recast in this way, the start_up given above looks like this:

(defun start-things-up ()
(set-screen-size 10.)
(setq suppress-backspace-display t)
(fillon)
(accept-messages))

(start-things-up)

You recognize four of the lines from before, I've inserted them as part a LISP function
definition, which is introduced by a "defun" statement. The function defined here con-
sists of the four operatlons that we want performed by the start_up., What follows the
"defun" is the name to be given to the function, in this case "start- things-up". The
"()" indicates that the function takes no arguments The lines that follow are the set
of things to do; "accept-messages" is the last of the set because the extra right paren-
thesis on that line closes the statement begun by "(defun". (A statement of a LISP pro-
gram, remember, is a sequence of things enclosed by parenthESES, ineluding, perhaps,
ather sets of things in parentheses.) The final line in the start_up tells Emacs to ex-
ecute the function that was just defined.

Now the start_up above, if stored as the segment "start up.emacs", will work just fine.
But to attain faster execution, you should compile your start_up. To compile it, you
run a program named "lisp_compiler", which takes your start up in the form you typed it
(i.e., source code) and fTranslates it into machine language (object code). If you have
been using a non-compiled start_up, switching over te use of a compiled one can be

Wanna Start Something? Page 2

M3-99 Multics Bulletin Reprints

tricky because the object segment, rather than the source segment, must be named
"start up.emacs". Therefore you should rename your source file "start up.emacs,lisp".
When you run "lisp compiler"™, the object segment it generates is given the name of the
source segment with The ".lisp" suffix stripped off--which is exactly what you want.
And how do you run the compiler? Give the command "lisp compiler" (or "lep"):

lisp compiler start up.emacs.lisp

If you get messages like "(accept-messages fillon set-screen-size) - funections refer-
enced but not defined" or "Warning: suppress-backspace-display undeclared - hencefarward
assumed to be special", don't worry--these are normal, The compiler produces a segment
named "start_up.emacs", which Emacs will pick up as it does an uncompiled start_up.

QUESTION:
My secretary has changed Multics so that his delete character is "<" instead of "#",
Now Emacs picks this up automatically so that "<" invokes the "rubout-char" command, but
he wants to accordingly have the "rubout-word" command invoked by "ESC <" instead of
"ESC #". He's learned to use the "ESC X set-permanent-key" command to do this, but he
frets constantly about having to give that command each time he uses Emaes. Isn't this
the kind of thing you could do in a Emacs start_up?

ANSWER:
Of course it is! sStart_ups are the perfect place to customize key bindings. Tell him
to make a start_up as we've discussed and include the line:

(set-permanent-key 'ese-< 'rubout-word)

Again, notice the differences from giving the equivalent interactive command: you do not
introduce the command with "ESC X" and you put apostrophes in front of any of the com-
mand's arguments that are character-string constants.

QUESTION:
All this talk about key bindings has got me wondering about the arrow keys on the VT100s
we have, My staff is always saying how much easier it would be to move the cursor with
the arrow keys than with the standard "P, "N, "B, and "F., Currently, if you press an
arrow key, Emacs goes to the beginning of a paragraph and deposits a single letter
there. Couldn't you write a start up that would make these keys work?

ANSWER :
Yes, but we're getting into complicated territory. Basically, you have to do twe
things: write a new Emacs command (or "extension") and hook it to a key (as discussed in
the previous question). You must design the command and choose the key binding se that
they properly interpret and respond to the signals transmitted by the arrow keys.

When you press an arrow key on a VT100 terminal, three characters are transmitted to
Emacs: an ESCAPE character, a "[", and a letter ("A", "B", "C", or "D", depending on the
direction of the arrow). What happens now is that Emacs takes the "ESC [" as a signal
to execute a command (and accordingly runs "beginning-of-paragraph", the standard com-
mand associated with that key binding) and then takes the letters as something you want
to put in the current file. If you're willing to give up (or reassign) the
"beginning-of-paragraph" command, you can instead arrange things so that "ESC [" invokes
a custom-made Emacs command that reads the third letter and then, depending on which
letter it is, executes one of the existing Emacs cursor-moving commands.

