1t
Ca
2

Copy

pb 250

Programming Manual

PBC 1004 Revision 1

Pb Packard Bell Computer

A SUBSIDIARY OF PACKARD BELL ELECTROMICS
1905 ARMACOST AVENUE ¢ LOS ANGELES 25, CALIFORNIA = GRANITE 8-4247

March 15, 1961

NOTICE

This document involves confidential PROPRIETARY
information of Packard Bell Computer Corporation
and all design, manufacturing, reproductions, use,
and sale rights regarding the same are expressly
reserved. It is submitted under a confidential rela-
tionship for a specified purpose, and the recipient,
by accepting this document assumes custody and
control and agrees that (a) this document will not be
copied or reproduced in whole or in part, nor its
contents revealed in any manner or to any person
except to meet the purpose for which it was delivered,
and (b) any special features peculiar to this design
will not be incorporated in other projects,.

When this document is not further required for the
specific purposes for which it was submitted, the
recipient agrees to return it.

PREFACE

This manual is a guide to programming the PB250. Although a great
deal of this material is similar to that which is included in the PB250 Re-
ference Manual, it is presented here in more detail. The information pro-
vided in this manual will be useful in actual programming operations. Sup-
plements and modifications to this manual will be published as a series of
Programming Notes to be distributed to personnel possessing Programming

Manuals.

Section

II

III

v

CONTENTS

PREFACE

GENERAL PB 250 CHARACTERISTICS

1.l Introduction .. e vewes ves s se s was s w ae B B Ee e e

1.2 Memory Organization ...cvevsvsocsnsses I T
1.3 Command Word Configuration A R R
1.4 Command Sequencing and Timing sie wowie wmeine .
15 Parity Check .o vie van swae eiws was cowaaes ceeserseraens

PB 250 COMMANDS

2:1 General i o vws v vewen i i SRR TS e ERW SO EE aeE

3.1 Programming Techniques O U T P ‘o
3.2 UseofLine 00 et e semn s s B
3.3 Sample Programscceoveieveececnas Ry F R
3.4 Programming Conventionsccvevvierencenasians
3.5 Flow Diagramming Conventionscecevveenans coes
3.6 Annotation Conventionscveevetvevnsconconss coo
3.7 Available PB 250 Programs ...ieisassssssassses nass E

INPUT-OUTPUT TECHNIQUES
4.1 Flexowriter ...civeveervcrennonnne ces e SCeEe Sapne wieE BRI

COMPUTER OPERATION AND PROGRAM CHECKOUT

5.1 Computer Operation «.c..coevesaan s wera we & & wwiw e e ¥
5,2 Program Checkoul ... ceses s sws scnweewes voe pewieyses v
5.3 DBootstrap Loading .. c.ess sewes sin ton oo vas smn e s .

Page

APPENDICES ' Page

APPENDIX A: Binary-Octal Numbers. ... vvve vt onunnn. A-1
APPENDIX B: Numerical Conversion Tables,,............ B-1
APPENDIX C: Octal Utility Program ...c00000:044. s e i C-1
APPENDIX D: Recirculation Chart, ;.i.ccvsevessscasanaes D-1
ILLUSTRATIONS
Figure Page
1-1 Data Word Configuration it i iinrnnnrrennnsos 1-2
1-2 Iodex Regiater cias oo obs i de8 e 90 vas 5% va dh e Bee seien 1-4
1-3 Input Bulfer. . cam oa Len vesian sieh veaeds vas de e da Sbe ok R 1-5
1-4 Command Word Configuration........cciiiivnnn.. F T 1-5
1-5 Typical Command Word: vuy covin o vevon v e ek vosa s 1-6
4-1 Flexowriter Keyboard...iivi v snns WA S D VR e I 4-2
4-2 Flexowriter Code. . v e s s e wv walesl sue seees gos sy 4-2
4-3 Flexowriter CharaclerB: ieovs was vve s dae o wiade s & 5 e s 4-2
TABLES
Table Page
1-1 Command Clagsificalion. i v s wan invan v 6 565 e i e 1-10
2-1 Divigion GeErBction: vew s ven vsan vied oo s 2ee o5 Vs ot a6 e 2-35
2-2 Flexowriter Configurations for WOC Commands............. 2-59
3-1 Standard Flow Diagram Symbols.. cocis inesnsns wiv it sei wowa 3-10
3-2 Summary of Available PB 250 Programs.....c.vvvvivennnnnns 3-13

ii

e

PB 250 General Purpose Digital Computer.

N’

~

~

I. GENERAL PB250 CHARACTERISTICS

1.1 INTRODUCTION

The Packard Bell PB 250 is a high-speed, completely solid-state gener-
al purpose digital computer in which both the data and the commands required
for computation are stored in a homogenous memory. The storage medium is
a group of nickel steel magnetostrictive lines along which acoustical pulses are
propagated. At one end of each of these lines is a writing device for translating
electrical energy into acoustical energy. At the other end of each line is a read-
ing device for translating acoustical energy back into electrical signals. By re-
writing the stored information as it is read, information continously circulates
without alteration, except for alterations which result from the execution of the
computer program. Use of the optional battery power supply will preserve

memory information even during power interruptions.

1.2 MEMORY ORGANIZATION

The memory of the basic PB 250 contains ten lines, numbered octally
(base eight) from 00 through 11, which may hold both data and instructions.

Each long line, 01 through 11, colntams 256 (decimal), or 400 (octal), locations,
_—

also called sectors, that are numbered 000 through 377. Note: All sector and

line numbers are given in octal notation throughout this manual. Since the infor-

mation in any location can be either data or a command, the generic term"wd"
is used to cover both. The location of any word is specified by a sector and line
number (SSSLL), and these together are called an address. Line 00 1is a 16 -
word Fast Access Line. Since line 00 is 1/1% the length of a long word line, any
unit of information contained in it is available 16 times during each complete
circulation of the 256-word lines. Any word in the Fast IAccess Line is identified

by one of 16 channel addresses (see Recirculation Chart, Appendix D). Line 00

1-1

channels are designated F0O through F17. For example, channel F00 of the
line 00 can be identified by the following #ddresses: 00000, 02000, 04000,

Fifty-three additional lines, each of which may have from one to 256
words, can be added, These lines are numbered 12 through 36, and 40 through
77. Line number 37 is used for the Index Register, If all of the additional lines
are used, and if all hold 256 words, the memory capacity of the PB 250 is ex-
tended to 15, 888 words. The PB 250 cabinet can hold a total of 16 lines.

Commands can be executed only from lines 00 through 47; these lines

are therefore designated '""Command Lines. "

1.2.1 Data Word Configuration

Every number stored in the PB 250 is represented by a series of
pulses which correspond to a series of zeros and ones that are the digits of the
binary number system. The term ''binary digit'" is usually contracted to the

word '"'bit. ' (A discussion of binary numbers may be found in Appendix A.)

A number stored in a location in the PB 250 consists of twenty-one
bits that represent magnitude and a twenty-second bit to indicate sign. A nega-
tive number has a one in position zero, whereas a pogitive number has a zero
in position zero. Negative numbers are expressed in their 2's complement
form. (A discussion of complementary arithmetic may be found in Appendix

A.) Figure 1-1 shows a PB 250 data word configuration.

0o-1 2 3 4 5 6 7 8 9 10 11 ‘12 13 14 15 16 17 18 19 20 21

Figure 1-1. Data Word Configuration

These 22 positions are sufficient to represent a 6-digit decimal number.

1-2

w

"

Larger numbers may easily be represented by using the double precision

features of the computer.

1.2.2 Arithmetic Registers

Three arithmetic registers, A, B, and C, are provided for arithmetic’
operations and information manipulation. Each register has exactly the same -
format as a memory location, including the sign, and all are available to the
programmer. Double precision commands treat A,and B as a double-length
register. The contents of a register may be tested for non-positive values or
compared against the contents of any memory location. In addition, infor-
mation may be interchanged between A, B, and C. A record may be kept in

one register of operations performed on the others.

L. 2.3 Index And Buffer Registers

Both the Index and Buffer registers are part of special one-word regis-
ters. When loading the A, B, or C registers from either the Index or Buffer. .
registers, suitable masking should be employed to avoid reading extraneous

information.

1.2.3.1 Index Register

The Index register, which is part of the machine Instruction registe_i_’ .
(see Figure 1-2), stores a line number for use with commands which have an
Index Tag of one. When used, the contents of the Index register replace the
line number of the address in the command. This replacement is made during
the reading of the command, but does not change the command as its stands in B
memory. For example, if the contents of the Index register are 01, then in

the execution of the following program step:

OP Code Address Index Tag
ADD 03204 1

1-3

The contents of 03201, instead of the contents of 03204, will be added to the

contents of the A register.

Line number 37 is reserved to designate the Index register.
Addresses 00037 through 37737 all apply to this register, and bit position 16
through 21 are the useful positions for the line address. Thus, a STA into
line 37, any sector, places bits 16 through 21 of A into the Index register,

bits 16 through 21.

0 78 15|16 21
Operand Sector Counter indbx
Sector For Next Register
Counter Command

Figure 1-2. Index Register

The term ''effective address,' as used in this manual, means the
actual location referred to by the computer when executing a command. In the
event that the Index register is used, the effective address consists of the sector
address specified by the command, plus the line address stored in the Index

register, which replaces the line address of the command.

1.2.3.2 Input Buffer

The Input Buffer is part of the machine.Sector Counter (see F“igure
1-3). It receives the input from the Flexowriter and can accept up to aﬂ
eight-bit character. This entry is logically accumulative for each bit of the
character, requiring that the buffer be cleared before each input. The Input
Buffer is enabled to accept information %y either a READ TYPEWRITER
KEYBOARD or a READ PAPER TAPE command. The single character sent

by the reader, or provided by the depressed typewriter key, is loaded into

1-4

-

P

~~

the buffer and, upon completion of buffer loading, the computer is signaled
by the Flexowriter. This action requires a period of time during which it

is possible to execute a large number of commands.

0 718 15 |16 21|G|P
Sector Sector
Counter Counter i
N e J
Figure 1-3. Input Buffer Input Buffer
1.3 COMMAND WORD CONFIGURATION

As previously described, information in any memory location may
be either data or a command. When the information is a command, it has a
definite configuration, or format, as illustrated in Figure 1-4.

0 1 2 3 & 5 6 7 8 910 111213 141516 1718 19 20 21
|
[

’ . { ' '
ey o B i { 1 :

Sector Address } Op Code le— Line —v-l 3
ex

Add ;
Seq. Tag ress In

Figure 1-4. Command Word Configuration R
o

Each subdivision, or field, of the command word is uniquely identified. The E
subdivisions are the sector address, sequence tag, op code, line address,
and index tag fields. There will be frequent references in subsequent
descriptions, to the address field of a command. Although the address is
made up of a sector number and a line number, these numbers are not
contiguous in the command format. The address field, however, is considered
as a single entity. The address 03204 refers to sector 032 line 04. The

contents of the address field in a command do not always designate a memory

location.

1-5

For example, the shifting commands use the address field to indicate the

number of positions to shift.

The sequence tag field may contain either a one or a zero, and

its use is detailed in paragraph 1.4 "Command Sequencing and Timing."

The op code field contains a numeric code which specifies one of

the PB250 commands.

The index tag field may contain either a one or a zero. When a
one is placed in this field, the contents of the Index register are used
(see paragraph 1.2.3.1); a zero in the field indicates no use of that regis-

ter.

Bit position 20 contains a one only when referring to 2 line address
of 40 or greater. For example, an LDA command referring to sector 30,

line 42, has an address of 03042 and appears as shown in Figure 1-5.

oo 05 ¥ =~

21

olofo|1|1]|0]|o0|lO|O|O|O|Of)2|O|1|OfO|O|Ll|O|Ll]}O

- T §
-

Figure 1-5. Typical Command Word

1.4 COMMAND SEQUENCING AND TIMING

The PB250 reads and executes commands from the circulating com-
mand lines, The words of the long liries are read serially in sector address
sequence (000, 001, 002, --- 376, 377, 000, 001, ---). The time for each
word to pass through a reading device is 12 microseconds; therefore, the time
for all 256 words of a long line is 3072 microseconds. The performance of

each command involves four phases:

1-6

-
]

Phase [Wait to read next command.

Phase [I Read next command.
Phase III Wait to execute command.
Phase 1V Execute command.

For example, a command 00001 to store A in 03004 will be read
(Phase I1) in sector 000, held for execution (Phase III) in sectors 001 through
027, executed (Phase IV) in sector 030, and held while waiting to read the
next command (Phase 1) in sectors 031 through 000. Phase II will follow in.

sector 001, causing the next command to be read from location 00101.

There are four classes of commands in which the nature of Phase IV
differs. A tabulation showing the class into which each command falls is pro-

vided in Table 1-1. This tabulation is referred to extensively in Section II

of this manual.

1.4. 1 Class 1

In this class of commands, execution always follows the reading of
the command by skipping Phase III. The sector address of the command is
used to designate the first sector. number in which Phase IV is discontinued.
This class of commands consists of all those which require an extended inter-
val of execution, such as block transfer, shifting, and multiplication. The
execution time for this class of command varies with the required duration.
For example, block transfer requires 12 microseconds per word, shifting

requires 12 microseconds per bit, and multiplication requires 12 microseconds

per multiplier bit.

1.4.2 Class 2

In this class of commands, execution is always completed in the
sector specified by the sector address of the command. This class consists

of all one-sector operations such as load, store, add, and clear. All com-

! 1t
E
+
1
1

s

mands of this class require 12 microseconds to execute, - <& /AT 5 (#. 2-54)

'f.')’-J' | ,-r)," ¥ .’/;{;-f:‘-é';:! A =Z.

1.4.3 Class 3

a

o

Class 3 is an extension of Class 2 to handle double precision operations.
As in Class 2, execution always starts in the sector specified by the sector ad-
dress of the command, but the execution phase is always extended into the follow-

ing sector. All commands of this class require 24 microseconds to execute.

1.4. 4 Class 4

Class 4 consists of commands for conditional and unconditional trans-
fer of control. The condition for a conditional transfer is tested in Phase II
and, if the condition is met, the next command is read from the line and sector
number specified by the command. If the condition is not met, the command
directly following the transfer of control command is read. A conditional trans-
fer where the condition is not met, thus requires no execution time. The un-
conditional transfer selects the next command with no restrictions. The exe-
cution time, when control is transferred, is 12 microseconds per sector for the

interval between the transfer of control command and the next command.

| B Sequence Tag

With commands stored in sequential sectors, the indicated command
sequence will proceed at the rate of one instruction per (3072 + 12) micro-
seconds. To provide for a higher computation rate, a Sequence Tag of one may
be used in bit position 8 of commands in Classes 1, 2, and 3. The use of this
option will cause the next command to be read in the sector directly following
the end of the execution phase. For example, a command in 00001 to store A

in 03004 will be followed by the command 03101 if the Sequence Tag is a one.

1-8

-

o

L

1.5 PARITY CHECK

Each memory word carries an additional position for an even parity
check. This position is not under program control and need not concern the
programmer in the design and coding of his problem. The parity check is
generated during the execution of the STORE and MOVE commands andis tes-
ted when loading the arithmetic registers, during adding and subtracting oper-

ations, and when reading commands.

Computation will stop on a parity error, and may be restarted by
clearing the parity flip-flop with the BREAKPOINT switch and the ENABLE

switch of the Flexowriter.

The actual PB250 word consists of 24 bits, of which 22 are acces-
sible to the programmer. A parity bit precedes bit position 0 (see Figure

1-1), and a guard bit follows bit position 21.

Table 1-1 (Sheet 1 of 3)

COMMAND CLASSIFICATIONS

Class 1: Executed Between Command Location and Address

Sector Number.

NORMALIZE AND DECREMENT
NORMALIZE

LEFT SHIFT AND DECREMENT
AB LEFT

RIGHT SHIFT AND INCREMENT
AB RIGHT

SCALE RIGHT AND INCREMENT
NO OPERATION
INTERCHANGE A AND M
MOVE LINE X TO LINE 7
SQUARE ROOT

DIVIDE

DIVIDE REMAINDER
MULTIPLY

SHIFT B RIGHT

LOGICAL RIGHT SHIFT

WRITE OUTPUT CHARACTER
PULSE TO SPECIFIED UNIT
MOVE COMMAND LINE BLOCK
BLOCK SERIAL OUTPUT
BLOCK SERIAL INPUT

N LA LT

NAD
NOR
LSD
SLT
RSI
SRT
SAI
NOP
IAM
MLX
SQR
DIV
DVR
MUP
SBR
LRS
woC
PTU
MCL
BSO
BSI

- LT

(20)*
(20)*
(21)*
(21)*
(22)*
(22)*
(23)
(24)
(25)
(26)
(30)
(31)*
(31)*
(32)
(33)*
(33)*
(6X)
(70)
(71)
(72)
(73)

(oot*

L

1-10

o/

I/"'H-.

Table 1-1 (Sheet 2 of 3)

Class 2: Executed in Address Sector Number

INTERCHANGE A AND C
INTERCHANGE B AND C
LOAD A

LOAD B

LOAD C

STORE A

STORE B

STORE C

ADD

SUBTRACT

EXTEND BIT PATTERN
GRAY TO BINARY

AND M&C

CLEAR A

CLEAR B

CLEAR C

AND OR COMBINED
EXTRACT FIELD
DISCONNECT INPUT UNIT
READ TYPEWRITER KEYBOARD
READ PAPER TAPE
READ FAST UNIT

LLOAD A FROM INPUT BUFFER
COMPARE A AND M
CLEAR INPUT BUFFER
HAET

MERGE A INTO C

IAC
IBC
LDA
LDB
LDC
STA
STB
STC
ADD
SUB
EBP
GTB
AMC
CLA
CLB
CLC
AOC
EXFE
DIU
RTK
RPT
RFU
LAI
CAM
CIB
HI=E
MAC

(01)
(02)
(05)
(06)
(04)
(11}
(12)
(10)
(14)
(15)
(40)
(41)
(42)
(45)
(43)
(449
(46)
(47)
(50)
(51)
(52)
(53)
(55)
(56)
(57)
(00)*
(00)*

1-11

Table 1-1 (Sheet 3 of 3)

2z ——e
——— —-

Class 3;: Executed In Address Sector Number And

Following Sector,

ROTATE ROT (03)
LOAD DOUBLE PRECISION LDP (07)
STORE DOUBLE PRECISION STD (13)
DOUBLE PRECISION ADD DPA (16)
DOUBLE PRECISION SUBRACT DPS (17)

Class 4: Executed Between Command Location And

Address Sector Number.

TRANSFER UNCONDITIONALLY TRU (37)
TRANSFER IF A NEGATIVE TAN (35)
TRANSFER IF B NEGATIVE TBN (36)
TRANSFER IF C NEGATIVE TCN (34)
TRANSFER ON OVERFLOW TOF (75)
TRANSFER ON EXTERNAL SIGNAL TES (77)

* Asterisk indicates that the OP code has at least fwo meanings, depending
on the address used with the command. See Section II for a detailed descrip-

tion of the commands.

1-12

o’

II. PB 250 COMMANDS

2.1 GENERAL

b e | Command Structure

For each PB 250 command, a 3-letter mnemonic code has been devised.

These mnemonics are derived from an abbreviation of the command names and

are a convenient device for remembering the functién of the command.

When writing a command word, the language of the Octal Utility Program

(Appendix C) will be used. This language is the standard language for the com-

munication of programs. Thus, referring to the illustration of a typical command

word (Figure 1-2), the fields are written as fdlows:

a)

b)

d)

e)

Sector Address: Three octal digits specifying the particular sector

to be used (000 <SSS <377).

Sequence Tag: If sequence tag is present, a capital S will be written;
if no sequence tag is used, a blank space will separate the sector

address and OP Code.

Operation Code (OP Code): Two digits which indicate what command

will be executed,

Line Address: Two octal digits specifying the particular line to be

used (0 <LL <77).

Index Register: If the contents of the Index register are to replace
the line address, there will be a ca"pital I at the end of the command;
if the Index register is not being used, there will be a semi-colon

(;) at the end of the command.

The following two commands illustrate this procedure:

Note: The letters a,b,c,d, and e refer, respectively, to the sector ad-

dress, sequence tag, op code, line address, and Index register.
2412 Command Descriptions

In this manual, the notations A, B, and C will be used to refer,
respectively to the A register, B register, and C register, while M will be
used to refer to a particular memory location. Parentheses around the
letter indicate the contents of the register or memory location; e. g., (A)

refers to the contents of the A register.

The "contents of" always refers to all 22 bits of the appropriate
register or memory word, unless indicated otherwise by numerical
subscripts. These numerical subscripts tell to which particular bits refer-

ence is being made. For example: (A) 0-10 refers to bit positions 0 through
10, inclusive, of A; (]—?,)5 refers to bit position 5 of the B register; (01502);3_¢
sector 15, line 2, bits 3 through 6.

"Effective address'' will be used to mean the actual address employed
by the computer in execution of a command; if the Index register is used, then
the effective address will be the contents of the Index register and the sector

address specified by the command word.

It should again be noted that throughout this manual all op codes,

line numbers, and sector numbers will be in octal notation.

Command descriptions in this section will consist of four parts, or

less, as required, These parts will be:

a) Description: Details of what the command does - - its effect on

registers, memory locations, etc.

b) Example: Specific numerical example showing the appearance of
the registers and relevant memory locations before and after exe-
cution of the command., (In the case of such basic commands as

CLEAR A, STORE A, etc., no example is given.)

c) Timing: The timing classification of the command plus, as re-
quired, optimization information such as addressing for optimum
timing.

d) Usage: Exceptions to the use of the command or examples of how
the command may be used. (Especially useful in such commands
as GRAY TO BINARY and EXTEND BIT PATTERN, whose use

might not be readily apparent to the programmer.)

L1403 Special Considerations

Codes 27, 54, 74, and 76 are unassigned and should not be used by
the programmer. In the event that these op codes are used, the computer will

not halt but will try to execute a command unintended by the programmer.

Certain computer commands operate in a modified manner as determined
by the address of the command. These modifications are either described under
the commands to which they apply or, if more appropriate, listed as separate

commands.

It should be noted that sequence tagging (as described in Section I) never
permits the command execution sequence to transfer to a different line, except
in the case of a TRU. That is, if the computer executes a sequence-tagged
comfnand from liney , the next command will always be executed from line y ,
regardless of sequence tagging - - except in the case of a TRU command with

a line address # vy .

n h
Note: The term execution time, as used in this section, includes the 12 micro-

seconds needed to read the command in addition to the time necessary to perform

the required operation.

=

HLT Halt (00)*

This command stops computation under the conditions noted below and turns on
the parity error indicator light on the console. The OPERAND lights on the
console will indicate the line address associated with this command. To continue
execution of the program, the ENABLE switch and the BREAKPOINT switch on
the Flexowriter must be depressed. This will turn off the parity error indicator
and, upon release of the ENABLE switch, the program will continue. This
command will not stop computation if the sector address equals a + 1, when the

HLT command itself is located in a . (See MAC description.)

Timing: HLT is a class § command. If parity is cleared, and the HLT com-
mand is sequence tagged, the next command is executed from , where p is the
sector address. If the HLT command is not sequence tagged, the next command

is executed from a + 1. where HLT is located in «a .

Usage: Error halts in a program are easily identified if difference line numbers
are used, thus providing a ready means of determining the location within the
progrim at which the computer has halted, the line number being read from the
console lights. The Octal Utility Program uses HLT 37’)8 to indicate a check-

summ error.

2-5

MAC Merge A into C (00)*

This command is a special case of HALT (00). If a HALT command is given
which has as its sector address a4 1, where a is the sector of the HLT, the
program will not halt. Instead, there will be a logical A OR C executed, with
the result appearing in C. The contents &6f A are merged into the contents of
C, a one is placed in those bit positions of C in which there are ones in the
corresponding positions of A or C or in both. All 22 positions of A and C take

part in this operation. The (A) and (B) are not affected by this command.

Example:
? (A) (C)
Before execution of MAC 01100101 11010101
After execution of MAC 01100101 11110101

Timing: MAC operates as a class 2 command, being executed in sector a + 1.
If the sequence tag is 1, the next command executed will be in a + 2; whereas, if
the MAC is not sequenced, the next command follbws from sector a + 1. Note
that this is different from a sequenced halt command, when the next command

comeB from the sector specified.

Usage: When the C register is cleared before execution of MAC, the command

effectively functions as a ''copy A into C'", that is, the contents of A are dupli-

cated in C. When using this command, it should be remembered that the sectors

are addressed circularly, with sector 000 following sector 377.

2-6

o/

IAC Interchange A and C (01)

The contents of the A register are loaded into the C register, and the contents
of the C register are loaded into the A register. These operations occur simul-

taneously; thus, no information is lost.

Example:
(A) (C)
Before execution of IAC +0123456 +6543210
After execution of IAC +6543210 + 0123456
Timing: IAC is a class 2 command. The sector address has meaning only in

terms of sequence tagging (providing a transfer). The line address may be any
number. The sector address, however, for minimum execution time (24 micro-
seconds) must be a+ 1, where ais the location of the INTERCHANGE A AND C

command. The next command to be executed, under sequence tagging, will be

taken from a + 2.

IBC Interchange B and C (02)

The contents of the B register are loaded into the C register, and the contents
of the C register are loaded into the B register. These operations occur simul-

taneously; therefore no information is lost.

Example:
° (B) (C)
Before execution of IBC +2043l|77 +0021701
After execution of IBC +0021701 +2043177

Timing: IBC is a class 2 command. (For further description, see IAC, 01,

which is similar to IBC.)

2-8

S

ROT Rotate A, B, and C (03)

The contents of the A, B, and C registers are simultaneously rotated in the
following fashion: the contents of C are placed in B; the contents of B are

placed in A; and the contents of A are placed in C. No information is lost.

Example:
(A) (B) (C)
Before execution of ROT + 1205721 +6201530 - 3170024
After execution of ROT +6201530 - 3170025 + 1205721

Timing: ROT is a class 3 command; 36 microseconds is the minimum exe-
cution time. Although the sector address has no meaning in terms of exe-
cution of the command, for optimum programming, the address ¢+ 1 is re-
quired, where ais the location of the ROT command. This addressing, in
conjunction with the sequence tag, obtains a minimum execution time (36
microseconds). The next command will be executed from a+ 3. The line
address may be any number. As in all dther commands in which sector

address has no meaning in terms of command execution, ROT may be used

to provide a transfer by use of sequence tagging.

2-9

LDA Load A (05)

The A register is cleared and the contents of M, the effective address, are read

into the A register. The previous contents of A are destroyed: the contents of

M are not affected.

LDB Load B (06)

The B register is cleared and the contents of M, the effective address, are read
into the B register. The previous contents of B are destroyed; the contents of

M are not affected.

LDC Load C (04)

*
The C register is cleared and the contents of M, the effective address, are read
into the C register. The previous contents of C are destroyed; the contents of

M are not affected.

Timing: LDA, LDB, and LLDC are class 2 commands. To obtain minimum exe-
cution time (24 microseconds), the operand which is to be loaded into the regis-

ter must be located in the next sector after the command (@ + 1), but not neces-
sarily in the same line, and the command must have a sequence tag of one. The

next command to be executed will be taken from a + 2, where e 1is the location

of the load command.

2~10

B &
LDP Load Double Precision B A B (07)

Both the A and B registers are cleared. The contents of M, the effective ad-
dress, are read into the B register; the contents of M + 1 are read into the A

register. The contents of M and M + | are not affected.

Timing: LDP is a class 3 command. To obtain minimum execution time (36
microseconds), the operand must be stored ine + 1 and ¢ + 2, where LDP is
located in ¢, in any line. Sequence tagging under these circumstances results

in the next command being executed from g + 3.

Usage: This command, along with the other double precision commands,
provides double precision arithmetic capacity within the command structure
of the PB 250. Furthermore, in terms of data handling, it is often convenient
to pick up or store two consecutive words which are not a single number but

are two separate units of information. The LDP command red®ces the number

of memory accesses necessary in a program.

Some discussion of double precision is in order. A double precision number
consists of two words, or 44 bits. Commands functioning in the double pre=-,

cision mode will operate on two words and treat A and B as one register, wﬁfére"

A is the Most Significant Word (MSW) and B is the Least Significant Word(LSW). -

e —————

e

Double precision numbers must be stored in consecutive words; the effective
address is the lower-ordered address. For.example, if the specified memory
location is 03404, the double precision number is stored in memory locations
03404 and 03504. Location 03404 contains the Least Significant Word (LSW),
while 03504 contains the Most Significant Word (MSW).

STA Store A (11)

The contents of the A register are stored in M, the effective address. The previ-

ous contents of M are destroyed; the contents of the A register are not affected.

STB Store B (12)

The contents of the B register are stored in M, the effective address. The previ-

ous contents of M are destroyed; the contents of the B register are not affected.

STC Store C (10)

The contents of the C register are stored in M, the effective address. The previ-

ous contents of M are destroyed; the contents of the C register are not affected.
®

Timing: STA, STB, and STC are class 2 comma.n'ds. To obtain minimum exe-

cution time (24 microseconds), the contents of the register must be stored in

the next sector after the command (¢ + 1), but not necessarily in the same line,

and the command must have a sequence tag of one. The next command to be exe-

cuted will be taken from a + 2, where ¢ is the location of the store command,

-,

-

= T

STD Store Double Precision (13)

This command operates on both the A and B registers. The contents of the B
register are stored in M, the effective address; the contents of the A register
are stored in M + 1. For example, if the specified address is 00004, the
contents of B are stored in 00004 and the contents of A are stored in 00104.
The previous contents of A and B are not affected; the previous contents of

00004 and 00104 are lost.

Timing: STD is a class 3 command.

ADD Add (14)

The contents of M, the effective address, are algebraically added to the contents
of the A register. This sum replaces the contents of A; the contents of M are
unaffected. Overflow occurs when (A) and (M) initially have like signs and the

result in A has a different sign.

Example: The command 011 1403; is executed. The contents of line 3, sector

011, are + 0210416,

(A) (01103)
Before execution of ADD 40143115 +0210416
After execution of ADD +0353533 +0210416

Timing: ADD is a class 2 command. To obtain the minimum execution time
(24 microseconds), the operand which is to be added to (A) must be located in
the next sector after the command, but not necessarily in the same line, and
the command must have a sequence tag of one. The next command to be

executed will be taken from e + 2, where a is the location of the ADD command.

Usage: Reference should be made to the discussion of 2's complement arith-

metic in Appendix A prior to coding arithmetic problems for the PB 250.

o/

~

SUB Subtract (15)

The contents of M, the effective address, are algebraically subtracted from the
contents of the A register. The result replaces the contents of A; the contents
of M are unaffected. Overflow occurs when (A) and - (M) initially have like

signs and the result in A has a different sign.

Example: The command 125 1507; is executed. The contents of line 7,

sector 125, are + 0231234,

(A) (12507)
Before execution of SUB +6120134 +0231234
After execution of SUB + 5666700 +0231234

Timing: SUB is a class 2 command.

a 1)

DPA Double Precision Add B (16)

The contents of the word pair starting at M, the effective address, are
algebraically added to the contents of the combined A and B registers.

This sum replaces the contents of A and B; the word pair beginning at M is

not affected. Position 0 of the B register does not act as a sign; but is part
of the magnitude of the number, and any carry from position 0 of B propagates
into position 21 of A, Overflow occurs when (A) and (M+1) initially have like
signs and the result in A has a different sign. The double precision word in
memory starts with (M + 1), where (M) represents the least significant part

of the double precision number,

Example: The command 002 1602; is executed. The contents of line 02,
sector 003, are + 1210456. The contents of liﬁe 02, sector 002, are

73120604 “11'011001010000“0000”'(A] (B) (003) (002)

Before execution of DPA 40124471 31425000 +1210456 73120604
After execution of DPA +1335150 24545604 41210456 73120604

Timing: DPA is a class 3 command. To obtain the minimum execution time
of 36 microseconds, the operand which is to be added to (AB) must be located
in the next two sectors after the command, but not necessarily in the same line
and the command must have a sequence tag of one. The next command to be

executed will be taken from a + 3, wherea is the location of the DPA command,

Usage: The DPA command may be used to accumulate a double precision sum,
where six decimal digits are not sufficient in an arithmetic computation. Another
use occurs when it is certain that the sum in B will not overflow to A; two sepa-
rate sums may then be accumulated, one in A and one in B. ADD may be used

to add to (A), while DPA may be used to add to (B), where the most significant

word to be added to (AB) consists of all zeros. A further use of DPA is to

2-16

~

DPA Double Precision Add (cont.)

round a positive double precision number in (AB) to a single precision number

in A, The number to be added to (AB) should appear as follows:

a = -0000000
a +1 = 40000000

(16)

2-17

DPS Double Precision Subtract (17)

The contents of the word pair starting at M, the effective address, are algebrai-
cally subtracted from the contents of the combined A and B registers. The re-
sult replaces the contents of A and B; the word pair at M is not affected. Po-
sition 0 of the B register does not act as a sign, but is a part of the number,

and any carry from position 0 of B propagates into position 21 of A. Overflow
occurs when (A) and - (M+ 1) initially have like signs, while the result in A

has a different sign. The double precision word in memory starts with (M+ 1);

(M) represent the least significant part of the double length number.

Example: The command 113 1705; is executed. The contents of line 5, sectors
114 and 113 are, respectively, +0124471 and 31425000.
(A) (B) (114) (113)
Before execution of DPS + 1210456 -73120604 +0124471 31425000

After execution of DPS + 1063765 41473604 +0124471 314250600

Timing: DPS is a class 3 command.

0

NAD Normalize and Decrement (20)%*

The address field of the NORMALIZE AND DECREMENT command is not used
to specify the location of an operand, but contains an address number, N,
which specifies the first sector following the completion of execution. In exe-
cuting this command, the (AB) are shifted left until one of two conditions is

met:

1) (A}O% (A)I :i.e., the contents of A, position 0, do not equal

the contents of A, position 1.

2) (AB) has been shifted S positions (where S is selected by the

programmer).

The line address should not have a one in position 16 (see description of NOR
command). The (C) are decremented by one for each position shifted. Po-
sition 0 of A does not move, but position 0 of B takes part in the shifting. The
vacated positions of B are filled with zeros. The programmer should select

S large enough so as not to inhibit proper normalization. S is used in de-

termining N in the following manner:

N}B = Sector location of the command)s + S)S + 1)8 .

Example: The command 071 2000; is located in sector 015 of line 02.

Before execution of NAD + 0012461 34105614 + 0000010
After execution of NAD 45230560 42706000 + 0000000

Timing: NAD is a class 1 command. If a sequence tag of one is used, the
next command is read from N, With a sequence tag of zero, the next command

is read from ¢ + 1, where e is the sector location of the NAD command.

Usage: This command may be used in "floating' a fixed-point number to

obtain a normalized floating point representation. Choosing S equal to 53]8

NAD Normalize and Decrement (cont,) (20)%

allows for normalizing every possible number in AB, but still terminates the
operation if (AB) equal zero. If normalization is accomplished before N time,
the command is executed as a NOP (24) for the remaining sectors. Note that

a shift of zero positions cannot be accomplished by any of the shifting commands.

2-20

N

S

NOR Normalize (20) *

The address field of the NORMALIZE command is not used to specify the lo-
cation of an operand, but contains an address, N, which specifies the first
sector following completion of execution. In executing this command, the (AB)

are shifted left until one of two conditions is met:
) (A), # (A)

2) (AB) has been shifted S positions, where S is selected by the

programmer,

The line address must have a one in position 16. (See description of NAD com-
mand.) The (C) are not affected by execution of NOR. Position 0 of A does not
move, but position 0 of B takes part in the shifting and moves from 0 of B into

21 of A, etc. The vacated positions of B are filled with zeros. The programmer
should select S large enough so as not to inhibit proper normalization. S is

used in determining N in the following manner:

N)8 = Sector 1ocag1on of the command)8 + S)S + 1)8

Example: The command 071 2010; is located in 01502.

(A) (B)
Before execution of NOR - 7731245 32001420
After execution of NOR - 3124532 00142000
Timing: NOR is a class 1 command. If a sequence tag of one is used, the

next command is read from N. With a sequence tag of zero, the next command

is read from a + 1, wherea is the sector location of NOR.

Usage: Choosing S = 53)8 allows for normalization of every possible
number in AB, but still terminates the operation if (AB) equal zero. If normal-

ization is accomplished before N time, the command is executed as a NOP (24)

for the remaining sectors,

2-21

LSD Left Shift and Decrement (21)%*

The (AB) are shifted left for S positions, S being determined by the programmer,.
The (C) are decremented by one for each position shifted. Bits shifted past
position 1 of A are lost and zeros fill the vacated positions of B. Position 0 (the
sign) of A is not moved, but position 0 of B takes part in the shifting. The line
address of this command should not have a one in position 16. (See description
of SLT command). The sector address field of this command is not used to
specify the location of an operand, but contains an address, N, which is deter-

mined by:

N)_ = Sector location of the command)8 - S}B + 1)8 .

8

Example: The command 021 2100; is located in line 3, sector 015.

Ay (B) (C)
Before execution of LSD - 1532104 36124104 +0000007
After execution of LSD - 5321043 61241040 +0000004
Timing: LSD is a class 1 command. The next command to be executed, when

this command has a sequence tag of one, is the command located in N.

Usage: This command should be used only when it is desired to decrease (C)
by 1 for each position shifted left. It is important to remember that the sign
position of A does not participate in the shifting. Note: 5353)8 results in
equal to zero.

setting (A) and (B) 0-2

1-21 1

2-22

SLT Shift Left (21)*

The (AB) are shifted left for S positions, S being determined by the programmer.

The (C) are not affected by this command. The line address of this command

rﬂggt__have alhone\ir_x pog_ifigg__l___b_(see description of LSD command). Bits shifted
past position 1 of A are lost, and zeros fill the vacated positions of B. Position
0 of A is not moved (does not participate in the shifting), but position 0 of B

does participate in the shifting. The sector address of this command is not used
to locate an operand, but contains an address, N, which determines the length

of the shift.

N)S = Sector location of the 1::::mma.m:1}8 + S)a + 1)8 .

Example: The command 021 2110; is located in line 03, sector 015,

(A) (B)
Before execution of SLT -1532104 36124104
After execution of SLT -5321043 61241040
Timing: SLT is a class 1 command. The next command to be executed, when

this command has a sequence tag of one, is the command located in N.

Usage: This command may be used when it is desired to shift left without
disturbing (C). The sign position of A does not participate in the shifting, and

S > 53)8 results in setting (A) 1-21 and (B)O—Zl equal to zero.

2-23

RSI Right Shift And Increment (22)%*

The (AB) are shifted right for S positions, S being determined by the programmer.
The (C) are incremented by one for each position shifted. The bit in the sign
position of A is copied into the vacated positions of A. Bits shifted past position
21 of B are lost, Position 0 (the sign) of A is not moved, but position 0 of B takéa
part in the shifting. The line address should not have a one in position 16. (See
description of SRT command.) The address field of this command is not used to
specify the location of an operand, but contains an address number, N, which is

determined by:

N)B = Sector location of the command) +8S) + 1) .
8 8 8

Example: Command 021 2200; is located in sector 015 of line 03.

(A) (B) (C)
Before execution of RSI -3120456 47217030 +0000000
After execution of RSI -7312045 64721700 +0000003
Timing: RSI is a class 1 command.
Usage: Use RSI only when it is desired to shift (AB) right and to increment

the C register. (when C register incrementing is undesirable, see description

of SRT command.)

\ .'_/i

SRT Shift Right (22)

The (AB) are shifted right S positions, S being determined by the programmer.
The (C) are not affected. The bit in position 0 of A (sign position) is copied
into the vacated positions of the A and B registers. Bits shifted past position
21 of B are lost, Position 0 (sign position) of A is not moved but position 0

of B takes part in the shifting. Note: The line address of this command must
be such that bit position 16 contains a one. (See description of RSI command,)
The sector address field of this command is not used to specify the location of

an operand, but contains an address number, N, which is determined by:

N)8 = Sector location of the ::'cmn1r1na\:u:1)8 + S)‘3 + 1)8

Example: The command 200 2210; 1is located in line 2, sector 171.

(A) (B)
Before execution of SRT - 3177204 21643104
After execution of SRT -7731772 04216430
Timing: SRT is a class 1 command.
Usage: This command should be used when it is desired to shift (AB) right

without affecting the (C). (If incrementing the C register is desirable, see

description of RSI command.)

SA1 Scale Right And Increment (23)

The (AB) are shifted right and the (C) are incremented by one for each position

shifted. The operation continues until one of the two conditions is met:

1) (C)» 0

2) (AB) are shifted S positions, where S is selected by the programmer.

The bit in the sign position of A is copied into the vacated positions of A. Po-
sition O (the sign) of A is not moved, but position 0 of B takes part in the shift-
ing. S should be so selected as not to inhibit the scaling. The line address of
this command should be zero. The sector address field of this command is not
used to specify the location of an operand, but contains an address number, N,
which is determined by:

N)8 = Sector location of the r:m'nrnzmd)8 + 8)8 + 1)B ;

Example: The command 004 2300; is located in 00002.

(A) (B) (C)
Before execution of SAI +1231046 21320040 7777500
After execution of SAI +0123104 62132004 -7777503

Timing: SAI is a class 1 command. If sequence tagging is used with the com-
mand, the next command to be executed will be taken from N, even if condition

(1), above, is obtained before N sector time.

Usage: This command can be used in "fixing" floating point numbers at a
particular scale factor. If (C) become >/ 0 before N time, the command is

executed as a NOP (which, in this case, will have an op code number of 27)

for the remaining sectors,

2-26

NOPFP No Operation (24)

This command causes the computer to continue in the regular command sequence.

Memory and registers are not affected.

Timing: NOP is a class | command. Sector address has meaning only in the
event that a maximum operation speed is to be obtained. Optimum programming
requires a sequence tag of one and a sector address of a + 2, where NOP is
located in @ . The next command to be executed will come from e + 2. Line
address may be any number. NOP may also function as a transfer to § , when
the sector address of the NOP command is g (g must be in the same line as

NOP).