Now I don't want to get too involved in the issue of writing your own Emacs commands; if
you want to get into that, see the Multics Emacs Extension Writers' Guide (CJ52). Let
me just show you an Emacs start_up that defines a new cursor-moving command and hooks it
up to the "ESC [" keys:

($include e-macros)
(defcom move=cursor=via=vt100=-arrow
(setq x (get-char))

(cond ((= x 101)(prev-line-command))
((= x 102)(next=-line-command))
((= x 104)(backward-char))
((= x 103)(forward-char))
(t (display-error "Undefined esc-[command" (printable x}))))

(defun start-things-up ()
(set-permanent-key 'esc-['move-cursor-via-vti100-arrow))

{start-things-up)
The first block defines a new command called "move-cursor-via-vti100-arrow". The second
defines the start up funetion, which comprises one operation, the associatlon of the new

command with the "ESC [" keys. The last line, of course, executes the start_up func-
tien.

Wanna Start 3Something? Page 3

MS=99 Multies Bulletin Reprints

One last thing about Emacs extensions and start_ups: eventually you may write lots of
extensions; rather than defining them all in your start_up source segment, you'll find
it easier to keep them around as separate (possibly separately-compiled) segments. Your
start_up can then use the Emacs "loadfile" command to make your extensions available to
you.

QUESTION:
My terminal is not a VT100, but it has arrow keys. Will the strategy you just described
work for other terminals?

ANSWER:
It depends. Check the user's guide for your terminal to check what signals its arrow
keys do in fact generate. The up-arrow key on the terminal I use, for example, trans=-
mits a signal equivalent to the standard Emacs command "kill-lines" ("K). I could sim-
ply hook up "prev-line-command" with CONTROL-K to make the up-arrow key move the cursor
up, but if I did I would disable the "kill-lines" command, I could then bind
"kill-lines" to some other key, but then I'd have to get used te the new arrangement.

QUESTION [from a stegosaurus with stylishly-polished spikes]:
I've heard that an Emacs start_up must always have the "default-emacs-start-up" request
as the last line so that Emacs does its usual starting-up procedures as well as particu-
lar ones you've added.

ANSWER :
That was true in the past, but is no longer. Emacs goes through its wusual routine
whether you have such a line or not. The Honeywell documentation, however, has not yet
been updated to reflect the change.

QUESTION:
Documentation? There's documentation on all this?

ANSWER :
Oh, yes. See Appendix G of the Emacs Text Editor Users' Guide (CH2T).

Wanna 3tart Something? Page U

M5-99 Multics Bulletin Reprints

EXCERPTS FROM "OUR FAVORITE MULTICS QUESTIONS"

The following are composites of questions we have heard a number of times via the
"online_consultant"” (ole) command, together with the replies to them. They are
excerpted from the Bulletin column "QOur Favorite Multies Questions".

How to Copy a Segment from Someone Else

Q. I want to copy a program from my friend's account. How can I do it?

A. First of all, you should know that it may be unnecessary to copy the program. But
whether it is or not, you will first need to know the pathname of the program, which is
its address in the Multics storage system hierarchy. Most people keep things in their
home directories, i.e., the initial working directory at legin.<1> If your friend's
Multies Person_id is JRipper and he is registered on the SURGERY project, his home di-
rectory is most likely:

>udd>SURGERY>JRipper

Anyway, you should ask him if the program is in his home directory; and if he says
"Yes," or "What's a home directory?", you can be pretty sure it is. Otherwise, he'll
tell you what subdirectery it's in. Suppose, though, that the program is in his home
directory and its name is "find_victim". Then its pathname is:

>udd>SURGERY>JRipper>find_victim

Next, you need to get him to set you access to the program. DMNormally, you cannot read
or write another person's files on Multics without explieit permission from him. This
is a good thing; you don't want to come back after vacation to find that some fool has
erased three months' worth of your work or just turned in a thesis based on your as yet
unpublished data. However, this means that you need to go to a little extra trouble to
share data. 1In order for you to use his program, JRipper has to put you on the Access
Control List (ACL) for the segment "find_victim", with "read" ("r") and "execute" ("e")
access. If your Person_id is BStrangler and you are registered on the VISITOR project,
he would do this with the "set_acl" ("sa") command like this:

sa find_vietim re BS3trangler.VISITOR
Or, if he doesn't mind who uses his program, he could just type:

sa find _victim re ¥
OK, so now you know the address of the program and you have access to it. Why copy it?
If it's a main program, you can use it just by typing its pathname. Or if it's a sub-
routine, you can use it by telling the Multics system its location with the "initiate"
("in") command:

in >udd>SURGERY>JRipper>find_victim
If you intend to use the program a lot and don't want to keep typing its pathname, you
can use the "link" ("1k") command to make a permanent link to the program in your work-
ing directory:

1k >udd>SURGERY>JRipper>find_victim
This link will make it seem just as though the program were in your working directory.
But if you are really insistent on having a copy of your own (and paying the storage
charges for it), you can use the "copy" ("cp") command:

cp >udd>SURGERY>JRipper>find_victim
This will make an actual segment in your working directory. In this case, you probably
will want the source too, so make sure that JRipper sets you access to that, too; and
then:

cp >udd>SURGERY>JRipper>find_victim.fortran

<1> In a sense, this is unfortunate, because they could organize their work much more ef-
ficiently if they would create and use subdirectories, This is easy to do and allows you
to separate groups of segments of different kinds or related to different tasks.

Our Favorite Multics Questions Page 1

M3=99 Multiecs Bulletin Reprints

For more information on directories, segments, and access control, see the MNew Users'’
Introduction to Multies (CH24) and IPS Memo MS-1: Multics at IPS.

tE S22 S22 2RSSR SRS RS R R R R RS E R SREE R SRS 2

Likely Causes of Common Error Messages

Q. While running my program, I got the message: "Error: storage condition by bombout|3210
(line 99) (>user_dir_dir>BASEMENT>Bomber>bombout) Attempt to reference beyond end of
stack. Stack has been extended." What could have caused this?

A. A number of things could have caused this error message, the most likely of whiech are
using too much "automatic" storage, and referencing beyond the bounds of an "automatic"
array.

Automatic storage is the default kind of storage in both PL/I and FORTRAN. 1In FORTRAN,
automatic storage is used for variables that do not appear in COMMON or SAVE state-
ments.<1> Each time your program is run, the space for these variables is re-allocated
in a segment called the "stack" in a special temporary directory, the "process direc-
tory".

If you have too many or too large arrays of automatic variables in your program, the
space needed to allocate them will exceed the maximum length of the stack segment and
you will get the "storage" condition. If this caused your storage condition, you can
type "start" and your program may run, because the maximum length of the stack has been
increased. However, if the maximum length has not been increased enough, you may get
the storage condition again. And if you do this several times, you will finally get a
"Fatal process error"; i.e., the process directory and all your temporary storage will
be thrown away, and you will be given a new process directory, just as if you had
logged out and logged in again. A better solution than typing "start", then, is to re-
move your large arrays from automatic storage and put them into static storage (PL/I)
or named COMMON blocks (FORTRAN).

Another major cause of the storage condition is a reference beyond the bounds of an ar-
ray (or a string in PL/I). If the automatic storage reference is far enough out of
bounds, it may be beyond the maximum length of the stack, and the result is the storage
condition. Here, typing "start" will not solve the problem. You must look at your
program and find out where the bad subscript reference is. If you compiled the program
with the "-table"™ option, the error message will give you the line number (such as 99
in the example) where the bad reference is being made. Then, with a listing of your
program (obtained by compiling with the "-map" option) and the "probe" command, you can
examine the values of variable subscripts when the error occurs and find out its cause.

A third major cause of the storage condition is mismatched argument lists. This occurs
when, for example, you call a subroutine that has four parameters with a "eall" state-
ment that has only three arguments. As a result, the subroutine finds garbage when it
looks for the fourth parameter--and anything can happen. You should suspect this prob-
lem when you get a storage condition error from a Multies system subroutine or an IMSL
routine. And, of course, the solution is to examine the documentation for the subrou-
tine being called and the listing of your program, make sure that the argument and pa-
rameter lists match, and fix your program if they don't.

These three problems probably account for ninety-nine percent of 2ll storage condition
errors. Let us know if you find some new and creative ways of producing them.