2-27

IAM Interchange A and M (25)

This command interchanges information in the line designated by the line ad-
dress, with the information in the A register. The interchange starts in the
sector following the IJAM command and continues up to, but not including, the
address sector number. This command results in a one-word precession of
the information in the designated line. The information originally in the A
register is entered into the first sector and is replaced by the information in

the last sector.

Example: The command 0152503; is located in sector 012 of line 2.

(A) (01303) (01403)
Before execution of IAM +3214071 -5377210 +3246002

After execution of IAM +3246002 +3214071 -5377210
Timing: IAM is a class 1 command.

Usage: This is a very convenient way of manipulating sector sequential
data in memory without modifying addresses. In effect, the designated sectors
and the A register function, temporarily, as a special line. Each time IAM is
executed, a stepping of data takes place as shown below. Note: a is the sector
location of the IAM command, but is not necessarily in the same line as a + 1,

a +2, etc., and ¢ + N +1 is the JAM sector address.

Initial After After

Location Contents lst IAM 2nd IAM
A register Xy Ky |
a + 2 X?.. Xl. Xa.
a N-1 X X X

+ n-1 n-2 n-3
a

+N Xn Xn-l Xn-Z

it

MLX Move Line X to Line 7 (26)

This command transfers information from the effective line address to line 07.
The transfer begins in the sector following the MLX command and continues up

to, but not including, the sector address.
Timing: MLX is a class 1 command; timing is similar to that for MCL (71).

Usage: This command should be studied in conjunction with MCL (71). Itis

to be noted, that both of these commands, though similar, have certain
significant differences. MCL moves an entire command line, or any part of a
command line in which the MGL is actually located, into another line. MLX
moves some specified line, not necessarily the one in which it is located, or
part thereof, into line 7; thus, in the case of a machine in which subroutines

are stored in lines 10, 11, etc., it may be desirable to move these subroutines
into line 7 for execution. This can be accomplished by using the MLX command.
An entire line may be moved by giving the address a + 1, where the MLX com-
mand is located in @ . It can be seen that both of these commands have a sepa-
rate and important use in the PB 250. Judicious use of these commands provides
an easy method for moving data from line to line, while preserving the same rela-

tive sector locations.

2-29

SOR Square Root (30)
The argument must be in the combined AB registers. The (C) must be positive.
The square root appears in B with the remainder in A. The C register takes
part in this operation and its contents are replaced by the square root. The (C)
will be the full root but will differ from the (B) in the least significant bit com-
puted. If only A is loaded with the argument, (B) should be cleared or they may

influence the least significant bit of the computed root.

The line address of this command should be zero. The sector address contains
a number, N, which specifies the first sector location following the completion
of the operation. The SQR command is a variable length operation, which per-
mits the programmer to specify a quantity, S, which is the number of bits of

the root that are to be developed. N is determined from S as follows:
N) = Sector location of the command) + S)_ + 1)
8 8 8 8
The argument, (AB), must be positive for this operation to be executed cor-
rectly. If S = 21, the full root is formed in B.

Example: The command 006 3000; is located in 36005,

(A) (B) (C)
Before execution of SQR +0100000 +0000000 +0000000
After exectuion of SQR -5777776 +1000000 +1000001

Timing: The number whose square root is to be found should be at an even
scale factor, 2Q. The result in the B register will be scaled at Q + 21 - S.
For example, where S = 21)10 and the (AB) are at 2Q = 20, the result in B is
scaled atQ = 10. IfS = 10, and the (AB) are at 2Q = 20, the result is in B at

2-30

P g

SQR Square Root (cont.) (30)

Q =21. Bitll of B will be a zero, and the result will be in bits 12 through 21;

bit 0 of C will be a zero, and nine bits of the result will be in bits 1 through 9.

SQR is a class 1 command.

2-31

DIV Divide Bl de® (31)%

The dividend is in the combined AB registers and the divisor is in the C regis-
ter. The quotient appears in the B register, with a remainder in A. The
line address of this command should not have a one in either positions 15 or

19. The sector address field contains an address, N, ‘which specifies the first

—e,

sector location following the completion of the operation. The DIV command is

a variable length operation, which permits the programmer to specify a quanti-

ty, S, which is the number of bits of the quotient (including sign) to be developed.

If S is 22, the full quotient is formed in B, with a sign in (A),,» and the unit
bit in (B)g. In case the divisor was greater. than the-dividend, -the units hit will
equal the sign bit, and the quotient will appear as a signed number in B only.

N is determined as follows:

N)B Sector location of the command)g + S)gt 1l)g

Example: The command 027 3100; is located in 00003.

Before execution of DIV +0700000 40000000 -7100000
After execution of DIV -6200001 +7777777 -7100000

This is a divide with S=22. The last bit of A is the sign of the quotient, which
is negative. In canonical form, the quotient is -0000000, and the remainder is

+0000000.

Timing: DIV is a class 1 command. If a sequence tag of one is used, the

next command is executed from N.

Usage: 1) If the dividend is scaled at Q (a), and the divisor at Q (b), then
the quotient is scaled at Q [a -b+ 22 - S] .

s’

,

DIV Divide (cont.) (31)*

2) The machine remainder is scaled at Q b-1 . The corrected remainder

will be scaled at Q (b).

3) The binary point of the quotient is preceded by the unit bit and sign, and
is succeeded by the 1/2 bit, 1/4 bit, 1/8 bit, etc. Bits to the left of the sign bit

are not cleared.

Sign Bit Units Bit 1/2 Bit

N
+|1 |1/2(1/4|1/8

~
Radix Pt.

QUOTIENT

In case the divisor is, in absolute value, greater than the dividend, then the
sign and unit bits are equal. Whenever the quotient is less than 2 in absolute
value, the unit bit reflects the true integral value. In case S = 22, the unit bit
is in (B)S, and the sign of the quotient is in (A]Zl. This will affect the least
significant bit of the remainder. For example, a full division of -1, scaled

at Q (0), by itself, gives a quotient of + 1 scaled at Q (0), i.e., a one in {B}_S

and zeros in ('A:}Zl and (B)y ;-

4) To obtain the undivided remainder at Q (b) f{rom the machine remainder,
shift (A) right one position, using an LRS with bit 15 equal to zeme; if (A)g and
(C)S are now unequal, add (C) to (A). The undivided remainder is in the A

register.

5) The canonical quotient is, in absolute value, less than, or equal to,
the theoretical answer. This implies that the sign of the canonical divided
remainder has the same sign as the quotient. In the PB 250, the quotient is

always less than, or equal to, the theoretical answer. Therefore, the divided

DIV Divide (cont.) (31)*

remainder will always be positive. For example, using integers scaled at the
right of the registers, -5 divided by + 3 is -1 with a divided remainder of -2/3
in canonical form. In the PB 250, a quoti'ent of -2 and a divided remainder of
+1/3, is obtained which is mathematically correct. In the case of a negative
quotient, the quotient and undivided remainder must be altered if canonical
form is desired. Note that the quotient need only bel, corrected in the least sig-
nificant bit position. Therefore, for most purposesl, the machine quotient is

sufficiently accurate.

6) The correction to canonical form, which is described in (7),
can be avoided if the original dividend and divisor are both positive, i.e., if
one attaches the sign to the quotient and remainder after the division takes

place. The correction described in (8) must be applied in either case.

7) To obtain an answer in canonical form, the quotient is altered
by adding a (+l) in bit position 21 if the quotient is negative. Table 2-1 shows
how to go directly from the uncorrected machine remainder to the canonical
undivided remainder. First shift (A) right one place using an LRS command
with bit 15 equal to zero. Then add or subtract (C), or leave (A) unchanged
according to Table 2-1. This depends on the signs (A)S, (B}S, and (G)S
after the shift and before the quotient is corrected. The remainder will have

a scale of Q (b).

2-34

DIV Divide (Cont.) (31)%

Table 2-1

DIVISION CORRECTION

—{C——)S (A)S (B)S Correction
+ + 1 none
+ + - -(C)
¥ = + +C)
4 . - " none
- + + none
= + - +(C)
2 . - none
s - - -(C)

8) After the correction to canonical form, the quotient may
be exactly one unit less than the answer, in absolute value. This will be

reflected by:

1

a) (remainder) (divisor) if the quotient is positive.

b) (remainder) - (divisor) if the quotient is negative.

In these cases, the quotient should be increased or decreased by a (+1) in bit

position 21, and the remainder set equal to zero,

2-35

DVR Divide Remainder (31)* -

The remainder is in the combined AB registers, and the divisor is in the C
register. The quotient appears in the B register; the remainder appears in A,
The line number of this command should have a one in position 19 and a zero

in position 15. The sector address field contains an address, N, which specifies
the first sector location following the completion of the operation. The DVR
command is a variable length operation, which permits the programmer to
specify a quantity, S, which is the number of bits of the quotient to be developed,
The quotient has no sign. If S=22, the most significant bit will be in (B}O. N

is derived as follows:

N)_ = Sector location of the command)a + S)lB + 1}8.

8
Example: A4, scaled at 24, is divided by 3, scaled at 21. The result, with
S=21, should be 1 1/3, scaled at 4. The result after the DIV is shown, and
then the result after saving the quotient, clearing the B register, DVR with
S=22, and replacing the original quotient into the A register, giving a double

precision result.

(A) (B) (C)
Before execution of DIV + 0000000 - 0000000 + 0000003
After execution of DIV - 7777776 + 0525252 + 0000003
After execution of DVR
and splicing + 0525252 - 2525252 + 0000003
Timing: DVR is a class 1 command. If sequence tag of one is used, the
next command is executed from N.
Usage: The DVR operates on an uncorrected remainder. Before performing

the DVR, if maximum accuracy is desired, the quotient should be saved and the

B register should be cleared. For maximum accuracy, the original DIV should

2-36

DVR Divide Remainder (Cont.) (31)%

have used an S of 21, maximum. This is because of the sign bit in (A)Zl
when S = 22 (see DIV description). The quotient of the DVR, with S = 22,
can be spliced to the quotient of the DIV. In general, the quotient of the
DVR should be shifted left (22 - S) places before splicing it to the quotient
of the DIV. The correction to the remainder, and the correction for can-
onical form, follow the procedure described in DIV, except that correcting
the quotient requires a DOUBLE PRECISION ADD (DPA) command of +1

in the 43rd bit of the quotient.

MUP Multiply (32)

The multiplier must be loaded into the B register and the multiplicand must be
loaded into the C register. The computer clears the A register before multi-
plying, provided that the line address of the command does not have a one bit
in position 15. The producf appears in the combined AB registers; (C) are
unaffected. The sign of the product and the 21 most significant bits of magni-
tude appear in the A register; the &2 least significant bits of magnitude appear
in the B register.

The address field of the MULTIPLY command is not used to specify the loca-
tion of an operand, but contains an address number, N, which specifies the
first sector number following the completion of multiplication. The MULTIPLY
command is a variable length operation and, as such, the programmer may
specify a quantity, S, which is the number of bits, starting from the least

significant end of the multipher, B, to operate on t the multiglx,ca.nd,«ﬂc,.ﬁ If the

st et S

Fiiz;;r point is always conmdered to be to the right of the sign, and S is ZZ)m. or
26)8, then the full product is formed in A and B with the binary point to the

right of the sign bit in A. Note that the sign of B is counted as a multiplier

bit. If S is 2.3)10, or 27)8, one-half of the product is formed in A and B with

the binary point to the right of the sign bit in A. N is determined from S in

the following manner:

N)_ = Sector number of the comma.nd)s + 5)8 + l)8 .

8
Timing: MUP is a class 1 command. 12 microseconds are required to read
the command; 12 S microseconds are required to carry out the command. In

the event a sequence tag of 1 is used, the next command is executed from N.

2-38

o/

MUP Multiply (cont.) (32)

Example: The command 037 3200; is located in 01003,

Before execution of MUP irrelevant 40000003 40000004
After execution of MUP 40000000 40000030 +0000004
Usage: When S = 26)g is used, all the bits of the multiplier operate on all

the bits of the multiplicand. Binary scaling follows the rule that the scale

———

factor of the product equals the sum of the scale factors of the multiplier and

a2

the multiplicand If the (B) are at Q = 10 and the (C) are at Q 17, then the Q

Oi‘trhe product is 27. (The binary point is between bit positions 5 and 6 of the
B register.} When a product which is less ‘than full length is formed (which

reduces the tn'ne required to execute a MUP), S bits of the B regmter are

e e, i e

combmed with the 22 bits of the C register to {orm a product wh:u:h accupxes

- o A e e o AT T R e e T

S +21 n1gn1f1cant bita of the combmed AB regmters. starting with the sign

— i e oY R
it et TR et et B ——

poaitmn of A For example, if the mu1t1p11eg is known to be always no more

than 9 bits plus sign, S would equal 12) and the product would appear as

shown:

A B
0 21|0 819 10 21
. J
¥
Sign of Magnitude of
| Product Product

The bits which are originally in (B}D_“ are moved to (B)yg_21’ with the

bit in (B)IO repeated in (B)q.

2-39

SBR Shift B Right (33)%

The (AB) are shifted right, S positions, S being determined by the programmer.
The (C) are unaffected by the execution of this command. After (AB) are shifted
right one bit position, the A register is cleared; thus, if S ?, 2, zeros are shif-
ted into B after sector time a.+ 1, where ais the location of the SRB command.,
Bits enter (.'E',)0 from (A)Zl; bits shifted past position 21 of the B register are lost.
The line address of this command must have a zero in position 15 (see descrip-
tion of LRS command). The sector address field of this command is not used

to specify the location of an operand, but contains an address number, N, which

is determined by:

N). = The Sector location of the cornrna.nd)8 + S)8 + 1)8 :

8

Example: The command 004 3300; is located in sector 000 of line 3.
(A) (B)
Before execution of SBR 10101111 01011001

After execution of SBR 00000000 00101011

Timing: SBR is a class 1 command.

N’

¥ e

LRS Logical Right Shift (33)*

The (AB) are shifted right S positions, S being determined by the programmer.
The (C) are unaffected by the execution of this command. LRS differs from
RSI in that the sign position of A, (A)O, participates in the right shift. The
parity bit is copied into the sign position of A, and, if shifting continues, it is
then copied into the vacated positions of AB, Bits shifted past position 21 of

B are lost. The line address of this command must have a one in position 15.

The sector address field of this command is not used to specify the location of

an operand but contains an address number, N, which is determined by:

N) The sector location of the command)8 + S) 8 + 1) 8

B:

Example: The command 012 3320; is located in sector 005 of line 07.

(A) (B)
Before execution of LRS -2310724 76124500
After execution of LRS XX514435 23705224
Note: XX are bit positions 0 through 3 of the A register, which are filled with

the parity bit.

Timing: LRS is a class 1 command.

2-41

TAN Transfer if A Negative (35)

If the contents of the A register are negative, the computer will take its next
command from the effective address, which may be in any command line. If
the contents of A are not negative, the next sequential command is executed.

A sequence tag of zero is required.
TBN Transfer if B Negative (36)

If the contents of the B register are negative, the computer will take its next
command from the effective address, which may be in any command line. If
the contents of B are not negative, the next sequential command is executed.

A sequence tag of zero is required.
TCN Transfer if C Negative (34)

If the contents of the C register are negative, the computer will take its next
command from the effective address, which may be in any command line. If
the contents of C are not negative, the next sequential command is executed.

A sequence tag of zero is required.

Timing: TAN, TBN, and TCN are class 4 commands, therefore all operate
under the same timing considerations. If the register referred to is negative, the
next command is read from the line and sector number specified by the command.
If the register is not negative, the command directly following the transfer of
control command is read. A conditional transfer, where the condition is not met,
thus requires no execution time. The execution time, when control is transferred,
is 12 microseconds per sector, for the interval between the transfer of control and

the next command to be executed.

Usage: A sequence tag of one with either TAN, TBN, or TCN results in an

unconditional transfer.

rv- N

TRU Transfer Unconditionally (37)

The computer will take its next command from the specified address, which

may be in any command line. For an unconditional transfer to be executed,

a sequence tag of one must be present.

Timing: TRU is a class 4 command. The execution time is 12 microseconds
to read the transfer command itself, plus 12 microseconds per sector for the
interval between the transfer of control command and the next command to be

executed. Optimum transfer location is @ + 2, where @is the location of the
TRU command.
Usage: The TRU command functions as a TBN when the sequence tag of one

is not present.

2-43

EBP Extend Bit Pattern (40)

Starting from the right, each position of M, the effective address, is checked.
If the position contains a zero, the corresponding position in A is unaffected; if
the position contains a one, the corresponding position of A is changed so that it
is the same as the bit written to its immediate right. The (M) are unaffected.

All 22 positions of A and M take part in this operation.

Example:

(M) (A)
Before execution of EBP 111000111000 010101010001
After execution of EBP 111000111000 111101000001
Timing: EBP is a class 2 command.
Usage: (M) should not have a one in position 21, for this would "extend" the

guard bit. This command can be used to determine the presence or absence
of a one in any bit position of the A register, by extending that bit to the sign
position of the A register and then performing a TAN to provide a transfer of
control if there was a one in the position tested. EBP may also be used to

extend a sign located in any other bit position into position 0.

2-44

-

GTB Gray to Binary (41)

The GRAY TO BINARY command sends the binary representation of a Gray-
coded number in A to A. The result in A is correct only if the sign of the
A register is positive.” If the sign is negative, the one' s complement of the

result in A should be used. This command will also aid in parity tests on

input data. If, after this command is given, the sign of A is negative, then

A originally had an odd number of ones in bit positions 1 through 21.

Where the original bits in A are Az , etc., in bit positions 21,

1’ #200 A1
20, 19, etc., the GRAY TO BINARY command produces bits 1321, BZO’ Bl‘)’

etc., in A, where

Ba) =0
21
and B, = 1if z A, lis odd. 0<ig20
k=i+1

The theoretically correct values for the GRAY TO BINARY conversion are

B0 = 0

1
1 if Z A lis odd. 05i<20
k=1

1]

and B,
i

This command either gives the correct result for all bits or the one's comple-

ment of the correct result.

Example: (A)
Before execution of GTB 00101110 (52 in Gray code)
After execution of GTB 00110100 (52 binary)

2-45

GTB Gray to Binary (cont.) (41)
Timing: GTB is a class 2 command.

Usage: When used to check parity, an even number of ones in the A register
will produce a zero in position 0 of the A register (A sign positive). An odd
number of ones in the A register will produce a one in position 0 of A (A sign

negative).

When used to convert Gray code to binary (a common requirement when analog
information has been digitized), the GTB should always be followed by a TAN
command. The address of the TAN should lead to a sequence whereby the one's
complement of (A) may be found. If the (A) are positive, this need not be

completed as the correct result will have been obtained.

AMC And M & C (42)

A one is placed in each of those bit positions of B where there are ones in the
corresponding positions of both C and M, the effective address. Zeros are

placed in all other positions of B. (C) and (M) are not affected. All 22 positions

of M, B, and C take part in this operation.

Example:
(M) (C) (B)
Before execution of AMC 1100 1010 irrelevant
After execution of AMC 1100 1610 1600

Timing: This is a class 2 command. The optimum address is a+ 1; sequence

tagging under these circumstances results in the next command coming from

a4+ 2,

Usage: This command produces the logical sum of the contents of the C
register and the contents of memory, and places this logical sum in B. The
most common use would be in applications requiring AND logic. An instance
would be where corresponding bit positions in a group of words, each word
representing elements of an ensemble, represent the presence (1) or absence
(0) of a quantity. It is desired to know which quantities are present in all
elements of the ensemble. This can be obtained by a series of AMC commands

on the various elements (words) of the ensemble.

2-47

CLA Clear A (45)
Each bit in the A register is set to zero, including the sign position.
CLB Clear B (43)
Each bit in the B register is set to zero, including the sign position.
CLC Clear C (44)
Each bit in the € register is set to zero, including the sign position.

Timing: CLA,CLB, and CLC are class 2 commands. Although the sector
address has no meaning, timing considerations for optimization require that the
sector adaress be the next sector after the command (e+ 1), and that the com-
mand have a sequence tag of one. The next command to be executed will then

be taken from e+ 2, where ai1s the location of the clear command. These com-
mands effectively provide "transfer and clear' when sequence tagging is em-
ployed and the sector address of the command is B- 1, when it is desired to trans-

fer to B.

AOC AND OR Combined (46)

Symbolically, this command is MC OR MB, with the result appearing in B. For
each one in M, the effective address, the bit in the corresponding position of C
is copied into B. For each zero in M, the bit in the corresponding position of
B is preserved. All 22 positions of M, B, and C take part in this operation; (M)

and (C) are not affected.

Example: (M) (C) (B)
Before execution of AOC 11110000 11001010 01011100
After execution of AQOC 11110000 11001010 11001100

Timing: AOC is a class 2 command.

Usage: This command effectively provides a means of inserting selected
information from one word into another word. It is a convenient method of

"packing" a word.

EXF Extract Field (47)

For each one in M, the effective address, a zero is put in the corresponding
position in B, For each zero in M, the bit in the corresponding position of B

is preserved. All 22 positions of M and B take part in this operation,

Example:
(M) (B)
Before execution of EXF 111000 110101
After execution of EXF 111000 000101
Timing: EXF is a class 2 command.
Usage: Selected positions of the B register may be zeroed out while all

other positions are left unchanged. Sometimes a word is divided into two or
more fields (groups of consecutive bit positions), where each field has a
distinct meaning. This is called 'packing'" a word. Thus, it is possible to

edit the (B) and remove (zero out) unwanted fields from a packed word,

2-50

DIU Disconnect Input Unit (50)

The Input Buffer is deactivated and all input devices are disabled from filling

it. The Indicating light of the Flexowriter, if on, is turned off.
Timing: DIU is a class 2 command.

Usage: This command is used to disconnect an input device, especially a
fast device, after the input is complete and before another device is activated.
DIU can also be used after the computer has "waited'" for a period of time and
not received an input; for example, if the typewriter is activated and, after a
certain period of time, no character is entered, the program can deactivate the

keyboard and continue.

2-51

RTK Read Typewriter Keyboard (51)

The Indicating light on the Flexowriter is turned on and the Input Buffer is
activated to accept a character fr.om the keyboard. After a key has been de-
pressed, the Flexowriter sends a signal to the computer, which may be tested
by a TES command having a line address of 36}8 to determine if the Input Buffer
has been filled. Depressing a key also causes the light on the Flexowriter to

go out. It is necessary to execute an RTK for each character to be read,

Timing: RTK is a modified class 2 command. Execution begins in sec..-tor

¢ +1, where @ is the sector location of the command, and continues through

the sector specified by the command. If B is the sector address, and a sequence
tag of 1 is used, the next command will come from g + 1. If a sequence tag of

0 is used, the next command will come from a + 1,

Usage: RTK is always used when reading information from the typewriter
keyboard. This information will be loaded into the buffer in 6-bit codes which

may be loaded into the A register with an LAI command.

2-52

RPT Read Paper Tape (52)

This command functions exactly as RTK except that instead of turning on the
keyboard light and waiting for a key to be depressed, it causes the tape reader
to read one frame of tape. Sine the paper tape reader has 8 columns, as many
as 8 bits per frame may be punched on it and loaded to the Input Buffer by means

of the RPT command. It is necessary to execute this command for each frame

of tape read.,

Timing: Like RTK, RPT is a modified class 2 command which starts its exe-
cution in @+ 1 and continues throughp , where a is the actual sector location of

RTK and Bis the sector address.

Usage: If an RPT command is given at the proper intervals, it is possible
to keep the tape moving at 10 frames/second, which is the maximum input rate

of the Flexowriter. (See Section IV for details on this operation.)

2-53

RFU Read Fast Unit (53)

This command will cause the Input Buffer to be filled by a fast, special purpose
unit. The PULSE TO SPECIFIED UNIT command is used to select, start, and
stop these fast units. This command differs from the other read commands in
that it is not self-disabling. The DISCONNECT INPUT UNITcommand must be

used to terminate this operation deactivate the buffer.
Timing; RFU is modified class 2 command.

Usage: This command may be used for fast input devices that require the

Input Buffer.

$ o KRTK (53) (0:2-52) v snphompdin o oned o

AMpaa 2

o’

LAI Load A from Input Buffer (55)

The capacity of the Input Buffer is any character up to eight bits. This com-
mand will load the contents of the Input Buffer into positions 14 through 21 of

the A register under control of a Format Word, or '"mask.' Load A from

Input Buffer always takes the Format Word from the specified sector and from
the same line in which the LAI command is located. The sector location of the
""mask'' is specified by the sector address of the LAI command. Positions 0
through 13 of A may be affected if the mask contains ones in positions 0 through
13. The Format Word functions as follows: in those positions of the word where
there are ones, the corresponding bit positions of the Input Buffer register are
transferred to the corresponding positions of A, No other positions of A are

altered., After the transfer of information to A, the Input Buffer is cleared.

Example:
(A) (IB) (Mask)
Before execution of LAI +0124000 104 +0000377
After execution of LAI 40124104 000 +0000377

Timing: LAI is a class 2 command.

Usage: This command is always used when information is input to the PB 250
by way of the Input Buffer. Another use occurs if the mask contains all ones
and is located in sector 376 of the appropriate line; if the Input Buffer has been
previously cleared, zeros will be inserted in all positions of A. Selective
insertion of zeros in A is possible by varying the mask, but the mask must be

in sector 376 of the appropriate line.

2-55

CAM Compare A and M (56)

The contents of A (the effective address) are compared with the contents of M
and, if the two are identical, the Overflow switch is turned on. If not, the Over-
flow switch will be turned off. In either case, the (A) and (M) are unaltered and
command execution continues in the regular manner. All 22 positions of A and
M are compared. The description of the TOF command should be studied in

conjunction with the CAM command.

Timing: CAM is a class 2 command.

Usage: The following sequence effectively provides a transfer on zero in A:
Location Contents Remarks
a CAMae +1, S Must be sequence tagged.
at1 00000 . . . Location contains all zeros.
a+ 2 TOF B Transfer if (A) = 0, where
Brec + 3.
a+ 3 - - - Program continues here if
(A) & 0.

CIB Clear Input Buffer (57)

The eight bits of the Input Buffer are set to zero. Execution will occur during

the sector address time,
Timing: CIB is a class 2 command.

Usage: This command is used when it is necessary to clear out old or un-
wanted information from the Input Buffer before accepting new data. The use

of CIB as an in-line transfer is the same as for other clear commands. Although
LAI clears the Input Buffer each time it is executed, extraneous information

will get into the buffer when the sequence counter is reset to sector G of line I

by the I key (I goes into the input buffer), or when single-stepping through a
program by means of the C key (C goes into the input buffer). The input buffer.

therefore, should be cleared prior to each use.

WOC Write Output Character (6X)

This command causes a single character up to eight bits to be sent to a spe-
cified output unit. The character is incorporated into the command and occu-
pies bit ‘pos.itions 12 through 19 of the word; these bits are bits 12 through 14
of the op code field and bits 15 through 19 of the line number. The X in the

numbered code (6X) is thus determined by the output character.

The unit to which the character is sent is specified by the command line in
which the WOC command is located. Line 05 specifies the typewriter; line 06
specifies the punch; and line 00 specifies certain devices such as magnetic tape

or a high-speed punch.

In order to provide the output device with a signal of sufficient duration to
initiate operation, a delay number must be loaded into the C register before
the execution of WOC, This number is decremented by one for each sector
time after the command until the number goes negative. When the (C) go nega-
tive, the WOC command behaves as all other class 1 commands and terminates

when the sector specified, p , is reached.

The signal to the output device is therefore sustained froma + 1, where ais
the location of WOC, untilpg , the specified sector, appears for the first time
after the C register becomes negative. The (C) continue to be decremented,

after they become negative, until the command terminates.

If the C register is initially negative, the output signal will be sustained only

form a + 1 to B; however, (C) will still be decremented.

Timing: WOC is a modified class 1 command and, as such, will cause the

next command to be taken from the sector specifiedif the sequence tag is 1.

/""-\

WOocC Write Output Character (cont.) (6X)

Usage: All output, except that controlled by the BSO or PTU commands,

must be in the form of WOC commands. When forming WOC commands in
a program, the output character is offset from the right end of the word by
two bits, and the index tag is generally zero. The WOC configurations for

the Flexowriter codes are as follows:

Table 2-2

FLEXOWRITER CONFIGURATIONS FOR WOC COMMANDS

Alphabetical Characters Numerical and Special Control
(vaslale in bethupper | Gharasters] Gharacrers
A 6101 N 6005) 6100 0 ucC 6132
B 6102 O 6006 11 | 6001] LC 6134
C 6123 P 6027 v | 6002 2 Tab 6136
D 6104 Q 6030 = 6023 3 C/R 6116
E 6125 R 6011 [6004 4 Stop 6013
F 6126 5 6122 J 6025 5 | Delete 6137
G 6107 T 6103 0. 6026 6 Space 6020
H 6110 U 6124 & 6007 7
1 6131 V 6105 * 6010 8
J 6021 W 6106 (6031 9
K 6022 X 6127 ? 6036 +
L 6003 Y 6130 S 6037 i
M 6024 Z 6l11 I 3 6120 3

" 6033 !

, 6133)

6113
/ 6121 $

2-59

PITU

Pulse to Specified Unit

(70)

This command produces a specified combination of signals on five output lines

and an "activate'' signal on a sixth line,

stop equipment external to the computer.

These signals are used to start and

The line address of the PTU com-

mand specifies the combination of signals, while the sector address defines

the first sector following execution.

The activate signal is presented in the

sectors between the command location and the sector address.

Timing:

PTU is a class 1 command. The PTU signal will be held 'on'' until

p comes up, where g is the sector address of the PTU command,

Usage:

to hold a PTU 'on' for ~ 3N milliseconds:

Location

a

e +1
e +2
a + 3
a + 4
a +5
e +6

Contents

n |Hw
£ 2

S N W R Y

LDCa +1

Count

LSDa+ 4 S
not used

TCNa+ 6

PTUe + 2 S

Continue

The following sequencé of commands may be useful when desiring

Remarks

Initialize counter

PTU is ""down' 36 psec

each cycle

Execute

Such a sequence can be used to condition the setting of relays external to the

computer,

2-60

o~

MCL Move Command Line Block (71)

The contents of the first word following the MCL command, and all subsequent
words on that line up to, but not including, the address sector number, are

copied into the corresponding sector positions of the effective line address.

Example: The command 010 7104; is located in 37006. When this command

is executed, the information in line 6, beginning with sector 371, and con-
tinuing through sector 007, is moved to the corresponding sectors of line 4.
The information which was originally in line 6, sectors 371 through 007, re-
mains as before, but now this information has been duplicated in line 4, sectors

371 through 007.

Timing: MCL is a class 1 command. In this class of commands, the sector
number of the command is used to designate the first sector number in which
execution of the command is discontinued. Thus, 12 microseconds are re-
quired for ®weading this command, and 12 microseconds per sector transferred

are required for executing this command.

Usage: This command is a convenient way of moving entire lines of infor-
mation, one line at a time. By giving as the sector address a+ 1, a2 com-
plete line is moved from its original location to a new location. This method
provides a convenient means of initializing subroutines in which addresses

are to be modified. (Also see the MLX command, 26, in this connection.)

2-61

BSO Block Serial Output (72)

The BLOCK SERIAL OUTPUT command operates in a manner which is ef-
fectively the reverse of the BLOCK SERIAL INPUT (73) command. That is,
the information in the data line is shifted into the External Register (ER)
whenever a one appears in the Format Block, Nothing is done with infor -
mation in those positions of the data line which correspond to zero bits in

the Format Word. For details of this command, reference is made to the
description of the BLOCK SERIAL INPUT (73) command. Computer memory

and registers are unaffected by this command.

Example: The command 01257204; is located in 01 002. All ones are stored

in 01102,
(01104) (ER --22 bits)
Before execution of BSO +1215702 +0000000
After execution of BSO +1215702 +1215702

Timing: BSO is a class 1 command. (See BSI description for further informa-

tion.)

Usage: BSO can be used to provide a fast output, with format control, to an

External Register.

2-62

~,

BSI Block Serial Input (73)

This command loads information directly into memory at the rate of 0.5 micro-
seconds per bit, Input information is presented to the computer in the form of

a series of bits, normally fron. some external shift register (ER). The shifting
operation in the external register must be under computer clock control, A
Format Block determines when a bit will be accepted from the input device. This
Format Block is formed by the binary configuration of information contained in
that portion of the command line which begins with the sector following the BLOCK
SERIAL INPUT command and continues up to, but not including, the sector address
of the command. The information entering the computer will be loaded into the
line specified by the line address of the command; it will occupy those positions

of this line that correspond with one bits in the Format Block. Positions of this

data line that correspond with zero bits in the Format Block will be loaded with

Zeros.

Example: The command 37757305; is located in 37502. Location 37602 contains

all ones. ER is the external register source from which information enters the

computer.,

(37605) (ER - - 22 bits)
Ibefore execution of BSI + 0000000 + 1234567
After execution of BSI + 1234567 + 0000000
Timing: 1351 is a class 1 command. The next command to be executed, when

this command has a sequence tag of 1 (which it always should), will come from 8,

where p is the sector address. P will be the sector after the last sector of the
mask.

Usage: The BSI and BSO commands provide a very fast and convenient method
for communicating with an external register. In addition, formatting control is
also provided. The most frequent use of these commands will come in computer

systems work, where a high-speed buffer is used by the computer to communicate

with equipment the computer is conirolling.

2-63

TOF Transfer on Overflow (75)

An overflow results from generating a number too large for the capacity of the
arithmetic registers, specifically from the ADD, SUBTRACT, DOUBLE PRE-
CISION ADD, and DOUBLE PRECISION SUBTRACT commands. When an over-
flow occurs, the Overflow switch is turned on. The command COMPARE A AND
M will also turn the Overflow switch on if (A) are equal to (M), but turn off the

Overflow switch if this is not true. After execution of the command SQUARE

“as

ROOT, the Overflow switch is turned off.

The TRANSFER ON OVERFLOW command will cause the computer to take its
next command from the specified address (if the Overflow switch is on), and
then turn off the switch. If the Overflow switch is off, the next sequential
command is executed and the switch remains off. Transfer may be to any

sector of any command line. A sequence tag of zero is required for conditional

sl e e e e

transfer, A sequence tag of one provides an unconditional transfer and turns
the Overflow switch off.)

Timing: TOF is a class 4 command. Therefore, in the event a transfer is not
executed, control proceeds to the next command and the total time required is
the 12 microseconds required to read this command. In the event control is
transferred, execution time is 12 microseconds per sector for the interval
between the TOF command and the command to which control is being trans-

ferred, plus 12 microseconds to read the TOF command.

Usage: The TOF command should be studied in conjunction with the CAM
command. It is the programmer's responsibility to see that the Overflow

switch is off before executing a set of commands which are tested by a TOF.

2-64

TES Transfer on External Signal {(77)

This command will cause the computer to take its next command from the speci-
fied address upon sensing a signal from the source external to the computer. The
nature of this signal is specified by the line address of the TES command. In

the standard PB 250, line addresses 25 through 37 are used to specify the

following input signals:

Lines 25-30: Arbitrary input signals.

Line 31: High-speed punch sync. signal

Line 32: Magnetic tape gap signal

Line 33: Magnetic tape reader clock input signal

Line 34: Photo tape reader sprocket input signal

Line 35: BREAKPOINT switch input signal.

Line 36: Typewriter or paper tape reader ''character
input complete'' signal.

Line 37: "Typewriter not ready for an output character"
signal.

Line numbers 00 through 24 will provide additional input selectors which

may be obtained as options for additional arbitrary input signals. Since

the line number of the address is reserved for signal specification, the

effected transfer can be only to some sector in the same line as the TRANSFER

ON EXTERNAL SIGNAL command.

Example:

Location Op Code Address
. 02206 TES 02736

If a transfer is effected, the computer will take the next command from location

02706. If no transfer is effected, the next command will be executed from 02306.

The sequence tag should always be zero for this command.

Timing: TES is a class 4 command. When a signal is not present, the command
directly following TES command is read and the total execution time is 12 micro-

seconds. If control is transferred, execution time is 12 microseconds,

2-65

TES Transfer on External Signal(cont.) (77)

plus 12 microseconds per sector for the interval between the TES command and the

command to which control is being transferred.

Usage: Use of this command is further described in Section IV, " Input/Output
Techniques.'" In general, the TES command acts as a " stoplight,'" indicating
whether input/output commands should be executed or delayed. If a TES is

executed which refers to an input line not physically present on the computer,

the transfer will take place.

o/

o/

Vi

I11. STANDARDS AND PROGRAMMING TECHNIQUES

3.1 PROGRAMMING TECHNIQUES

3ediil Introduction

There are two basic methods of programming the PB 250; rela-
tively non-optimized, and relatively optimized. The detailed techniques and

optimization rules are given for most of the commands described in Section II.

Considered as a computer without any capabilities for optimizing
programs, the PB 250 still has the same command structure, and presents only
the problems of any serial, binary, single-address computer. In this frame of
reference, commands are generally executed from sequential sectors, at a rate

of approximately three milliseconds per operation.

Partial optimization, i.e., locating the operand for class 2 commands
in the next sector after the command, wherever possible, is relatively simple.
For example, if a constant is needed, it is prestored in the sector after the
sector for which it is required. This basic optimization greatly increases the
operation speed of the machine, but does not make the most efficient use of
memory. More complex optimization techniques will provide high operation
speed while at the same time using memory efficiently, The programming
time will be expected to increase as the complexity of techniques is increased.
Although the more complex programming methods result in more efficient
machine operation, a point of '"diminishing returns' will be reached. After
this point, more programming time will not appreciably increase either com-

puter operation speed or efficiency of memory usage.

3 T Optimization Considerations

The traditional | + | address serial computer offers a variety of possi-
bilities for optimizing a command, If the next command cannot be placed in
the optimum location (often the next section after the last operand required),
then the sector one further dewn may be chosen, etc. On the PB 250, however,
no such gradation exists. The next command is either in the optimum location
(generally immediately following the operand) or it is completely unoptimized

and simply follows the current command (which is in ¢) by appearing in @ + 1,

Paragraphs 3.2 and 3.3 describe the use of the fast line and show an
example of the difference between an optimized and unoptimized PB 250 program.
It is sufficient to state that the most effective way of using the fast line is as a
fast access location for data frequently required during a computation, rather
than as a means of storing a program to be executed. It is stressed that
addresses which refer to the fast line are interpreted in exactly the same way

as the addresses which refer to any of the long lines.

An important rule to remember for optimization is that memory
accesses are always expensive in terms of program execution time. That is,
the programmer should always think in terms of manipulating information in
the A,B, or C registers, rather than storing and loading it back into these
registers. Among the operations for manipulating information within the
registers are the shifts (with or without affecting the C register], the register
interchanges, the Rotate command, and the Merge A into C command (which

can be used as a copy A into C if the C register is first cleared).

< T Special Techniques

One useful technique is the method of placing the two's complement

(negative) of the (C) into A. This occurs under a ore-sector multiplication,where

the B register has previously been loaded with a word whose last two bits (po-
sitions (20 and 21) are 01. All the variable length commands should be closely

scrutinized by the programmer for possible special uses,

Another special technique consits of setting an internal switch by the
use of RFU to turn the switch off, DIU to turn it on, and a TES 36)8 to deter-

mine whether the switch is on or off. Transfer will occur when the switch is

on,

If additional externally operated controls are desired beyond the
single BREAKPOINT switch on the Flexowriter, these may be furnished by
using the surplus (unassigned) signal lines, together with external toggle

switches. (See description of TES command.)

Any optimized program uses much more space in the computer than its
unoptimized equivalent. However, these empty spaces do not have to be wasted.
It is possible that at least one other optimized program can be interlaced

with the original program in the available vacant sectors.

3.2 USE OF LINE 00

Line 00, the ''fast access'' line, provides fast access storage for 16
words. Any word placed in any sector of line 00 is read 16 times during each
long line circulation time of 3072 microseconds. Thus, each word in line 00

is 16 times more accessible than a word stored in the long lines.

A number used repeatedly in a calculation can be stored in the fast

line for ready availability. (See the Recirculation Chart in Appendix D,)

The following example illustrates the use of the fast line:

Sector Line Command Remarks
!
023 06 — 024S50500; (F04) (A)
024 Not Used '
025 — 042514 06; (A)=(F04)+(04206)
|

026 |
027 |
030) '

I [

I |

{ |
042 Consltant
043 —= (04451100, (A)e (F04)

A word is picked up from channel F04, a constant is added to it, and

the sum is stored back into F04.

The programmer should be aware that optimization is possible only when
reference is made to the proper sector of a channel. That is, an LDA command
in 023, which is to pick up data from F04, must be sequence tagged and have a
sector address of 024, not 004, 044, etc. If the sequence of commands in the
previous example were written in the non-optimized modes, the execution time
would be 3. 072 milliseconds per command, or a total of 9. 216 milliseconds.

By optimization, the same computation is accomplished in 0. 216 milliseconds.

Addresses referring to line 00 are not interpreted modulo 16)10, which
is why the appropriate sector of a particular channel must be referenced for

optimization purposes.

The fast line is extensively used in connection with such high-speed

input/output devices as magnetic tape and photoelectric tape readers.

3.3 SAMPLE PROGRAMS

The sample problem may be stated as follows: Channel FO03 is initially
clear. Xi (1€ig 10, X»0) are stored in line 03, sectors 003 through 014.

It is required to write a program which obtains the sum of these elements.

X, +100
i

10
E Xi and, in addition, replaces each Xi by 4 . Overflow
1 10

will not occur. The program should halt with line address 33)8 and with Z Xi
1
stored in F03.
The optimized and unoptimized programs to perform the desired
function are presented on the following two pages. These two example
should be studied as a contrast in techniques. The unoptimized program re-
quires over 300 milliseconds to execute; the optimized program requires

only 30 milliseconds to execute.

3.4 PROGRAMMING CONVENTIONS

Certain conventions and techniques should be followed as a program is

being developed. These conventions ensure that:

a) Communications between programs is simplified.
b) Routines can be adapted to a wide variety of problems.
c) Necessary modifications can be implemented with the minimum

amount of program rewrite.