Q. What does the message "record_quota_overflow" mean?

A. It means that you've run out of storage space. When your Multics project was set up,
the User Accounts Office assigned it a maximum amount of space to use for directories
and segments (25 records unless your project administrator requested more). This 1is
the "storage quota" for the project, and is shared by all project members., (A Multiecs
record can held 4096 characters, or 1024 single precision binary numbers. This should
not be confused with the term "record" used in FORTRAN or PL/I, which has a different,
though related, meaning.) 1If, while you are using an editor or a program that writes
into a segment, you create or increase the size of a segment so that the total storage
space occupied by all the directories and segments of all the users on your project ex-
ceeds the project storage quota, you receive a message like:

Error: record*quota_overflow condition by fillerup)20
(>user_dir_dir>CONSUMERS>Spacehog>fillerup)

<1> This assumes that the program does not contain a SAVE statement with no wvariable
names, a "Iglobal statice" statement. or a "%options statie" statement.

Our Favorite Multiecs Questions Page 2

#3=39 Multies Bulletin Reprints

referencing >user_dir_dir>CONSUMERS>Spacehog>more_space;0

In this message, the part after "Error...by" (in this case "fillerup") is the name of
the program which was trying to do the writing when space ran ocut, The number after it
is the oectal location, within that program, of the machine instruction being executed.
If you compiled the program with the "-table" option, you get a source line number af-
ter that. The next line gives the absolute pathname of the segment containing the pro-
gram., On the last line, after "referencing", is the absolute pathname of the segment
or multisegment file into which the program was trying to write. And the number fol-
lowing is the octal location within the segment at which it was trying to write.

How can you fix this? The easiest way is to use the "delete" command to get rid of
segments you no longer need. You can find out how much space these segments are using
with the "list" command, whose output looks like this:

Segments = 19, Lengths = B0.

row 3 poisoned_apple

Here the number "3" next to the segment name "poisoned apple" means that the segment is
using three records of storage. If you delete it, those three records become available
to your preogram. Then you can just type "start" and the original program will resume.
If you don't want to delete any of your segments, vour project administrator will have
to get the User Accounts Office (x3-4118) to increase your project's storage quota.

Of course the best policy is to get enocugh quota from User Accounts so that you won't
run intoe this problem. Your project doesn't pay for any it doesn't use, but we still
must limit the storage assigned to each project. We have to keep track of the total
storage assigned so that we don't accidentally run out of storage space altogether! If
you think you need more guota, first find out how much you are now using. Type:

get_quota

If the printed result says "quota=0", then you are borrowing from the storage quota of
the next directory up in the hierarchy, usually your project directory. To find out
the quota used in that directory (including what you're using), type:

get _quota <

You should be able to estimate how many more records you need. Remember, if a segment
contains anything at all, it is using at least one record. And since a record can only
hold 4096 characters, if the segment contains even 4097 characters, it will need two
records.

Q. I tried to compile my FORTRAN program, which used to work fine on the IBM system, and
got this error message:

FATAL ERROR 414 on line 3
Implementation restriction: stack frame has overflowed its limit of 62000 words,
new_fortran: Fatal error. Translation aborted. stack.fortran

What's wrong?

A. The problem is that you are using up too much local, non-static storage in your pro-
gram. All variables that do not appear in a COMMON or SAVE statement<1> are considered
"automatic" variables. The storage space that holds these variables is allocated and
freed dynamically with each run of the program (or on each call to a
separately-compiled subroutine). And the place where this space is allocated is in a
special segment called the "stack". To help your programs run more efficiently, the
maximum length of the stack is kept at 65,536 words. And since system programs use
3,000-4,000 words at the beginning of the stack, it is obvious that if your program
needs more than 62,000 words of automatic storage (one word holds a single integer or
real value, or half a double-precision value), there won't be enough space in the stack
to run it. The FORTRAN compiler can detect this problem under certain conditions and
warns you about it.

So what can you do? Well, you have several options. One is to put a "%global static;"
statement at the beginning of your source segment:

<1> Provided there is not a global SAVE statement in the program or an "%options static;"
or "%global static;" statement in the source segment.

Our Favorite Multics Questions Page 3

MS~

k¥

Hol

99 Multics Bulletin Reprints

Zglobal static;
C THI3 PROGRAM I3 OF LITTLE USE BUT GREAT BEAUTY
DIMENSION SPCHOG(63000)

or a "%options static;" statement before in any of the subroutines that have especially
large arrays cof local (as opposed to COMMON) storage:

END

foptions statie;
SUBROUTINE CLEVER(TRASH,WISDOM)

C SUBROUTINE TO CONVERT TRASH INTO MEANINGFUL DATA
DIMENSION FUDGE(70001)

These have the advantage of being easily identified for removal if you wish to export
your code to a non-Multics system. Another way around the problem is to include a SAVE
statement with no wvariable list in any of the subroutines where a "foptions static;"
statement would be appropriate. Or you can list variables in the SAVE statement to
show that ONLY those variables are to be static (non-automatic):

dimension storage hoard(30000),black hole(40000)
save storage_hoard,black _hole

If no variables are listed, as in:

dimension repository(50000),fort_knox(20000)
save
gold_brick=fort_knox(30)

then ALL of the local variables in the subroutine are considered static (including
"gold brieck", for example). Or, of course, you could just put the big arrays in COMMON
storage, preferably named COMMON.

One advantage of all these types of static storage is that they are allocated only once
per process which saves some processing time. What could be a disadvantage is that any
zeroings of variables or initializations in DATA statements are done only once, during
the first run in a process. This possible disadvantage can be overcome by use of the
"run" command (3ee the MPM Commands and Active Functions for further informatien),
which causes static variables to be reallocated and reinitialized with each program
run. Of course, the efficiency of a single alleocation goes out the window in this
case.

AR R R R R R R R RN RN AR AN R AN RN E NN R R AR R RN R RN R R R AR RN AR AN RN R RN R R AN

d Everything; It's an Interrupt!

Q.

A,

Qur

What does the "level 2" in my ready message mean?

It means that some program has been interrupted in the middle of execution and is wait-
ing to be restarted. If you don't want to restart the program, type "release". If you
are in an editor, 1like '"gedx", and want to continue editing, type "pin
(program_interrupt). Or if you just hit the Break or Attn key by mistake, type "start"
to continue.

"Level 2" refers to a Multics operating system subroutine called the "listener", which
(through subroutine calls) prints the ready message on your terminal and then waits for
you to type a command line. It reads each line you type, and as scon as you type a
non-blank line, it passes the line to another subroutine called the '"command proces-
sorv, The command processor translates the line into calls either to system programs
or to your programs. If, during execution, your program or a system program encounters
some problem that it can't handle (such as the record quota overflow discussed earlier)
or if you signal Multics to interrupt the program's execution with the "BREAK" or
"ATTN" key, Multics does several things:

@ stops executing the program;

@ saves information about the interrupted program in a segment called
the "stack" (in a special directory, the "process directory", which
you normally don't need to worry about);

@ prints out an error message (or the word "QUIT", if you did the in=-
terruption yourself);

@ calls the listener again, to read a command line from your terminal.

Favorite Multies Questions Page 4

M5-99 Multies Bulletin Reprints

The stack, which contains information about all programs either running or interrupted,
now holds the following. (The program at the teop of the stack is the one running; the
rest are waiting.)

i program E ! program |

| command processor [i""ESQQQEE”LFSZ;;;;; """ .

| PP oy U SR | e o e Km0 W ot o oty e e L e o i e S~ BT e

i listener E i listener E

e e s o Mo 1 o sl ot s S e o i
Before Interruption After Interruption

Figure 1. Stack Before and After Program Interruption

This is called a new "listener level", because the listener appears twice in the stack.
Since the second execution of the listener knows about the first one (through shared
static variables), it prints out a ready message with "level 2" to let you know that you
have a program suspended and waiting to be restarted.

This second listener level is an excellent Multies feature not available on most systems.
It allews you to issue commands to diagnose the cause of the error and sometimes fix it.
Then you can return to the execution of the interrupted program without starting it all
over again from the beginning. For example, if you had received the record*quota_overflow
error, you could use the "delete" command to delete some segments:

1
R !

| delete i

1
B O e o 1
! command processor (2) |

| = ——————————————— H § o e e e e e 1

i listener (2) E i listener (2) i
o program {1 program |
| command processor | | command processor |
| listemer {1 listener [
R S o | T S T R L
Deleting Segments After Deleting