Lﬁ_l)___] Packard Bell Computer
PB 250 PROGRAM LISTING

PROBLEM UNOPTIMIZED SAMPLE PROGRAM PAGE _1 OF
PROGRAMMER R. L. HOOPER DATE 3.2.41
LOCATION INSTRUCTION 5;:22'6': REMARKS
00102 015 0502; on |hear 4
002 015 2503; [AM__ |z jex €084 % Ad
003 014 3502; TAN |rgansroa 1A 8eF 2T
004 000 4400; cLe fere#r C
ge A AT ¢
005 006_0000; MAC | men”
006 003 1400; ADD | A D
007 000 0100; 1AC (
010 016 _1402; ADD npd
on 014 2210; SRT
012 003 1000; sTc |emRre €
R o i CoeadlyTrdw it
013 00253702; TRU |7easscer U ol
014 000 0033; HLT piel -
015 -0000000
016 +0000144

o

7

-

PB 250 PROGRAM

LISTING

PROBLEM Optimized Sample Program sage 1 or 1
PROGRAMMER R I, H. DATE 1/30/61
LocATION INSTRUCTION rybecis REMARKS
00002 00150502; LDA | START
00102 -0000000 | | negative
00202 | oisszs0k [IAM_ | X, Ai (A)——M
00302 not used
_00402
00502
B 00602
) 00702
01002
01102 N
01202
01302 o Y
01402 - not used
01502 017 3502; TAN THRU
01602 01754400; CLC 0—=(C)
01702 021 '0033‘. HLT STOP
02002 02 150000; "IMAC X, —=(C)
_02102 000 0000; not used i-1
02202 02351400, ADD X, + L X
02302 000 0000; not usui':d1
02402 02550100; |IAC (A) = (C)
02502 000 0000; not used
i 02602 ﬁO_Z_lS__]éOZ; ADD }'Ci + 10010
0?702 e +0000144 constant
;530_03_ i 03352210; RST (X, + 100)/4
03102 o not used
03202 - not used
03302 _| 04351000; |STC ?1: *M
A b e e
~ 04402 00253702; TRU back to start of loop

d) Ease of understanding will be provided.

As previously described, the group of sectors in line 00 which simul-
taneously contain the same information, are called a channel. Line 00 channels
are designated FO0O through F17. For example, F00 refers to, collectively,
locations 00000, 02000, 04000, 06000, 10000, 12000, 14000, 16000, 20000,
22000, 24000, 26000, 30000, 34000, and 36000.

Lines are referred to by their octal address, i.e., 00 through 77}8;

sectors are also referred te in octal notation, i.e., 00 through 377)8.

Normally, the Index register, and F00 through F17, are available to
any program or subroutine and must be preserved by the programmer before
entering the subroutine, if these registers contain information which is to

be used later in the main program.

Subroutines will generally be entered with the argument in the A register
and the exit in the C register. If the argument requires two words, these words
will be located in the A register and B register and the exit will be located in
the C register. Subroutine exits will normally be complete instructions (un-

conditional transfers).

3: 5 FLOW DIAGRAMMING CONVENTIONS
Flow diagrams are divided into two groups as follows:

a) Macro Flow Diagrams -~ broad, descriptive flow diagrams, out-
lining a large, complex program. They are not oriented to the
program logic but serve to provide a general picture of how the
program operates, and also serve as a guide to a more detailed

flow diagram.

b) Micro Flow Diagrams - - machine oriented diagrams whose functions

is to define the program logic.

Table 3-1 lists the standard flow diagram symbols used in PB 250
programming. These symbols have been selected both for their convenience
and universal acceptance. With the exception of the start symbol, they
represent the flow chart symbols recommended for use by the Association for

Computing Machinery.

Referring to the table, small English letters are used to identify fixed
connectors while small Greek letters with numerical subscripts are used to
identify variable connectors. To avoid possible confusion, it is recommended
that the flow diagram page number be included with the connector to facili-

tate following the flow diagram.

To aid personnel unfamiliar with a particular program, important and
significant micro flow diagram boxes are cross-referenced to the program
listing by having the location (line and sector) of the first instruction executed
within the respective box (in the upper right hand corner as shown below). It
is emphasized that not all box;es of the flow diagram are keyed to the listing.
Cross-referencing of all boxes on the flow diagram requires the performance
of considerable updating by the programmer responsible for maintaining the
program. In many cases, because of the auxiliary nature of this cross-
referencing, the diagrams may not be kept up to date; therefore, the number

of cross-reference boxes should be kept to a minimum.

SSSL.L

3+9

Table 3-1
STANDARD FLOW DIAGRAM SYMBOLS

SYMBOL MEANING

@ Tape (Magnetic)

Operation, Function

G:) Fixed Connector
@ e Variable Connector

Comparison, Test, Decision

D Closed Subroutine

Start, Stop

Assertion, Explanation

"'\

.

Care must be taken to make the flow diagram appear clear and un-

cluttered. This can be avoided by minimizing the number of boxes per page.

The wording appearing in the flow diagram box should be as descriptive
as possible. Language contained in the micro flow diagram is more general

than that contained in the listing annotations.

3.6 ANNOTATION CONVENTIONS

The following annotation symbols and conventions will be used:

a) Replaces: e.g., (A) + (X)i-—— (A),
contents of A plus contents of Xi

replace contents of A.

b) Contents of: e.g., (A), contents of

A register; (Xi contents of location Xl;

(10002), contents of sector 100, line 0Z.

c) Modified Command: a command which
is modified by another commanad within
the same subroutine. Commands within
a particular routine will never be
modified by commands, outside that

routine.

d) Brackets are used to identify all instructions included in a particular

annotation, as follows:

e) The word "enter' is inserted to the left of the first instruction
operated in a particular routine. The exit or exits from a routine

should be clearly annotated.

f) Annotations should include the listing page number of all transfers
whose locations are not ircluded on the same page.

g) The binary point of a number is identified using Q notation, i.e.,
to represent an integer, N, on an annotated listing, the programmer

would write: N @ 21.

3.7 AVAILABLE PB 250 PROGRAMS
e
// ~ ’
Table 3-2 lists.some of the standard routines which are available for
the PB 250.

/, kY

AT

IV, INPUT-OUTPUT TECHNIQUES

4.1 FLEXOWRITER

A Model FL Flexowriter is used as the input-output control unit for the
PB 250. The Flexowriter is also used to prepare, duplicate, and read tapes and
can be used on-line (under control of computer), or off-line (under control of
operation). This section is primarily concerned with the on-line mode of
operation, General appearance and operations are similar to those of a stan-
dard electric typewriter. Such features as space lever, paper release lever,
platen knobs, margin release lever, ribbon position lever, margin and tab stops,
and type guide, are used in exactly the same manner as for a standard typewriter.

See Figures 4-1, 4-2, and 4-3 for illustrations of the Flexowriter keyboard, code,

and characters, respectively.

dadil Input

The tape used with the Flexowriter has eight channels across its width,
The keys of the typewriter, howeéver, will only cause 6-bit codes to be punched
on this tape. When punching tape under computer control, it is possible to out-
put 8 bit of information at a time. It is desirable to utilize all eight channels on
the tape wherever possible, since this reduces the number of frames of tape that

must be input or output for a block of information.

When the READ TYPEWRITER KEYBOARD (RTK) command is given,
the light on the front of the Flexowriter will come on and it will be possible to
enter information, in the form of 6-bit codes, into the Input Buffer. Each time
a key on the typewriter is depressed, the light will go off and it will be necessary

to give another RTK command before another code can be entered.

TAB

> >

LOWER
CASE

UPPER
CASE

ETART
READ

sTOP
READ

REGEN EMABLE

BREAK sTOP CODE TAPL
INDICATING
POINT CODE DELETE FEED
LIGHT

w0l

a | =[]
g1 o011 1m}j\|+

RET

-+ " LowER
L i] CABE

C||V||B

NIM L] L] o

SPACE

a0

oo

mm

i |

]
. Fom
jf_‘-jmw-taft_{_

iy

™

JJ

=N RN OO

U™ TP Lo g

N

N <X £ <C=2wvodDv0ZFTrRew=IDmTmoOnNnwsp

\

o

Ix

Figure 4-1.

A B B 4 21
L4 *
@ ®
® e ee
P ®
®e o o
e o
L LALJL
® o
e e ®
@ ®
® ®
®e
® o
® @&
®®
® o0
e e
@& @
®® @
® ee
®® |®
@ ® |®
® LAl
®® oo
o e e
® |e ®

ALPHABETICAL CHARACTERS
AVAILABLE IN BOTH
UPPER & LOWER CASE

L Sy 3

=

-

u.n I

Flexowriter Keyboard

CHAMNNINEL

Yow Lo A B B 4 21
“¢)y o [e
i om0 ®
2V 2 ®
- ® L0
4 C 4 ®
25 3 5 ® ® []
=26 N & [] e
7 & 7 eoe e
! 6 * 8 L]
20 e [Jele ®
26 5 4+ [[e]ele]®
=7 - ~ [|elelelel®
5¢ ¢ |ele
55 (5]]
73>, , [ele|e] |ele
53 . . [e] (@] |@®
tt 4 lele ®
NUMERICAL & SPECIAL
CHARACTERS
72 Upper Cose [@[@]@®] J@
7Yt lower Cose |@|@|@|@
4 b [@@|elee
aéCurriuge Return | @ e e e
t > Siop Code [] e e
77 Delete |9 @@ |® | ®|@®
= Spoce ®

CONTROL CHARACTERS

Figure 4-2. Flexowriter Code
MmNorParsTuUvwxvzaY=[]a&* ()
MNOPQRSTUVWXYZ1234567890
Figure 4-3. Flexowriter Characters

e

J/

S

The READ PAPER TAPE command will cause the tape reader to read
one frame of tape and then advance the tape one frame. Eight bits of infor-
mation will be loaded into the buffer. If the tape was prepared in the PB 250
Flexowriter format, only six of these eight bits will be significant; however,

if the tape was prepared by the computer, all eight bits may have significance.

When either the tape reader or the keyboard has loaded the buffer, a
signal is sent to the computer, which may be sensed by a TES command having
a line address of 36)8. This signal deactivates the Input Buffer so that it cannot
be loaded with further information. Any time after either an RTK or RPT -
command is given, the presence of information in the buffer may be sensed by
giving a TES command with a line number of 36)8. If the buffer has been filled,

the transfer will occur.

Since the maximum speed of the Flexowriter for both the reader and the
keyboard is 10 characters/second, and the PB 250 operates at microsecond
speeds, it is possible for a program to be ready for another input before the
Flexowriter has finished with the previous input; if a READ command were

given during this time period, the same character would be read again.

To keep the Flexowriter tape reader operating at its maximum rate,
and at the same time avoid reading the same character twice, a sequence of
commands can be used with either the RPT or RTK commands to provide an
automatic method of determining if character read-in is complete. This method
proceeds by giving a READ command and then testing line 36)8 after only 3 ms.
If line 36)8 is true, it can be assumed that a previous character is being read,
since the Flexowriter cannot react in 3 ms. The sequence then cycles through
these two commands, READ and TES 36)8, until the TES fails, which will occur
only when the previous read-in is complete. Then, by clearing the buffer and

waiting for line 36 to go true, the next READ will fill the Input Buffer with a

new character.

The command sequence is illustrated in the following flow diagram

(nth character to be read):

‘-I% J{?"""-'l 3\;‘ A Z"‘L“ﬁ'/ fyL.';--',M-{'v’Fﬁ_

/(:A;gy-mrtt;'» Aa I-"ne,m; fuadl

popotefl e

et ASTR 4’7{»1' W/é;@

fakas Groa fixsd Himi
wlirrveol (03287) whon,
amppt o .{-o-r)éfff?‘)-—gﬁi ‘Jbé‘:qn
Fpmi a:?ﬂ;w :

READ D d—

NO

CLEAR
BUFFER

NO

LINE 36

TRUE?

READ

LLINE 36 YES
TRUE? =/

N

The command sequence for the read operation is as follows:

Location op Line Sector Seq
Sector Code Address Address Tag
B LAI (etc)

a TRU LL a + 2
at 1 READ 00 p -1
a+t+ 2 READ 00 e + 3
a+ 4 TES 36 a + 1
at+ 5 CIB 00 a + 3 S

The function of the sequence is as follows:

The sequence is entered at ¢ + 2, where a READ command with
sector e + 3 and no sequence tag is executed. After 3 ms, line 36 is tested
and if the line is“truel: control returns to the READ command. If line 36 is not
'"true', control will pass through to the CIB command which clears the buffer
and returns contro. to the second TES 36, The program will wait in this TES-
CIB loop until line 36 goes ''true', at which time the TES 36 will transfer to
the READ in ¢ + 1. This READ will execute for the greater part of a memory
circulation and then transfer control to § , the next operation. Although @

is not a fixed location it should be as far from e + 1 as possible, that is a

ora -1,

4-5

4.1.2 Output

There are two ways to obtain output on the Flexowriter; the typewriter,
which has a speed of 10 characters/second, and the punch, which operates up

to 15 characters/second.

Tr.]? type out on the typewriter, the WOC command must be located in
line 05, Inl order to give the Flexowriter time to respond to the output signal,
it is necessary to load the C register with a delay number before executing
the WOC command. This number will be decremented by one for each sector
of execution until it goes negative, at which time the WOC acts like a standard
class 1 command. For the typewriter, a signal of 20 milliseconds duration is
always sufficient; however, for some Flexowriters, less time may suffice.
To obtain this delay, an octal number, + 00032.32, should be loaded into the C

register before execution.

In order to avoid sending an output signal before the typewriter has
completed a previous character, a TES command with a line number of 37}8
should be used to test for "typewriter busy.' Line 37 will become '"'true"
11-13 milliseconds after the WOC command has started, and will remain
true for as long the typewriter is busy typing a character. The TES 37
command may be used to transfer back on itself, and in this way produce a

one-word loop until the typewriter is ready to receive the output character.

4-6

o

Information output on punched paper tape is faster than output using the type-
writer and is controlled in almost the same way as the typewriter, except that
the WOC command is located in line 06 instead of 05. In the case of the punch,
a 15-millisecond delay is always long enough to start the punching operation,
instead of the 20-millisecond delay required for the typewriter. There is, however,
no way to test for the punch being busy and the programmer must always allow
sufficient time between characters. One method of testing is to calculate the
amount of time used by the program in its operations between characters, and
then to make up the remainder of the time by using a larger delay number for
the WOC command. It is permissible to use a WOC for longer than 15 milli-
seconds, but no longer than approximately 60 milliseconds. In this way, it is

possible to output a tape without the necessity of using an additional counter.

For the 15-millisecond delay, an octal number of + 0002424 should be

loaded into the C register.

V. COMPUTER OPERATION AND PROGRAM CHECKOUT

5.1 COMPUTER OPERATION

The POWER button on the front panel of the computer is the only
control necessary to turn the machine ON or OFF. When the computer is
on, this button will be illuminated. The Flexowriter ON-OFF switch is

located on the Flexowriter.

When loading a program, the Octal Utility Program, which is pre-
sented in Appendix C, should be used. This utility package simplifies con-

trol of the PB 250 during program operation and checkout.

The delay line memory of the PB 250 is erased when power is re-
moved and, upon turning the machine on again, the contents of memory will
not necessarily be all zeroes, but will be a random bit configuration. In
consequence, parity halts may be generated by trying to load the A, B, or C

registers with sectors in which information has not been previously stored.

5.2 PROGRAM CHECKOUT

5dil Dumping and Tracing

Once a program has been coded, punched and loaded into the computer,
the question still remains as to whether the program, as written, is correct.
In the event that the program produces a print-out of results, these results can
be compared with known results obtained by hand computation of test cases. In
the event the program does not perform as predicted, several courses are open
to the operator. A static dump (memory print-out) of the contents of appropriate
memory locations may be made, or the program may be traced, which is a

dynamic process showing the conditions of the various registers as computation

proceeds,

5.2,2 Single-Step Operation

An easier approach than either dumping or tracing, is to single-step the
computer through the program and, by comparing the results shown on the con-
sole lights with annotated coding sheets, find the flaw or flaws in the program.
Single-stepping may be accomplished by depressing the ENABLE switch and de-
pressing the C Key on the Flexowriter once for each program step to be executed.
Note: Each time any Flexowriter key is depressed, the Input Buffer is loaded with
this character, In addition, certain commands appear in the OPERATION lights
as other than that which is actually being executed; these commands are as

follows:

ROT (03), which shows as 01
LDP (07), which shows as 05
STD (13), which shows as 11
DPA (16), which shows as 14
DPS (17), which shows as 15

For class 1 commands, such as MUP, DIV, etc., the information
displayed in the OPERAND lights will not reflect the actual line number of the

command being executed.

Conditional transfer commands will not appear in the OPERATION lights
unless the condition necessary for transfer is present. For example, TBN (36)
will always be executed (i.e., either a transfer will take place if B is negative,
or the regular instruction sequence will continue if B is not negative) but will
not appear in the OPERATION lights unless the B register is negative when this

command is being executed.

Within the limitations previously described, the console indicator

lights may be interpreted as follows:

OPERATION lights (6) ===-=--- Op code of command
OPERAND lights (5) -==-==--- Line address of command
COMMAND lights (3) ------- Line location of command

Note that single-stepping through class 1 commands located in line 00

will in general give incorrect results.

5.2.3 Use of The FILL Switch

During checkout, it may be necessary to reload the Octal Utility Pack-
age using the FILL switch. Programs other than the Octal Utility Package will
be destroyed when the FILL switch is turned on if the extreme left-hand light of
the OPERATION lights is illuminated. To turn this light off, single-step the
computer from the Flexowriter until the light goes out. The bootstrap leader
on the Octal Utility Package may then be loaded by the FILL switch without

disarranging the rest of memory.
5.3 BOOTSTRAP LOADING

9.3.1 Method

When the computer is first turned on, it is necessary to load a small
service routine, called a bootstrap, into the computer by turning on the FILL
switch, which is located on the computer console. This bootstrap program, in
turn, is used to load the Octal Utility Package which is capable of loading tapes
in conventional 6-channel or 8-channel format. The bootstrap tape is a special
binary information tape with the information arranged as shown in the following

diagram.

Sprocket

o o o Holes
@ o
o o -] -] o o -] o o o -] o o a o o o L-] L] [+] L] L] -] o L] L] L]
o o o o o o 00 o o o o oo
o oo o000 0O O0OOOO©OO@©OOOCOCOOOCOCOQTOTOOOOQ OO0 Information
Channel
Stop Direction of - >
Channel Tape Motion

Bootstrap tapes load one information bit at a time, starting with the guard
bit of sector 377 of line 01. The next bit enters the guard bit of 377 and
pushes the bit previously loaded, down to position 21 of 377. This continues

through the parity bit of 377 and into the guard bit of 000 of line 01, as follows:

clpe| - - -~=lg|p|loO]--- - -pl|Gg|P|P|-~-=-- 21| G

Information Flow

Information Entry

Codes on the bootstrap tape are as follows:

(Zero) 0 0
H 1
C/R Guard Bit
Stop Code Stop Loading (After last C/R)

Always preceded by a zero

5-4

W/

r“-t-.

For each word that is loaded, a parity bit must have been computed and
punched. A stop code on the tape will cause the tape read in to cease, at
which time the operator may transfer to 00001 by first turning off the FILL
switch then depressing both the ENABLE and BREAKPOINT switches, strik-
ing the I key and raising the ENABLE switch.

"

N

7

BINARY-OCTAL NUMBERS

A. NUMERICAL SYSTEMS

Anv number can be represented as the sum of a group of terms, having
%) & 1 0
Pt HGTIL a L .. ta bt a_h 4 .le + a_b , where b>1 and 0<. a« (b-1)
i -

3 2

The intepger "h' 4s called the base or radix., of the particular numerical system

whele 0 represems the range of numerical values in that system.

1. Decimal System

The numerical system of radix 10 is called the decimal system. In
this case, numerical values are specified by combining powers of ten in the form
a (]0“) i a, (103) + a, (102) + 2 (101) + 2, (100). The usual practice, when
writing decimal numbers, is to omit the powers of ten and write out only the
values of ""a'", For example, consider the decimal number 1875. This number
actually represents 1 (103) + 8 (102') + 7 {101) +5 (100) but for the sake of con-
venience is merely written as 1875, with the position of the particular decimal

digit indicating with which power of ten the digit is associated.

2. Binary System

The PB 250 operates in the binary, or radix 2, mode; therefore, to
understand the operation of the computer, an understanding of binary arithmetic

is essential.

Here, numerical values are specified by combining powers of 2 in
the form an (Zn) ce. t a.3 (23) + a, {2.2) + a, (Zl) + a, (2.0). As before, the usual
practice when writing binary numbers is to omit the powers of 2 and write out
only the values of the ''a'" terms. For example, consider the binary number 1011,
This number actually represents 1 (33} + 0 {22} +1 {21} + 1 (20} but for the sake of

convenience is merely written as 1011, with the position of the particular binary

digit (or bit) indicating with which power of 2 the digit is associated. The

only digits available in binary notation are 0 and 1.

3. Octal System

§
In the octal system, numbers are specified by combining powers

‘'of 8 in form an(Bn) e + A3(83) + 32(82} + al{Bl) + 30{80). For the decimal

and binary systems, the powers of the base (8 in this case) are omitted, and

o

only the values of the '""a' terms are written. For example, the octal number
3 2 1 0
7142 actually represents 7(8) + 1(8) + 4(8) + 2(8). The digits available

in octal notation are 0, 1, 2, 3, 4, 5, 6, and 7.

B, RADIX CONVERSION

It is frequently necessary to convert numbers from one base, or
radix, to another during programming operations. The more common con-

versions are described in this section. _,)

1. Decimal-to-Binary Integer Conversion

Assume it is desired to convert 25)10 to binary form. Note:

The notation), = indicates radix 10, or decimal system; }8 indicates radix

10
8, or octal system;)2 indicates radix 2, or binary system,

a) From the definition of the general binary form, it can be
seen that the decimal integer can be broken down into a
summation of successive powers of 2. _)
25)10 = 1{24) +1 (23} + 0(2.2) + 0(21) +1 (20)
For larger decimal integers, make use of the Table of
Powers of 2, in Appendix B. Note: Adding the above
terms would yield 16 + 8 + 0 + 0 + 1 = 25,

A=-2 | , -/

7

b) The decimal integer can be divided repeatedly by 2; the
successive remainders, when read from the end, will be

the desired wvalue.

Remainders
2 LE] —«—— least significant bit {ao)
212 0

2 1 6 0
el 3 1
2 |1] <+——— most significant bit (a,)
0

As before, 25}10 = 1100]]1Z

This method follows from the fact that when converting an integer,
N, to the form N = an Zn + ... a, 21 + a0 20\ the remainder, when N is divided
by 2, is ay dividing this first quotient by 2 yields a asa remainder, etc.

2. Binary-to-Decimal Integer Conversion

Assume it is desired to convert 1111'0',0z to decimal form:

a) The values of the powers of 2 can be summed up to give
the decimal equivalent.

11]10)2 = 1{24} + 1 (2,3) + 1 {22} +1 (21) +0 (20)
:16+8+4+2+0=30)10
Therefore, 11110)2 = 30)10

b) A second method is to multiply the most significant bit
by 2, add the next most significant bit, multiply the

resulting sum by 2, add the next most significant bit, etc.

multiply
add

multiply

1
2z
2
s
3
2z
6
|
1 add |
= _ .
2
14
1
15
2

[

multiply
» add
multiply
30
0 - ' add
30)10 -——— answer

As before, 11110)2 = 30)10

This method follows from factoring the general binary term
for a 5-bit number to obtain the form
= + + + +
N 2, Z(a.,.l 2 (az 2(3.3 Z(a4 130}
Evaluating N, starting at the inner parentheses, gives the

required decimal integer.

3. Decimal-to-Octal Integer Conversion

To convert a decimal integer to octal form, divide the number
repeatedly by 8; the successive remainders, when read from the end, will be

the desired octal value.

Yo

For example, convert 75]10 to octal.

& I 3 «——— least significant digit
il 1
8 l_l_] «——— most significant digit
8 |0

o

Therefore, ?5)10 =11 3)8

This method follows from the fact that when an integer, N, 1is
converted to the form N = a_ 8" + ... a, 8\1 + a, 80 , the remainder, when N is

divided by 8, is 3y dividing this first quotient by 8 yields a, as a remainder, etc.

Note: It is usually convenient for the programmer to refer to
the Octal-Decimal Integer Conversion Table, Appendix B, when converting

integers from decimal to octal and vice-versa. The use of this table is self-evident.

4. Octal-to-Decimal Integer Conversion

To convert an octal integer to decimal form, multiply the most
significant digit of the number by 8, add the next most significant digit, multiply
the resulting sum by 8, add the next most significant digit, etc. For example,

convert 15":5}B to decimal.

1 5
5}8

3 multiply

it

5 4—— add

13

8 multiply
104

5 = add
109)10-— Answer

Therefore, 155)8 = 109)10

This method follows from factoring the general octal term (for a

3-digit number) to obtain
N=a ++8(a;+8(a,!)

Evaluating N, starting at the inner parentheses gives the required

decimal integer.

5. Binary and Octal Number Relationships

3
Since 2 = 8, it can be seen that three binary digits are represented

by one octal digit. This applies for fractional quantities as well as for integers.

The binary-to-octal conversion is performed by grouping the binary
number into 3-bit units, starting from the binary point, and interpreting each

unit individually. For instance, 10101 1010)2

becomes - JO01, 011, 010,
> ? g 532
or)8
and 0. 110111)2
becomes . 110 AL 5
6 7 or .67)8

Conversely, it can be seen that any octal number can be converted
to binary by writing the binary equivalent of each octal digit. For example,

612}8

b
ecomes . & v E »

110001010
110 001 010 or)

6. Decimal Fractions to Octal or Binary

Keeping in mind that the general term for a fraction, base b, is

-1 -2 E
a b + a b + a b3

-1 . -3 T e

it is evident that multiplying by the base, b, will produce the a] term in the
units position (immediately to the left of the radix point). Successive multi-

plication by the base will successively isolate the a > term, a , term, etc.

By this process, a decimal fraction, D, can be converted to the

- -2 -3
octal form D = a] 8 : ta , 8 +a 3 8 + ----, or to the binary form

-1 -2 -3
D-a._IZ +a._22 +a_32 e

Note: A fraction in one base will not usually transform to a finite

fraction in another base.
iraction in another Hage

For example, to transform 0. 725)10 into a binary fraction, multi-
ply the fraction successively by 2, isolating the units position after each multi-

plication, until the desired number of bits are generated.

. 725

2
a 1 term ——» ll. 450

1‘. 600

Therefore ‘725)10 =.1011 ---)2'

To convert . 082)10 to octal, multiply the fraction successively by
8, isolating the units position after each multiplication, until the desired number

of octal digits are generated.
A-7

.082
8
a . term — 0. 656

=1 8

5|. 248

8

1i. 984

Therefore .082) = .051-_;.-.*’--)8

The Octal-Decimal Fraction Conversion Table, Appendix B,

is useful for decimal-to-octal or octal-to-decimal fractional conversions.

7. Binary or Octal Fractions to Decimal

Remembering the general notation for a fraction, it is evident that
a binary fraction can be converted to decimal by adding up the negative powers

of 2, referring to the Table of Powers of 2, Apﬁendix B.
For example, convert . 101)2 to decimal
; ; -1 -2 -3
This fraction equals 1(2)+0(2 ")+1(2 7)
Therefore, ; 101)2 = .625)10

It is also possible to convert the binary fraction to octal and look

up the corresponding decimal value in the Octal-Decimal Fraction Conversion

Table,

In the above example, . IOI)Z =, 5}8

From the table, .05) =, 078125)10

8

Multiplying both sides by 8: .5)_ = .078125 x 8)10 =. 625)10

8

C. BINARY COMPLEMENTARY ARITHMETIC

Certain computer operations, such as subtraction or the manipulation

W/

~

of negative numbers, are performed in the computer by using the complement of
the particular number. An understanding of complementary arithmetic is

therefore important as an aid in understanding computer operation.

The 1's complement of a binary number is defined as the number
that must be added to the original number to give a result consisting of all 1's.
The 1's complement is obtained by simply inverting, i.e., by changing all 1's
to 0's and changing all 0's to 1's in the given binary number. For example, the

1's complement of 1010110 would 0101001,

The 2's (or ''true') complement of a binary number is formed by
first finding the 1's complement of the number and then adding 1 to the least

significant b.t position.

For example, the 2's complement of 1010110 would be the 1's

complement (0101001) plus 1, or 0101010

Some examples are given on the following page in decimal,
binary and complemented binary forms. The complemented binary form has
a leading 0 to indicate positive numbers, which becomes a leading 1 when
complemented for negative numoers. A negative answer appears in comple-

mented form with a leading 1.

. /
;-ff—(' _E: 7&5\‘_}— A.n*'- g7 2 J. - I !‘-"I«-u.?é—m{/)r—q- ._i- 'l*-—jt r’ﬂ_, m!-wwf‘:r\-:’ L /Q-éw

il ﬂ@fwf:& ;A/vub‘-. Y %ol T ha e ot b i =
eomdfolims .

b)

Decimal

+12
-04
+08

+10
-10
+00

+12
-14
-02

Binary

+1100
-0100
-1000

+1010
-1010

+0000

+1100
-1110
-0010

2 = Complemented
Binary

| o Comg

0 el

| ©lof

P11l

0
1
0

1100

1100

1000

1010

0110

0000

1100

0010

1110

o/

P~

Table of Powers of 2

512
1 024
2 048

4 096
8 192
16 384
32 768

65 536
131 072
262 144
524 288

1 048 576
2 097 152
4 194 304
8 388 608

16 777 216
33 554 432
67 108 864
134 217 728

268 435 456

536 870 912

1 073 741 824

~ 2 147 483 648

4 294 967 296
8 589 934 592
17 179 869 184
34 359 738 368

68 719 476 736
137 438 953 472
274 877 906 944
549 755 813 888

LNe—=o0o 3

-1 O WU b

10
11

12
13

15
16

18
19

20
21
22
23

24
25

27
28

30
31

32
33
34
35

36

38
39

0,007 812 5

0.003 908 25
0.001 953 125
0.000 976 562 5
0.000 488 281 25

0.000 244 140 625
0.000 122 070 312 5
0.000 061 035 156 25
0.000 030 517 578 125

0.000 015 258 789 062 5
0.000 007 629 394 531 25
0.000 003 814 697 265 625
0.000 001 907 348 632 812 5

0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25

0.000 000 059 604 644 775 390 625
0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625
0.000 000 000 465 661 287 307 739 257 812 5

0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25

0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125

Octal-Decimal Integer Conversion Table

o 1 2 3 4 5 & 1 6tz 3 4 5 & 1
0000
Fis "?fo 0000 0000 0001 0002 0003 0004 0005 0006 0007 0400 |0256 0257 0258 0250 0260 0261 0262 0163
0777 0511 0010 (0008 0009 0010 0011 0012 0013 0014 0015 0410|0264 0265 0266 0267 0268 0269 0270 0271
iOctal) | (Decimal) 0020 |0016 0017 0018 0019 0020 0021 0022 0023 pd20 {0272 0273 0274 0275 0276 0277 0278 0279
0030 (0024 0025 0026 0027 0028 0029 D00 N0 0430 0280 0261 0282 0283 0284 0285 0286 0287
0040 |0032 0033 0034 0035 0036 0037 0038 0039 0440|0288 0289 0290 0201 0232 0293 0294 0295
Sl Bideal 0050 [0040 0041 D042 0043 0044 0045 0046 0047 0450 | 0206 0297 0298 0299 0300 0301 0302 0303
0060 |0048 0049 0050 D051 0052 0053 0054 0055 0460|0304 0305 0306 0307 0308 0309 0310 0311
10000 - 4096 0070 |0056 0057 0058 0059 Q060 0061 0062 006) 04700312 0313 0214 0315 0316 0317 0318 0319
20000 - 8192
30000 - 12208 0100 |0064 ONES QOB 0D0GT GOKR 0DEY DOTO 0071 0500 [0320 0321 0322 0323 0324 0325 0326 0327
40000 - 16284 0110|0072 0073 0074 0075 0076 0077 0078 DOT9 0510|0328 0329 0330 0331 0332 0333 0334 0335
50000 - 20480 0120 {0080 0081 00DB2 0OB3 O0B4 008S 0086 0OBT 0520 {0336 0337 0338 0338 0340 0341 0342 0343
40000 - 24574 0130 |0088 0089 0090 0091 0092 0093 0094 0085 0530 [0344 0345 0346 0347 0348 0349 0350 0351
70000 - 28672 0140 | 0096 0097 0098 0099 0100 0101 0102 0103 0540 |0352 0353 0354 0355 0356 0357 0358 0359
0150 (0104 0105 0106 0107 0108 0109 0110 O111 0550 |0360 0361 0362 0363 0364 0365 0366 06T
0160 {0112 0113 0114 0115 0116 0117 0118 OL1© 0560 {0368 0369 0370 0371 0372 0373 0374 0375
0170|0120 012) 0122 0123 0124 0125 0126 0127 0570 (0378 0377 0378 0379 0380 0381 0382 0383
0200|0128 0129 0130 0131 0132 0133 0134 0135 0600 |03B4 0385 0386 0387 0388 0389 0390 0391
0210|0136 0137 0138 0139 0140 0141 0142 0143 0610|0392 03%3 0394 0395 0396 0397 0398 0399
0220 |0144 0145 0146 0147 0148 0149 0150 0151 0620 {0400 0401 0402 0403 0404 0405 0406 0407
0230|0152 0153 0154 0155 01568 0157 0158 0159 0630|0408 0408 0410 0411 0412 0413 0414 0415
0240|0160 0161 0162 0163 0164 0165 0166 0187 0840 (0416 0417 0418 041% 0420 0421 0422 0423
0250 (0168 016% 0170 0171 0172 0173 0174 0175 0650 | 0424 0425 0428 0427 0428 0429 0430 0431
0260|0176 0177 0178 0179 0180 0181 0182 01B) 0660|0432 0433 0434 0435 0436 0437 0438 0439
0270|0184 0185 0186 0187 0188 0189 0190 0191 0870|0440 0441 0442 0443 0444 0445 0446 0447
0300|0192 0183 0194 0185 0196 0197 0198 0199 0700 | 0448 0449 0450 0451 0452 0453 0454 0455
0310|0200 0201 0202 0203 0204 0205 0208 0207 0T10 | 0456 0457 0458 0459 0480 0461 0462 0463
0320 | 0208 0203 0210 0211 0212 0213 0214 0215 0720|0464 0465 0466 0467 0468 0469 0470 0471
0330|0216 0217 0218 0218 0220 0221 0222 0223 0730|0472 0473 0474 0475 0476 0477 0478 0479
0340|0224 0225 0226 0227 0228 0229 0230 0231| .|0740|0480 0481 0482 0483 04B4 0485 0486 0487
0350 | 0232 0233 0234 0235 0238 0237 0238 0239 0750 | 0488 0489 0490 0491 0492 0493 0494 0495
0360 | 0240 0241 0242 0243 0244 0245 0246 0247 0760 | 0496 0497 0498 0499 0500 0501 0502 0503
03700248 0249 0250 0251 0252 0253 0254 0255 0770|0504 0505 0506 0507 0508 0509 0510 0511
0 1 2 3 4 5 8 1 0 1 2 3 4 5 8 7
1000 0312 1000|0512 0513 0514 0515 0516 0517 0518 0519 1400|0768 0769 0770 0771 0772 0773 0774 0775
1. te 1010|0520 0521 0522 0523 0524 0525 0526 0527 1410|0776 0777 0778 0779 0780 0781 0782 0783
1777 1023 1020|0528 0529 0530 0531 0532 0533 0534 0535 1420|0784 0785 0786 0787 0788 0789 0780 078l
{Gctal) | IDecimal) 1030|0536 0537 0538 0539 0540 0541 0542 0543 1430|0792 0793 0794 0795 0796 0797 0798 0799
1040|0544 0545 0546 0547 0548 0548 0550 0551 1440 | 0800 0801 0BO2 0B03 0804 0BOS5 0806 0807
10500552 0553 0554 0555 0558 0557 0558 0559 1450 | 0808 0B0Y 0810 OB11 0B12 0813 0814 0815
1060|0560 U561 0562 0563 0564 0565 0566 0567 1460|0816 0817 0B1B DB19 0820 0821 0822 0823
1070|0568 0569 0570 0571 0572 0573 0574 0575 1470 |0B24 0825 0826 0827 0828 0820 0830 0831
1100|0576 0577 05786 0579 0580 05B1 0582 0583 1500|0832 0833 0834 0B35 0836 0837 0838 0839
1110|0584 0585 0566 0587 0568 08889 0590 0591 1510|0840 0841 0842 0B43 0844 O0B45 0846 0847
1120] 0592 0593 0594 0595 0506 0587 0598 0500 1520 | 0848 0849 0850 0851 0852 0B53 0B54 0855
1130 0600 0601 0602 0603 0604 0605 0606 0607 1530|0856 0857 0B5B 0859 0860 0861 0862 0B6J
1140|0608 0609 0610 0611 0612 0813 0614 0615 1540|0864 0865 0B6G 0BE7 0868 0869 0870 0B7I
1150|0616 0817 0618 0619 0620 0621 0622 0623 1550|0872 OBT3 0874 0875 0876 0877 0878 0879
1160|0824 0625 06268 0627 0828 0620 0630 0631 1560 | 0BB0 0861 0BB2 08B 0B84 O0BES 0BBE 0867
1170|0632 0633 0634 0615 0836 0637 0638 0639 1570|0888 0889 0DB90 0891 0892 0B89I 0BOS 0895
1200 | 0640 0641 0642 0643 0644 0845 0846 0647 1600 (08968 0887 0B9B 0899 (0800 0901 0902 0803
1210|0648 0649 0650 0651 0652 0853 0654 0855 1610 |0904 0005 0906 0907 0908 0809 0910 0911
1220|0656 0657 0858 0659 0660 0661 0662 0663 1620 (0812 0813 0914 0915 016 091T 0918 0919
1230|0664 0665 0666 0667 0668 06869 0670 0671 1630 |0920 0921 0822 0923 0924 0925 0926 0927
1240|0672 0673 0674 0675 0676 0677 0678 0679 1640 (0028 0920 0830 0931 0932 0933 0934 0935
1250|0680 0681 0B8B2 0683 0684 0685 0886 0BBT 1650 |0836 0R37 0938 0939 0B40 0B4l 0942 0943
1260|0688 08B 0690 0691 0682 0693 0604 0685 1660 {0044 0945 0048 0047 0548 0949 0950 0851
1270|0696 0697 0698 0699 0700 0701 0702 0703 1670 0852 0953 0854 0855 0856 0957 0858 0959
1300] 0704 0705 0706 0707 0708 0709 0710 0711 1700 |0960 0961 0962 0963 0964 0985 0966 0DET
1310|0712 0718 0714 0715 0716 OTIT 0718 0719 1710 |0968 0969 0970 0971 0972 0973 0974 0875
1320|0720 0721 0722 0723 0724 0725 0726 0727 1720 (0976 0977 0876 0879 0980 0P8l 0pB2 0983
1330|0728 0728 0730 0731 0732 0733 0734 0735 1730 [0984 0985 0986 0987 0988 0989 0990 0991
1340|0736 0737 0738 0738 0740 0741 0742 0743 1740 |0992 0983 0994 0095 0996 0987 0998 0999
1350|0744 0745 0748 0747 0748 0748 0750 0751 1750|1000 1001 1002 1003 1004 1005 1006 1007
1380|0752 0753 0754 0755 0756 0757 0758 0759 1760 | 1008 1009 1010 1011 1012 1013 1014 1015
1370/ 0760 0761 0762 0763 0764 0765 0766 0767 1770|1016 1017 1018 1019 1020 1021 1022 1023

Octal-Decimal Integer Conversion Table

2000
to
777
[Cretal)

1024
te
1535
(Decimal)

Octol Decimel
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 156384
50000 - 20480
40000 - 245764
70000 - 28672