Figure 2. Fixing a Problem

and then use the "start" command to restart your program at the peint where it was inter-
rupted:

i program :I E program [
| command processor | | command processor §
g'”"""'II;E;E;; """"" ! i""""'EE;E;;;; """""" §
e ey T T g o e e I e B e e 1
Restarting Program After Restarting

Figure 3. Restarting a Program

If you don't want to restart the program, you can throw away the information being saved
in the stack by giving the "release" command:

Qur Favorite Multics Questions Page 5

M3-99 Multics Bulletin Reprints

listener i

- e mmmaaa

Releasing Stack After Releasing
Figure 4. Releasing the Stack

And now you're back to the original listener level with no "level 2" in your ready mes-
sage. Of course if you interrupt a program run from listener level 2, you get a ready
message with "level 3", etc., and you may have to use "release" several times (or
"release -all") to get back to level 1.

It's a good idea to release the stack if you don't want to restart the interrupted pro-
gram. Sometimes (usually in your programs but also in system programs, such as "qgedx") a
second execution of the same program or a related program while a previous execution is
suspended in the stack will cause a problem because of data shared between the two pro-
grams.

If programs such as editors (e.g., "gedx") and debuggers (e.g., "probe") that accept sub-
commands, or "requests", from the terminal are interrupted, it is often better to use the
command "program_interrupt" (or "pi") instead of "start" to restart the program. This
aborts the request being executed and puts these programs in a condition ready to receive
the next reguest.

IS SR SR RS RS RS SRR RS RS ES AR AR SE RS SRS SRS SRS LSS ERSES AR RS RS RS SES RS RS R

How to Join Segments Together

Q. How do I join together several segments into one large segment?

A. First of all, it should be clear that we are talking about ASCII segments, i.e., seg-
ments containing documents or source programs.<1> And we are also talking about join-
ing them together and then leaving them together.<2> The most common way of deing this
is to use the editor "gedx". For example, suppose you have three sections of the chap-
ter of a book written by three different people and want to combine them into the fin-
ished chapter. You can do s¢ like this:

gedx

r »udd>Writers>JBrown> joes_section.runoff

r >udd>Writers>M3mith>marys_section.runoff

r »>udd>Writers>CChan>charlies section.runeff
w chapteri.runoff -

q

The first line gets you into the gedx editor. The next three read in the three sec-
tions of the manual. The second is appended to the end of the first, and the third is
appended to the end of the second.<(3> The next line writes the combined contents of
the three segments into a fourth segment, "chapteril.runoff", in your working directory.

1> There is a way of jeining together object segments teo: by use of the "archive" and
"bind" commands.

€2> The "archive" command is used to combine several segments into one in such a way that
any of the original segments can later be extracted easily. This is usually done for the
purpose of organization and saving storage space.

<3> Of course, if all three sections were in your working directory, you could dispense
with the ">udd...>" part.

Our Favorite Multics Questions Page 6

MS-99 Multics Bulletin Reprints

Another method would be to use the AML ‘"concatenate_segs" ("ces") command.<1> You
could achieve the same result as above with one command:

ces chapteril.runoff >udd>Writers>JBrown>» joes section.runoff
>udd>Writers>MSmith>marys_section.runoff =
>udd>Writers>CChan>charlies section.runoff

(all typed on one line). The only difference between these twoe methods is that if
chapterl.runoff already exists, gedx erases its contents before writing in the contents
of the other three segments whereas "concatenate_segs" appends to the current contents
of chapteril.runoff. Also, "concatenate_segs" has control arguments that allow you to
automatically delete the original segments after concatenation and do other useful
things (See IPS Memo MS8-52, The Author-Maintained Library, or type "help cecs").

FEREEE AR RERRR R R R R R R R R RE R R R RN RN AR RRRNEER AR AR RRRRRRRRRRR AR RRRRRERERFRRRERRRENR

Help! I'm Trapped in a Question to the OLC!
Q. q

end

A%

logout

How do I get out of this thing?

A. Although it is fairly easy te start transmitting questions to the on-line consultant
(just type "ole", followed by a carriage return), people sometimes forget to find out
how to stop transmitting; and the consultant sees something like the above on his ter-
minal. To stop transmitting, just type a period all by itself at the beginning of a
line, followed by a carriage return, like this:

If you don't, anything you type will continue to be sent to the on-line consultant un-
til he or she is able to get a word in edgewise and tell you what to deo, or until you
hit the BREAK key or hang up the phone. While we're on this subject, notice the cor-
rect (and very similar) usage of the "send message" (sm) command when you want to type
the message on a different line(s) from the command itself:

sm Lumberperson.TREES

¢---[Multies responds "Input:"]
Please don't cut down any more trees on my account.
I'm converting to a CRT.