L] 1 2 3 4 5] 7 0 1 2 3 4 5 6 T
2000 (1024 1025 1026 1027 1028 1029 1030 1031 240001280 1281 1282 1283 1284 1285 1286 1287
2010|1032 1033 1034 1035 1036 1037 1038 1039 2410|1288 1289 1290 1291 1292 1293 1294 1295
2020|1040 1041 1042 1043 1044 1045 1046 1047 2420|1296 1297 1298 1299 1300 1301 1302 1303
2030|1048 1049 1050 1051 1052 1053 1054 1055 2430|1304 1305 1306 1307 1308 1309 1310 1311
2040|1056 1057 1058 1059 1060 1061 1062 1063 2440|1312 1313 1314 1315 1316 1317 1218 121%
2050|1064 1065 1066 1067 1068 1069 1070 1071 24500 1320 1321 1322 1323 1324 1325 1326 1327
2060|1072 1073 1074 1075 1076 1077 1078 1079 246001328 1329 1330 1331 1332 1333 1334 1335
2070|1080 1081 1082 1083 1084 1085 1086 1087 2470(1336 1337 1338 1339 1340 1341 1342 1343
2100|1088 1089 1090 1091 1092 1093 1094 1095 2500|1344 1345 1346 1347 1348 1349 1350 1351
2110|1096 1097 1098 1099 1100 1101 1102 1103 251001352 1353 1354 1355 1356 1357 1358 1359
2120(1104 1105 1106 1107 1108 1109 1110 1111 2520/ 13680 1361 1382 1363 1364 1365 1366 1367
203001012 1113 1014 1015 1116 1117 1118 1119 2530|1368 1369 1270 1371 1372 1373 1374 1375
214011120 1121 1122 1123 1124 1125 1126 1127 2540|1376 1377 1378 1379 1380 1381 1382 1383
215011128 1129 1130 1131 1132 1133 1134 1135 2550|1384 1385 1386 1387 1388 1389 1390 1391
21601136 1137 1138 1139 1140 1141 1142 1142 2500|1392 1393 1394 1395 1396 1397 1398 1399
2170] 1144 1145 1140 1147 1148 1149 1150 1151 2570|1400 1401 1402 1403 1404 1405 1406 1407
22001152 1153 1154 1155 1156 1157 1158 1159 2600 1408 1409 1410 1411 1412 1413 1414 1415
22101160 1161 1162 1163 1164 1165 1166 1167 2610|1418 1417 1418 1419 1420 1421 1422 1423
2220|1168 1169 1170 1171 1172 1173 1174 1175 2620 1424 1425 1426 1427 1428 1429 1430 1431
2230|1176 1177 1178 1179 1180 1181 1182 1183 2630|1432 1433 1434 1435 1438 1437 1438 1439
22401184 1185 1186 1187 1188 1189 1190 1191 2640 | 1440 1441 1442 1443 1444 1449 14460 1447
22501192 1193 1194 1195 1186 1197 1198 1199 2650|1448 1449 1450 1451 1452 1453 1454 1455
2260|1200 1201 1202 1203 1204 1205 1208 1207 2860|1456 1457 1458 1459 1460 1461 1462 1463
2270|1208 1209 1210 1211 1212 1213 1214 1215 2670 1464 1485 1466 1487 1468 1469 1470 1471
2300|1216 1217 1218 1219 1220 1221 1222 1223 2700 | 1472 1473 1474 1473 1478 1477 1478 1479
2310|1224 1225 1226 1227 1228 1229 1230 1231 2710|1480 1481 1482 1487 1484 1485 1488 1487
23201232 1233 1234 1235 12368 1237 1238 1239 2720| 1488 1489 1490 1491 1492 1493 1494 1405
23301240 1241 1242 1243 1244 1245 1246 1247 2730|1496 1407 1498 1499 1500 1501 1502 1503
2340) 1248 1249 1250 1251 1252 1253 1254 1255 2740|1504 1505 1508 1507 1508 1509 1510 1511
2350|1256 1257 1258 1258 1280 1261 1262 1263 2750|1512 1513 1514 1515 1516 1517 1518 1519
2360|1264 12685 1266 1267 1268 1268 1270 1271 2760|1520 1521 1522 1523 1524 1525 1528 1527
23701272 1273 1274 1275 1276 1277 1278 1279 27701528 1529 1530 1531 1532 1533 1534 1535
0 1 2 3 4 5 [7 0 1 2 3 q 5 [7
3000 (1536 1537 1538 1539 1540 1541 1542 1543 3400|1792 1793 1794 1795 1796 1797 1798 1799
3010|1544 1545 1546 1547 1548 1549 1550 1551 3410|1800 1801 1802 1803 1804 18Q5 1806 1807
3020(1552 1553 1554 1555 1556 1557 1558 1539 J420| 1808 1809 1810 1811 1812 1813 1814 1815
3030|1560 1561 1562 1563 1564 1565 1566 1567 3430|1816 1817 1818 1819 1820 1821 1822 1823
30401568 1569 1570 1571 1572 1573 1574 1575 3440|1824 1825 1826 1827 1828 1829 1830 1831
3050|1576 1577 1578 1579 1580 1581 1582 1583 3450|1832 1833 1834 1835 1836 1837 1838 1839
3060|1584 1585 1586 1587 1588 1589 1590 1591 3460 | 1840 1841 1842 1843 1844 1845 1846 1847
3070|1592 1593 1594 1595 1596 1597 1598 1599 3470|1848 1849 1850 1851 1852 1853 1854 1855
3100|1600 1601 1602 1603 1604 1605 1606 1607 3500|1856 1857 1858 1859 1860 1861 1862 1883
3110|1608 1609 1610 1611 1612 1613 1614 1615 3510|1864 1865 1866 1867 1868 1869 1870 1871
3120|1616 1617 1618 1619 1620 1621 1622 1623 3520|1872 1873 1874 1875 1876 1877 1878 1879
3130|1624 1625 1626 1627 1628 1629 1630 1631 3530 | 1880 1881 18682 1883 1884 1885 1886 1887
31401632 1633 1634 1635 1636 1637 1638 1639 3540|1888 1889 1890 1891 1892 1893 1894 1895
3150|1640 1641 1642 1643 1644 1645 1646 1647 3550|1896 1897 1898 1899 1900 1901 1902 1903
3160|1648 1649 1650 1651 1652 1653 1654 1655 3560|1904 1905 1906 1907 1908 1909 1910 1911
3170(1656 1657 1658 1659 1660 1661 1662 1663 35701912 1913 1914 1915 1916 1917 1918 1919
3200 |[1664 1665 1666 1667 1668 1669 1670 1671 3600|1920 1921 1922 1923 1924 1925 1926 1927
3210|1672 1673 1674 1675 1676 L6TT 1678 1679 3610 (1928 1929 1930 1931 1932 1933 1934 1935
3220 | 1680 1681 1682 1683 1684 1685 1686 1687 362001936 1937 1938 1939 1940 1941 1842 1943
3230|1688 1689 1690 1691 1692 1693 1694 1695 1630 | 1944 1945 1946 1947 1948 1949 1950 1951
3240 (1696 1697 1698 1699 1700 1701 1702 1703 36401952 1953 1954 1955 1956 1957 1958 1959
3250 (1704 1705 1706 1707 1708 1709 1710 1711 3650|1960 1961 1962 1963 1964 1965 1966 1967
3260 (1712 1713 1714 1715 1716 1717 1718 1719 3660|1968 1969 1970 1971 1972 1973 1974 1975
3270|1720 1721 1722 1723 1724 1725 1726 1727 3670|1976 1977 1978 1979 1980 1981 1982 1983
3300 (17286 1729 1730 1731 1732 1733 1734 1735 3700|1984 1985 1986 1987 1988 1989 1990 1991
3310 (1736 1737 1738 1739 1740 1741 1742 1743 371001992 1993 1994 1995 1996 1997 1998 13999
3320 (1744 1745 1746 1747 1748 1749 1750 1751 3720|2000 2001 2002 2003 2004 2005 2006 2007
333001752 1753 1754 1755 1756 1757 1738 1759 3730|2008 2009 2010 2011 2012 2013 2014 2015
3340|1760 1761 1762 1763 1764 1765 1766 1767 3740|2016 2017 2018 2019 2020 2021 2022 2023
3350|1768 1769 1770 1771 1772 1773 1774 1775 3750 | 2024 2025 2026 2027 2028 2029 2030 2031
33601776 1777 1778 1779 1760 1781 1782 1783 3760 | 2032 2033 2034 2035 2036 2037 2038 2039
337001784 1785 1786 1787 1788 1789 1790 J'IEIIJ 3770 2040 2041 2042 2043 2044 2045 2046 2047

JooQ

-}
a7y
{Octal)

1534
L1
2647
|Decimal)

4000 2048
‘o ‘o

4777 2559

1Oael) | IDecimal)

Octal Decimal
10000 - 4096
20000- 8192
30000- 12288
40000 - 16384
50000 - 20480
40000 - 24576
70000 - 28672

5000 2560
io (1]
5777 3071

(Ocial) | (Decimol)

Octal-Decimal Integer Conversion Table

n 1 2 3 4 5 6 7 0 1 2 a 4 5 6 T
1000| 2048 2049 2050 2051 2052 2053 2054 2055 4400|2304 2305 2306 2307 2308 2309 2310 2311
4010| 2056 2057 2058 2059 2060 2061 2062 2063 4410|2712 2313 2314 2315 2316 2317 2318 2319
4020(2064 2065 206G 2067 2068 2069 2070 207 4470|2320 2321 2322 2323 2324 2325 2326 2327
4030{ 2072 2073 2074 2075 2076 2077 2078 2070 4430|2328 2329 2330 2331 2332 2333 2334 2335
4040 2080 2081 2082 2083 2084 2085 2086 2087 4440|2336 2337 2338 2339 2340 2341 2342 2343
4050 2088 2089 2090 2091 2092 2093 2094 2085 4450|2344 2345 2346 2347 2348 2049 2350 2351
4060| 2096 2097 2098 2099 2100 2101 2102 2103 4460|2352 2351 2354 2355 2356 2357 2358 2359
4070/ 2104 2105 2106 2107 2108 2109 2110 2111 4470/ 2360 2361 2362 2363 2364 2365 2366 2367
4100f 2112 2113 2114 2115 2116 2107 2018 2119 4500|2368 2360 2370 2371 2372 2371 2374 2375
4110(2120 2021 2122 2123 2124 2125 2126 2127 4510|2376 2377 2378 2379 2380 2381 2382 283
4120) 2128 2129 2130 2131 2132 2133 2134 2135 4520|2384 2385 2386 2387 2388 2389 2390 2391
4130| 2136 2137 2138 2139 2140 2141 2142 2143 4530|2392 2393 2394 2395 2396 2397 2398 2399
4140(2144 2145 2146 2147 2148 2149 2150 2151 4540|2400 2401 2402 2403 2404 2405 2406 2407
4150(2152 2153 2154 2155 2156 2157 2158 2159 4550|2408 2409 2410 2411 2412 2413 2414 2415
4160(2160 2161 2162 2163 2164 2165 2166 2167 4560|2416 2417 2418 2419 2420 2421 2422 2423
4170 2168 2169 2170 2171 2172 2173 2174 2175 4570|2424 2425 2426 2427 2428 2429 2430 2431
4200(2176 2177 2178 2179 2180 21681 2182 2183 4600 | 2432 2433 2434 2435 2436 2437 2430 2439
4210; 2184 2185 2186 2187 2188 2189 2190 2191 4610|2440 2441 2442 2443 2444 2445 2446 2447
422002192 2193 2194 2195 2196 2197 2198 2199 4620|2448 2449 2450 2451 2452 2453 2454 2455
4230, 2200 2201 2202 2203 2204 2205 2206 2207 4630|2456 2457 2458 2458 2460 2461 2462 2463
4240) 2208 2209 2210 2211 2212 2213 2214 2215 4640|2464 2465 2466 2467 2468 2469 2470 2471
4250 2216 2217 2218 2219 2220 2221 2222 2223 4650 (2472 2473 2474 2475 2476 2477 2478 2479
4260(2224 2225 2226 2227 2228 2229 2230 2231 4660 | 2480 2481 24B2 2483 2484 2485 2486 2487
4270(2232 2233 2234 2235 2236 2237 2238 2239 4670|2488 2489 2490 2401 2492 2493 2494 2495
4300|2240 2241 2242 2243 2244 2245 2246 2247 4700 | 2496 2497 2498 2499 2500 2501 2502 2503
4310|2248 2249 2250 2251 2252 2253 2254 2255 4710|2504 2505 2506 2507 2508 2509 2510 2511
432002256 2257 2258 2259 2260 2261 2262 2263 4720|2512 2513 2514 2515 2516 2517 2518 2519
4130|2264 2265 2266 2267 2268 2269 2270 2271 4730|2520 2521 2522 2523 2524 2525 2526 2527
4340|2272 2273 2274 2275 2276 2277 2278 2279 474012528 2529 2530 2531 2532 2533 2534 2535
4350|2280 2281 2282 2283 2284 2285 2286 2287 47502536 2537 2538 2539 2540 2541 2542 2543
4360|2268 2289 2290 2291 2292 2293 2294 2295 476012544 2545 2546 2547 2548 2549 2550 2551
4370|2296 2297 2298 2299 2300 2301 2302 2303, 4770) 2552 2553 2554 2555 2556 2557 2558 2559
i
0 1 2 3 4 5 6 7 [i] i 2 3 4 5 6 7
5000|2560 2561 2562 2563 2564 2565 2566 2567 5400 (2016 2617 2818 2819 2820 2821 2822 282)
5010|2568 2569 2570 2571 2572 2573 2574 2575 5410|2624 2825 2826 2827 2828 2829 2830 2831
50202576 2577 2578 2579 2580 2581 2582 2583 5420|2832 2833 2834 2835 2836 2837 2838 2830
5030|2584 2585 2586 2587 2588 258Y 2590 2591 5430|2840 2841 2842 ZB43 2844 2845 2846 IB4T
5040|2592 2593 2594 2595 2596 2597 2598 2599 5440 | 2848 2B49 2850 2851 2852 285] 2854 2855
5050 2600 2601 2602 2603 2604 2605 2606 2607 5450 | 2856 2857 2858 2859 2860 2861 2862 2863
5060 | 2608 2609 2610 2611 2612 2613 2614 2615 5460 | 2864 2865 2866 2B67 2868 2869 2870 2671
5070|2616 2617 2618 2619 2620 2621 2622 2623 5470 (2872 2873 2874 2875 2876 2877 2878 2879
5100 | 2624 2625 2626 2627 2628 2629 2630 2631 5500 | 2880 2881 2BB2 2883 2884 2885 2886 2887
51102632 2633 2634 2635 263G 2637 2638 2639 5510|2888 2889 2890 2891 2892 2893 2894 2895
512012640 2641 2642 2643 2644 2645 2646 2647 5520 |2B96 2897 2898 2899 2900 2901 2902 2903
51302648 2649 2650 2651 2652 2651 2654 2655 5530|2904 2905 2906 2907 2908 2909 2910 2911
5140|2656 2657 2658 2659 2660 2661 2662 2663 5540 (2912 2913 2914 2915 2916 2917 2918 2019
5150 (2664 2665 2666 2667 2668 26695 2670 2671 5550 | 2920 2921 2922 2923 2924 2925 2926 2927
5160 2672 2673 2674 2675 2676 2677 2678 2679 5560 {2928 2929 2930 2931 2932 2933 2934 2935
5170 | 2680 2681 2682 26B3 2684 2685 2686 2687 5570 | 2936 2937 2938 2939 2940 2941 2942 2943
5200 [2688 2689 2690 2691 2692 2693 2694 2695 5600 | 2944 2945 2946 2047 2948 2949 2950 2951
5210 | 2696 2697 2698 2699 2700 2701 2702 2703 5610|2952 2953 2954 2955 2956 2957 2058 2950
5220|2704 2705 2706 2707 2708 2709 2710 2711 5620 2960 2961 2962 2963 2964 2965 2966 2967
5230 (2712 2713 2714 2715 2716 2717 2718 2719 5630 | 2068 2965 2970 2971 2972 2973 2974 2975
5240 (2720 2721 2722 2723 2724 2725 2726 27127 5640 (2976 20977 2978 2479 2080 2961 2082 2983
52502728 2729 2730 2731 2732 2733 2734 2735 5650 |2584 29R5 2986 2987 2960 2988 2990 2991
52602736 2737 2738 2739 2740 2741 2742 2743 5660 (2092 2993 2894 2995 2996 2997 2998 2899
5270|2744 2745 2746 2747 2748 2749 2750 2751 5670 {3000 3001 3002 3003 3004 3005 3006 3007
5300 12752 2753 27%4 2755 2756 2757 2758 2759 5700 {3008 3009 3010 3011 3012 3013 3014 3015
5310 12760 2761 2762 2763 2764 2765 2766 2767 5710|3016 3017 3018 3019 3020 3021 3022 3023
5320 (2768 2769 2770 2771 2772 2773 2774 2775 5720|3024 3025 3026 3027 3028 3029 3030 3031
5330|2776 2777 2778 2779 2780 2781 2782 2783 5730 (3032 3033 3034 3035 3036 3037 3038 3039
5340 (2784 2785 2786 2787 2788 2789 2790 2791 5740|3040 3041 3042 3043 3044 3045 3046 3047
5350|2792 2793 2794 2795 2796 2797 2798 2799 57503048 3049 3050 3051 3052 3053 3054 3055
5360 | 2800 2801 2802 2803 2804 2805 2806 2807 5760|3056 3057 3058 3059 3060 3061 3062 3063
5370|2808 2809 2810 2811 2812 2813 2814 2815 5770|3064 3065 3066 3067 3068 3069 3070 3071

\

Octal-Decimal

Integer Conversion Table

0 1 2 J 4 5 6 1 0 1 2 ki 4 5 8 7
6000 (3072 3073 3074 3075 3076 3JOTT 3078 1079 6400 3328 3329 3330 3331 3332 3333 1334 1B
6010|3080 3081 1082 083 J08B4 3085 1086 1087 6410|3336 3337 13338 3339 2340 3341 3342 3]
6020 | JN8B 1089 3090 J091 J092 3I09) J094 3095 6420| 3344 13345 3346 3347 1348 3349 3350 1351
6030|3096 3097 3098 3099 1100 3101 3102 3103 6430| 3352 3353 3354 3355 3356 3357 3358 3359
6040 (3104 3105 3106 3107 3108 3109 3110 311l 6440| 3360 3361 2362 3363 3364 3365 JI66 JI6T
6050|3112 30113 3114 3115 3116 3117 3118 J119 §450| 3368 23369 3370 33T1 3372 3373 3374 1375
606012120 3121 23122 3123 3124 3125 2126 3127 6460| 3376 3377 3378 3379 3380 2381 3382 338
6070|3128 23129 3130 3131 J13Z 3133 3134 3135 6470(3384 3385 3386 J3I8T 31388 J389 3390 1391
6100|3136 3137 2138 3139 2140 3141 3142 143 6500(3392 3393 31394 3395 3396 3397 13198 3399
6110 {3144 3145 3146 3147 3148 1149 3150 3151 6510| 3400 3401 3402 3403 3404 3405 3406 3407
6120|3152 3153 23154 3155 3156 3157 3158 3159 6520| J408 3409 3410 3411 3412 3413 3414 1415
6130 {3160 3161 2162 3163 1164 3185 J166 1167 6530(3418 3417 2418 3419 3420 3421 J422 3423
6140|3168 3169 23170 3171 3172 3173 3174 3715 6540| 3424 3425 0426 2427 3428 3429 3430 14N
6150 (3178 31TT 3178 J179 3180 3181 31182 3183 6550| 3432 3433 J434 2435 3436 1437 2438 1439
8160|3184 2185 3186 J1AT 1188 31892 3190 2191 6560| 3440 441 3442 3443 3444 3445 J446 2447
6170|3192 3193 3194 3195 21196 3197 3198 3199 6370 3448 1449 3450 3451 3452 3453 3454 455
16200 | 3200 32001 3202 3203 2204 3205 3208 3207 6600 | 3456 3457 3458 3450 3460 3461 3462 146)
(G210 |3208 3209 3210 3211 3212 3213 3214 3215 6610| 3464 3465 31468 1467 3468 J469 3470 1471
6220 (3216 JR1T 3218 3219 3220 3221 13222 3223 6620|3472 3473 3474 3475 3476 3477 478 1479
6230 |3224 1225 3226 3227 3228 3229 J230 3221 £630| 3480 2481 3482 J483 1484 3485 3486 487
£240 (3232 3233 3234 3235 3236 1237 3238 3219 6640| 3488 3489 1490 3491 34892 3493 1494 2495
6250 | 3240 3241 23242 3243 1244 1245 1246 J247 6650| 3496 3497 1498 3499 3500 3501 3502 3503
6260 | 3248 3249 3250 3251 3252 3253 3254 23255 6660| 31504 3505 3506 3507 3508 3509 3510 J51I
6270|3256 3257 3258 3259 3260 3261 3282 3263 6670| 3512 3513 3514 3515 3516 3517 3518 3519
6300 | 3264 3265 23266 3267 J268 3269 3270 3271 6700|3520 3521 3522 3523 3524 3525 1526 3527
6310 (3272 3273 3274 2275 23276 3277 3278 3279 6710(3528 3529 3530 3531 3532 3533 3534 3535
6320 | 3280 J281 3282 3283 3284 3285 J2B6 3287 6720(3536 1537 31538 3539 3540 1541 1542 3543
6330 (3288 3289 3290 3291 23292 3293 3294 3295 §730| 3544 1545 1546 3547 3548 2549 3550 3551
6340 | 3206 3297 3298 3299 3300 3301 3302 3303 6740(3552 3553 31554 3555 3556 3557 3558 3559
6350 (3304 3305 3306 3307 3308 3309 3310 331} 8750 3560 23561 3562 3563 1564 15685 3566 3567
6360 | 3312 3313 3314 3315 3316 3317 3318 3319 6760 3568 3569 3570 3571 3572 3573 3574 3575
16370 | 3320 3321 3322 3323 3324 3325 3326 3327 8770| 3576 3577 3578 3579 3580 3581 3582 3583
[
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
7000 3584 3585 3588 3587 3588 1589 1590 3591 7400| 3340 3841 3842 3843 3844 1845 1B46 3847
7010(3592 3593 3594 3595 3596 J597 3598 3599 7410/ 3848 2849 3850 3851 3852 1853 3854 3855
7020{ 3600 3801 3602 3603 1604 3605 J606 3607 7420| 3856 3857 3858 31859 1860 1861 3862 3863
7030| 7608 3609 3610 3611 3612 3613 3614 J615 7430| 3864 23065 3866 3867 3BBB 1869 JET0 871
7040{ 3616 3617 3618 3619 3620 3621 3622 31623 7440/ 3872 23873 3874 3875 3876 1877 3878 879
7050| 3624 1625 23628 3627 1628 1629 3630 3631 7450| 7880 1881 3882 31883 3BB4 3885 1886 3887
7060| 3632 1633 3634 3835 36I6 3637 3638 3639 7460 3888 3889 3890 3891 31892 3893 1894 3895
7070 3640 1641 3642 3643 644 1645 3646 1647 7470| 3896 3897 1898 1899 3900 3901 3902 3903
7100/ 3648 3649 3650 3651 3652 3653 J654 3655 7500 | 3904 3905 3906 3907 3908 1909 23910 3911
7130| 3656 3657 3658 1658 3660 I661 J662 J663 7510|3912 3913 3914 3915 3916 3917 2918 3919
7120| 1664 3665 3666 3687 J668 I669 1670 3671 7520|3920 3921 3922 3923 3024 2925 1926 3927
7110| 3672 3673 3674 3675 1676 36T 3678 3679 7530|3928 3929 3930 3931 3932 3933 3934 13935
7140| 3680 1681 3682 3683 1684 1685 1686 1687 7540|3936 3937 2938 3939 3040 3941 3942 1943
7150| 3688 3689 13630 3691 3692 3693 3694 3695 7550 | 3944 3945 3946 3947 3948 3949 3950 J951
7160| 2696 23697 3698 3699 3700 3701 3702 3703 7560|3952 3953 3954 3955 3956 3957 2958 1959
7170| 3704 3705 3706 3707 3708 3709 3710 3711 7570|3960 3961 3962 3963 3964 3965 1966 J967
7200 3712 3713 3714 3715 3716 3717 3718 3719 7600 | 3968 1969 3970 3971 3972 3973 3974 3975
7210 3720 3721 3722 3723 3724 3725 3726 1727 7610|9976 3977 3978 3979 1980 398r 3982 3983
7220 3728 3729 3730 3731 3TI2 3733 3734 1735 7620|3984 23985 1966 3987 21988 3989 3980 3991
7230| 3736 3737 3738 3739 3740 3741 3742 1743 7630|3992 3993 2994 3995 3996 13997 1998 3999
7240| 3744 1745 3746 3747 3748 3749 J750 3751 7640 | 4000 4001 4002 4003 4004 4005 4006 4007
7250 3752 3753 3754 3755 3756 3TST 3758 1759 7650 | 4008 4009 4010 4011 4012 4013 4014 4015
7260| 3760 23761 3762 3763 3764 3765 JITG6 3767 7660|4016 4017 4018 4019 4020 4021 4022 4023
7270| 3768 3763 3770 23771 2772 3773 1774 3775 7670 | 4024 4025 4026 4027 4028 4029 4030 4031
7300|3776 3777 3778 3779 3780 3781 3782 1743 7700 |4032 4033 4034 4035 4036 4037 4038 4039
7310| 3784 3785 3786 3787 3788 3789 3790 3791 7710|4040 4041 4042 4043 4044 4045 4046 4047
7320|3792 2793 3794 3795 3796 3797 JT98 3799 7720|4048 4049 4050 4051 4052 4053 4054 4055
7130| 2800 3801 3802 3803 3804 3805 JB06 3BOT 7730 | 4056 4057 4058 4059 4060 4061 4062 4063
7340|3808 3009 3810 3811 3812 3813 3614 3815 1740 | 4064 4065 4066 4067 4068 4069 4070 4071
7355] 3816 23817 3818 3819 3az0 3s21 3822 3823 7750 | 4072 4073 4074 4075 4078 4077 4078 4079
7360 3824 3825 3826 3827 3828 3829 JBI0 kL k)| 7760|4080 4081 4082 4083 4084 4085 4086 4087
7370|3872 3833 23834 3835 3g36 3837 3838 1839 7770 {4088 4089 4090 4091 4092 4093 4094 4095