-

2222222222222 2222222222 RRRRRR RS R R Rttt R d S

Using "Tape archive"

Q. How do I tell "tape archive" what tape to use?

A. When you use "tape_archive™ to create a new archive, for example, by using the
"append" (a) key:

tape_archive a warehouse kazonga.fortran

it creates a segment, in this case "warehouse.ta", in your working directory. This
segment is used to control the tape archive and is called a "control segment”.

You may continue requesting that segments be appended, e.g.,

ta a warehouse wuse_kazonga.runoff

<1> The AML (Author-Maintained Library) is a collection of software written and maintained
by our customers (as opposed to staff or vendors). It is documented in IPS memos M3-52,
The Multics Author-Maintained Library, and AP-52, Author-Maintained Library: Application
Software. 1ts support level is FOUR (See IPS memo RT-3, Hardware and Software Available
at IP3, for an explanation of support levels, which affect availability of consulting,
credit refunds, ete.).

Qur Favorite Multics Questions Page 7

M5-99 Multics Bulletin Reprints

and so on.

At this peint you must have purchased or rented a tape and registered it at IPS (either
by seeing the Tape Librarian on the second floor of Building 39, or by sending Multics

mail to Tapes.Operator). When the tape is registered, you will be given a six-digit
slot number (a "volume name" to Multics), like "071234", to be used in identifying the
tape. Then, when you are ready to have the segments copied to tape, you can type, for
example:

ta go warehouse
and "tape_archive" will ask you for the slot number:

Enter volume name of new first volume:
Type the slot number; "tape archive" will then execute the requests you made earlier
("tape archive a ..."), as they appear in the control segment, and copy the segments
onto the tape. When it has finished and released the tape, Multics will print a ready
message.

It's a good idea to try extracting a file from the archive at this time, just to make
sure that the tape is good, e.g.,

ta x warehouse wuse_kazonga.runoff; ta go warehouse
You can then delete the segments, if you wish.

The next time you type "ta go warehouse", "tape_ archive" will not ask you for a "volume
name"; it has been stored in the control segment.

While you are using a tape for a tape archive, you cannot use it for anything else, in-
cluding another archive (i.e., one with a different control segment) wunless you are
willing to destroy the contents of the archive.

EFEEREFERRE AR XA RN R AR R R AR AR R A AR A AR R AR AN RN R RN R RN AR RRRRRERRARF RIS AARRRARERFRRRRRRRRERNR

Retrieving a Lost Segment

Q. I just made a terrible mistake and deleted a data segment that it took me three years
of hard labor to construet. Is there any way to get it back?

A. Yes! If it had only taken you half an hour of hard labor to construct, you might be
out of luck--but in this case, the Multics automatic backup system will save you. Ev-
ery weekend the whole Multics storage system (all the directories and segments) are
dumped to magnetic tape and the tapes are saved for a period of time (some for months;
others, longer). And every evening all the directories and segments modified that day
are dumped to tape. The weekend dump is called a "complete" dump and the daily one, an
"incremental" dump. If you are near Building 39, you can fill out a Retrieval Request
form at the dispatch counter (Rm. 39-260). Call 253-4121 first to be sure the dispateh
area is open. Otherwise, type "help rr" to find out how to submit the request online
with the "retrieval request" ("rr") command. You will be charged $10.00 for each tape
mounted in the retrieval (assuming the 1loss was your fault--otherwise, there's no
charge). Retrievals are usually done within 24 hours.

If you have managed to create a very expensive segment and accidentally delete it the
same day, you may be able to retrieve a good copy of it from the Volume Dumper tapes.
The Volume Dumper once an hour scans the storage system and dumps to tape segments
modifed since its last scan. However, since this dumper is somewhat less useful for
retrievals than the one which creates the dumps mentioned above, you should aveid using
it if possible., If you do need it, type "help err™ te find out how to submit a volume
retrieval request with the "enter retrieval request" ("err") command. More information
on retrieval can be found in the article "Multies Backup", elsewhere in this issue.

Of course, if your data segment was so valuable it would have been wise for you to keep
up your own backup tape by using the "tape_archive" ("ta") command (See the MPM Com-
mands and Active Functions or type "help Ta"--also see "Favorite Multics Questions™ in
the January~February 1980 issue of the Bulletin). In that case you would be able to
retrieve a copy of the segment almost any time, usually for less than $10.00.

ERRX R A AR R AR AR AA AR TR RN AR AR AR LA R R AR A RN AR AR R R R R R AR RN AR AR ERERRR RN R AR AR NN NN AR R NN N RN

Qur Favorite Multics Questions Page B

MS-99 Multies Bulletin Reprints

What Happens if You Just Hang Up

Q. I always get out of Multiecs by just hanging up the phone. Recently I noticed I'm being
charged for additienal connect time. Why?

A. The save_on_disconnect attribute was given to all MIT users in Nevember, so Multics now
saves all disconnected processes. This means that users who are accidentally discon-
nected can log back in and reconnect to their old process and not lose any of their
work. Unfortunately, if you just hang up the phone, Multiecs thinks that you've been
accidentally disconnected, and so it saves your process. It dces not (as it used to)
automatically log you out. Therefore, you should always leave Multics politely, by
means of the legeut command. Wait for Multics to reply before hanging up the phone or
you might disconnect before the logout processing is complete and accrue additional
charges. If you accidentally disconnect when you mean to log out, you should log in
again, giving the "-destroy" argument on your login line. This destreys the discon-
nected process. If you're not sure that you have a disconnected process, you can login
in the wusual way. If you have one, Multies tells you se¢, and then asks you for in-
structions (see below). You can logout a disconnected process by answering "destroy".

Q. I lost two hours of editing yesterday when my kitten knocked over the phone and discon-
nected me. Today someone told me I could get the editing back by reconnecting to my
old process. How do I do this?

A. Your disconnected process is saved only for about an hour, so the editing you did is
lost forever. The next time your kitten knocks over the phone, you should login on the
same project within an hour. If your process was successfully saved you receive the
messages:

You have 1 disconnected process.
and :

Please give instruction regarding your disconnected process(es).
Please type list, create, connect, new_proc, destroy, logout, or help.

To reconnect to your disconnected process type "connect". (If you're sure you have a
disconnected process, and you want to reconnect to it, you can do that most efficiently
by specifying the control argument "-connect" when you login.)

Once you issue the "connect" command, Multics advises you to "Wait for QUIT." When
QUIT is printed at your terminal, your process is in the same state as if you had is-
sued the QUIT yourself by pressing the "BREAK" or "ATTN" key. You ecan type
"program_interrupt" ("pi" for short) to retrieve your qedx or Emacs editing. Alterna-
tively, you can type "start" or "release", depending on whether you want to restart or
abort whatever you were doing at the time you were disconnected. Or you can just give
a Multies command if you want to do something else from the new command level. For ex-
ample, you might want to reset your terminal modes (see below).

However, the best way to protect yourself from editing leosses is to save your editing
frequently during your edit session.

Q. After I reconnected to Multics, my terminal was very slow and the 1lines were being
truncated to 79 characters. What happened?

A. When you reconnect to a disconnected process, not everything about your process is
saved. In particular, Multics does not remember any terminal modes you might have spec-
ified, such as line length, editing characters, and so on. Instead, it resets the ter-
minal modes to the default for the terminal on which you are reconnecting. This is be-
cause users sometimes 1log back in on a different type of terminal than the one they
were originally logged in on. When you reconnect, you should reset the terminal modes
from the new command level and then restart or abort whatever you were doing at the
time you were disconnected.

Emacs users beware: Emacs remembers terminal types. If you're disconnected in the
middle of an Emaecs session, you must always reconnect to the same type of terminal.
Also, Emacs remembers terminal types between invocations during the same process (un-
less you informed it of the terminal type with the "stty" command). Sc, if you invoke
Emacs again after reconnecting from a different type of terminal, you must inform Emacs
of the change by giving the "-reset", "-query", or "-ttp" control argument with the
"emacs" command.

Qur Favorite Multics Questions Page 9