4000 Jor2
te o
ar7T? ased
(Octal) | (Decimall

Octal Decimol
10000 - £096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 284672

7000 31584
1o L]
777 4095

(Qctal) | (Decimal)

Octal-Decimal Fraction Conversion Table

OCTAL

‘DEC. OCTAL DEC, OCTAL DEC, OCTAL DEC,

. 000 . 000000 . 100 . 125000 . 200 . 250000 . 300 . 375000
.00l . 001853 . 101 . 126953 .201 . 251953 L301 L 376953
. 002 . 003906 . 102 . 128906 . 202 . 253906 . 302 . 378906
003 .0bses9 . 103 . 130859 . 202 . 255850 .03 . JBOBSY
. 004 . 007812 . 104 . 132812 . 204 . 257812 .04 .J82812
. 008 . 809765 f108 . 134765 . 205 . 2507R5 . 305 . 384765
. 006 L011718 . 106 . 136718 . 206 L2Z61718 L3006 LJ8G718
, 007 L 013671 . 107 . 138671 . 207 . 263671 .07 . 3BBGT1
. 010 » 015625 . 110 . 140625 .210 . 265625 . 310 , 390625
.011 017578 111 . 142578 L2011 . 2R7578 .31l L 392578
012 + 019531 112 . 144531 .212 . 269531 312 394531
,013 021484 .113 . 146484 L2132 L2TH484 313 , 306484
L0014 . 023427 L 114 . 148437 L214 . 2T3437 314 . 308437
+015 +023390 . 115 . 150290 215 + 275390 L3156 . 400390
016 027343 . 116 . 152343 .216 + 277343 L3186 , 402342
017 . 029296 1T . 154296 .217 . 275296 .17 .404296
. 020 .031250 . 120 . 156250 .220 . 281250 .320 . 406250
.021 .033203 . 121 . 158203 .221 .283203 .321 . 408203
.022 . 035156 . 122 . 160156 .222 . 285156 .J22 .410156
.023 . 037109 -123 . 162109 .223 . 287109 .323 . 412109
.024 . 039062 L 124 . 164062 224 . 289062 .J24 . 414062
.025 . 041015 . 125 . 166015 .225 , 291015 .325 416015
.026 . 042968 . 126 . 167968 . 226 . 292968 .326 .417968
.027 . 044921 . 127 . 169921 .227 . 294921 .327 .419921
. 030 . 046875 » 130 . 1T1B7S .230 . 206875 . 330 .421875
. 031 . 048628 . 131 . 173828 231 . .298828 .331 . 423828
. 032 . 050781 . 132 . 175781 .232 . 300781 332 . 426781
033 . 082734 L1 L 177734 .233 L 302734 333 L427734
. 004 . 064687 L 134 . 179687 .23 J0468T L334 . 429687
. 035 . 056640 . 135 . 181640 .235 . 306640 .335 L 431640
. 036 . 058593 . 136 . 183593 . 236 , 308583 .136 . 433593
. 037 . 0605486 137 . 185546 . 237 . 310546 L3237 . 435546
. 040 . 062500 . 140 . 187500 . 240 . 312500 L340 . 437500
041 . 064453 . 141 . 189453 .241 . 314453 .341 . 439453
042 . 066406 . 142 . 191406 . 242 . 316406 L3342 . 441406
. 043 . 068359 . 143 ., 193359 .243 . 318359 L343 . 443359
044 . 070312 . 144 . 195312 . 244 .320312 . 344 . 445312
. 045 . 072265 . 145 . 197265 . 245 . 322265 .45 . 447265
. 046 074218 . 146 . 199218 . 246 .324218 . 346 . 449218
.047 L076171 . 147 L2011T1 . 24T L 326171 . 347 L 451171
. 050 .078125 . 150 .203125 . 250 . 328125 . 250 . 453125
.051 . 0B00OTB . 151 ., 205078 .251 . 330078 .351 . 455078
. 062 . 082031 . 152 . 207031 . 252 . 332031 .352 . 457031
.053 . 083984 . 153 . 208984 . 253 . 333984 . 353 . 458984
. 054 . 085937 . 154 . 210937 . 254 . 335937 . 354 . 460937
. 055 . 087850 . 155 .212890 . 255 . 337890 . 355 . 462890
. 056 . 089843 . 156 . 214843 . 256 . 339843 . 356 . 464843
. 057 . 091796 . 157 .216798 . 257 341796 . 357 L 466796
. 060 . 093750 . 160 . 218750 . 260 + 343750 . 360 . 468750
. 061 . 095703 . 161 .220703 . 261 . 345703 . 361 . 470703
. 062 . 087656 . 162 . 222656 . 262 . M4 TE56 . 362 . 472656
. 063 . 099609 . 163 . 224609 . 263 . 349609 . 363 . 474609
. 064 . 101562 « 164 . 226562 - 264 . 351562 . 364 . 476562
. 065 . 103515 . 165 . 228515 . 265 . 353515 . 365 ,478515
. 066 . 105468 . 166 . 230468 . 266 ., 355468 . 366 L 460468
. 067 . 107421 . 167 .232421 . 267 .357421 . 367 .482421
.070 . 109375 170 L 234375 . 270 L 359375 .370 .4B4375
L0071 . 111328 AT . 236328 .27 . 361328 L3371 .4B6328
.072 . 113281 LAT2 . 208281 L2712 .363281 .372 .488281
L 073 L115234 L173 . 240234 273 . 365234 L3713 .490234
.074 L 117187 174 . 242187 L2714 . 367187 L374 .492187
.075 . 119140 L1758 . 244140 275 . 369140 .375 . 494140
. 076 . 121093 L 176 . 246093 . 276 L371093 .76 . 496093
L0717 . 123046 L7 . 248046 277 . 373046 L3177 .498046

.\‘J

e

Octal-Decimal Fraction Conversion Table

OCTAL DEC, OCTAL DEC, OCTAL DEC. OCTAL DEC.

. 000000 . 000000 . 000100 . 000244 . 000200 . 000488 . 000300 . 000732
. 000001 . 000003 000101 . 000247 . 000201 . 000492 .000301 . 000738
. 000002 . 000007 .000102 .000251 L 000202 . 0004935 . 000302 . 000740
. 000003 .000011 .000103 . 000255 . 000203 . 000499 . 000303 , 000743
. 000004 . 000015 ,000104 . 000259 . 000204 . 000503 , 000304 . 000747
. 000005 . 000019 . 000105 . 000263 . 000205 ., 000507 . 000305 . 000751
, 0000086 , 000022 . 000106 L 00267 . 000206 L000511 . 000306 . 000755
, 000007 . 000026 . 000107 . 000270 . 000207 . 000514 , 000307 , 000759
. 000010 . 000030 , 000110 . 000274 . 000210 . 000518 , 000310 . 000762
. 000011 . 000034 L000111 . 000278 000211 . 000522 . 000311 . 000766
,000012 . 000038 .000112 . 000282 . 000212 , 000526 . 000312 . 000770
, 000013 . 000041 .000113 . 000286 . 000213 . 000530 . 000313 L 000774
L000014 . 000045 000114 , 000289 , 000214 . 000334 . 000314 . 000778
, 000015 . 000049 .000115 . 000293 . 000215 . 000537 . 000315 . 000782
. 000018 . 000053 L000116 . 000297 . 000216 . 000541 . 000316 . 000785
. 000017 , 000057 .000117 . 000301 L 000217 . 000545 000317 . 000789
. 000020 . 000061 000120 . 000305 . 000220 . 000549 ., 000320 . 000793
. 000021 . 000064 .000121 . 000308 . 000221 . 000553 . 000321 . 000797
. 000022 . 000068 .0o0122 .000312 . 000222 . 000556 . 000322 . 000801
. 000023 . 000072 .000123 .000318 . 000223 . 000560 . 000323 . 000805
., 000024 . 000078 .000124 . 000320 . 000224 . 000564 . 000324 . 000808
. 000025 . 000080 .000125 .000324 . 000225 . 000568 . 000325 . 000812
. 000026 . 000083 . 000126 . 000328 . 000226 . 000572 . 000326 . 000816
. 000027 . 000087 . 000127 ,000331 . oooz227 . 000576 . 000327 . 000820
, 000030 . 000091 .000130 . 000335 . 000230 . 0005793 . 000330 . 000823
. 000031 + 000095 .000131 . 000329 , 000231 . 000583 , 000331 . 000827
, 000032 . 000099 .000132 . 000343 . 000232 . 000587 . 000332 . 000831
. 000033 . 000102 . 000133 . 000347 . 000233 . 000591 . 000333 . 000835
, 000034 . 000108 .000134 . 000850 . 000234 . 000595 . 000334 . 000839
. 000035 , 000110 .000135 . 000354 . 000235 . 000598 . 000335 . 000843
. 000036 000114 . 000136 . 000358 . 000236 . 000602 . 000338 . 000846
. 000037 . 000118 . 000137 . 000362 . 000237 . 0006086 . 000337 . 000850
. 000040 . 000122 .000140 . 000366 . 000240 . 000610 . 000340 . 000854
. 000041 . 000125 000141 . 000370 . 000241 . 000614 . 000341 . 000858
. 000042 . 000129 000142 .000373 . 000242 . 000617 . 000342 . 000862
. 000043 . 000133 . 000143 L 000377 . 000243 , 000821 . 000343 . 000865
. 000044 . 000137 L000144 . 000381 . 000244 . 000625 L 000344 . 000869
. 000045 , 000141 . 000145 . 000385 , 000245 . 000629 . 000345 . 000873
, 000046 L 000144 L 000146 . 000389 . 000246 ., 000633 . 000346 . 000877
. 000047 . 000148 . 000147 , 000392 L 000247 . 000637 . 000347 .boosal
. 000050 . 000152 , 000150 , 000396 , 000250 . 000640 . 000350 . 000885
, 000051 . 000156 . 000151 . 000400 , 000251 . 000644 ,000351 . 000888
. 000052 . 000160 . 000152 , 000404 . 000252 . 000648 . 000352 . 000892
. 00053 . 000164 . 000153 . 000408 . 000252 . 000652 . 000353 . 000836
. 000054 . 000167 000154 . 000411 . 000254 . 000656 . 000354 . 000900
. 000055 . 000171 . 000155 . 000415 . 000255 , 000659 . 000355 . 000904
. 000056 . 000175 ,000156 L 000419 ., 000256 , 000663 . 000356 . 000907
. 000057 . 000179 . 000157 . 000423 , 000257 . D00BET . 000357 . 000911
. 000060 . 000183 . 000160 . 000427 . 000260 , 000671 , 000360 . 000915
. 000061 . 000186 .000161 . 000431 . 000261 . 000675 . 000361 . 000919
. 000062 . 000190 L 000162 . 000434 . 000262 . 00067 . 000362 . 000923
. 000063 . 000194 . 000163 . 000438 . 000263 . 000882 . 000363 . 000926
. 000064 . 000198 . 000164 . 000442 ., 000264 . 000GA6 . 000364 . 000930
. 000065 . 000202 . 0001865 . 000448 . 000265 ., 000690 , 000365 . 000934
. 000066 . 000205 , 000166 . 000450 . 000266 . 000694 . 000266 . 000938
. 000067 . 000209 . 000167 . 000453 . 000267 . 000698 . 000367 . 000942
. 000070 . 000213 000170 000457 . 000270 .000701 . 000370 . 000946
. 000071 L 000217 LG001TL . 000461 . 000271 . 000705 . 000371 . 000949
. 000072 . 000221 000172 . 000465 . 000272 . 000709 . 000372 . 000953
. 000073 . 000225 .000173 . 000469 . 000273 L000713 . 000373 L, 000957
. 000074 . 000228 L 000174 L 000473 . 000274 L000717 L000374 . 000961
. 000075 . 000232 L 000175 . 000476 .000275 L000720 . 000375 . 000965
, 000076 . 000236 L 000176 . 000480 . 000276 LNo0T24 . 000376 . 000968
. 000077 . 000240 L0001TT . 000484 L 000277 . 000728 . 000377 . 000972

B-7

Octal-Decimal Fraction Conversion Table

OCTAL DEC, OCTAL DEC, OCTAL DEC. OCTAL DEC,

. 000400 . 000976 . 000500 . 001220 . 000600 . 001464 . 000700 . 001708
. 000401 . 000980 . 000501 .001224 . 000601 . 001468 . 000701 L001712
- 000402 . 000984 . 000502 . 001228 . 000602 001472 . 000702 , 001716
. 000403 . 000988 . 000503 .001232 . 000603 . 001476 .000703 4001720
. 000404 . 000991 . 000504 . 001235 . 000604 ., 001480 . 000704 L001724
. 000405 . DD0985 .DDO505 . 001239 . 000605 . 001483 . 000705 .001728
. 000406 . 000989 . 000506 . 001242 . 000606 . 001487 . 000706 L001731
. 000407 . 001003 . 000507 .001247 . 000607 . 001491 . 000707 . 001735
- 000410 . 001007 . 000510 , 001251 , 000610 . 001485 , 000710 .001739
. 000411 . 001010 . 000511 . 001255 .boo611 . 001499 . 000711 L001743
. 000412 . 001014 . 000512 . 001258 , 000612 . 001502 000712 .001747
. 000413 .Do1018 . 000513 . 001262 . 000613 . 001506 000713 L 001750
. 000414 . 001022 000514 . 001266 . 000614 , 001510 L000T14 .001754
. 000415 . 001026 . 000515 .001270 . 000615 L 001514 . 000715 001758
» 000416 . 001029 . 000516 .001274 .000616 . 001518 . 000716 001762
. 000417 . 001033 . 000517 .001277 . 000617 . 001522 000717 . 001766
. 000420 . 001037 . 000520 . 001281 . 000620 . 001525 . 000720 .001770
. 000421 .001041 . 000521 . 001285 . 000621 .001529 L 000721 L001773
. 000422 . 001045 . 000522 . 001289 . 000622 001533 . 000722 001777
. 000423 . 001049 .000523 ', 001293 . 000623 001537 . 000723 . 001781
+ 000424 , 001052 . 000524 001296 . 000624 . 001541 . 000724 .001785
. 000425 . 001056 . 000525 . 001300 . 000625 001544 . 000725 001789
. 000426 ., 0010680 . 000526 .001204 . 000626 . 001548 . 000726 . 001792
. 000427 . 001064 . 000527 . 001308 . 000627 . 001552 . 000727 . 001796
. 000430 . 001068 - 000530 .001312 . 000630 . 001556 . 000730 . 001800
. 000431 , 001071 . 000531 .001316 . 000631 . 001560 . 000731 . 001804
. 000432 . 001075 . 000532 .001319 . 000632 .,001564 . 000732 .001808
. 080433 , 001079 . 000533 .001323 + 000633 001567 000733 L001811
000434 . 001083 . 000534 . 001327 ., 0006234 001571 . 000734 . 001815
, 000435 . 001087 . 000535 . 001331 . 000625 . 001575 » 000735 001819
. 000436 .001001 . 000536 . 001335 . 000636 .DOL5T9 . 000736 . 001823
. 000437 .001094 . 000537 . 001328 . 000637 . 001583 . 000737 . 001827
. 000440 . 001088 . 000540 001342 . 000640 . 001586 . 000740 . 001831
. 000441 . 001102 . 000541 001346 . 000641 . 001590 . 000741 . 001834
000442 - 001106 . 000542 . 001350 , 000642 . 001594 . 000742 .001838
. 000443 . 001110 . 000543 . 001354 . 000643 . 001598 . 000743 ,001842
+ 000444 . 001113 . 000544 . 001358 . 000644 . 001602 . 000744 .001846
. 000445 . 001117 . 000545 . 001361 . 000645 . 001605 000745 ,001850
000446 . 001121 . 000548 . 001365 . 000646 . 001609 000746 . 001853
. 000447 . 001125 . 000547 . 001369 . 000647 , 001613 . 000747 ,001857
. 000450 . 001129 » 000550 . 001373 . 000650 . 001617 . 000750 .001861
. 000451 . 001132 . 000551 . 001377 . 000651 . 001621 . 000751 . 001865
. 000452 . 001136 . 000552 . 001380 . 000652 . 001625 . 000752 .001869
. 000453 . 001140 . 000553 . 001384 . Q00653 . 001628 . 000753 ,001873
000454 . 001144 + 000554 .001388 . 000654 .001632 . 000754 .001876
. 000455 . 001148 . 000555 . 001392 . 000655 001636 . 000755 ,001880
. 000456 . 001152 . 000556 . 001396 . 000656 . 001640 . 000756 .001884
. 000457 + 001155 . D0OS5T .001399 . 000657 001644 . 000757 .001888
. 000460 . 001159 . 000560 . 001403 . 000660 ,001647 . 000760 .001892
. 000461 ,001183 . 000561 . 001407 . 000661 . 001651 , 000761 .001895
. 000462 . 001167 . 000562 .001411 . 000662 . 001655 000762 .001899
. 000463 .001171 . 000563 . 001415 . 000663 . 001659 . 000763 .001903
. 000464 . 001174 . 000564 .001419 . 000664 001663 . 000764 . 001907
. DD0465 .001178 000565 . 001422 . 000665 .001667 . 000785 .001811
. 000466 .001182 . 000566 . 001426 . 000666 L001670 . 000766 ,001914
. 000467 .00118B6 , 000567 , 001430 . 000667 L 001674 . 000767 .001918
. 000470 . 001190 . 000570 . 001434 . D006TO . 001678 . 000770 . 001922
. 000471 .001194 - 000571 . 001438 . 000671 , 001682 L 000771 .001926
000472 .001197 . 000572 . 001441 . 000672 . 001686 . 000772 . 001930
. 000473 . 001201 . 000573 . 001445 . 000673 .001689 . 000773 .001834
. 000474 , 001205 . 000574 . 001449 . 000674 . 001693 L 000774 . 001937
. 000475 . 001209 . 000575 . 001453 . 000675 . 001697 L000TTS . 001941
. 000476 .001213 . 000576 . 001457 . 000676 L 001701 . 000776 . 001945
000477 .001216 . 001461 L 000677 . 001705 L 000777 . 001949

. 000577

