The
Connection Machine
System

Paris Reference Manual

Version 6.0
February 1991

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, February 1989
Revised, February 1991

The information in this document is subject to change without notice and should not be construed
as a commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the
right to make changes to any products described herein to improve functioning or design. Although
the information in this document has been reviewed and is believed to be reliable, Thinking
Machines Corporation does not assume responsibility or liability for any errors that may appear in
this document. Thinking Machines Corporation does not assume any liability arising from the
application or use of any information or product described herein.

Connection Machine® is a registered trademark of Thinking Machines Corporation.
c*®isa registered trademark of Thinking Machines Corporation.

CM, CM-2, and DataVault are trademarks of Thinking Machines Corporation.

Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation,
C/Paris, Lisp/Paris, and Fortran/Paris are trademarks of Thinking Machines Corporation.
In Parallel® is a registered trademark of Thinking Machines Corporation.

VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.

Sun, Sun-4, and Sun Workstation are registered trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright © 1991 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Coxporation

245 First Street

Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

Contents

1 Introduction

2 Virtual Machine Architecture

2.1 Virtual Processors and Virtual Processor Sets
2.2 Mapping VP Sets to the Physical Machine
00 NP Rablon o arsis @ arie o e e i i i e Tes e R R K
Gl BREIAE . v v v o e s R TS R R SRR 0 R B0
9.5 Processor AddIesses . . . v v v v v v v e it a b e e e e e e
D6 SERACNTATETEEE: & & & o 5 o 5o w0Es o0 S5 (5w Ay 4 % % % wows 4 Wb
97 NEWS AddTesses « o v o o s v v v o v s 6 s s s v 8 s o s s v s s s s s 8 oo o
2.8 Communication across VP Sets v v v v v v v o v i i s s s
2.0 GeometTies .« v v v v b e v e e e e e e e e e e e e e e e e e e e
210 Flags . - -« ¢ o o v v v o s s s s s as ot oo s s oo 0 s e s
3 Data Formats
FH PIETIBIAS & ¢ v v a 5w ¢ 6 % k B EE S § K ES RS RS T B AL Dy R A D e N
3.2 SignedIntegers v v v v v v i i a i e e
3.3 UnsignedIntegers.o v v vt i v vt vt
3.4 Floating-Point Numbersot cn .
3.5 Complex Floating-Point Numberso
38 BSend Addresses z i i s s s v s s s w G E S e R B i ¥ RA R GV E R W F MY 8B =
3.7 Configuration Variableso

4 Operation Formats

A1 FieldIA' .. & o v v 0 v 0 mm s s m e n oo @ s s ibhsasn
42 Constant Operands . . . - ¢ « « v v o 0 v o v v o o v s o n s s s oo e oo
4.3 TUnconditional Operations v i vt v v et s v oo
4.4 Naming Conventions v v v v vt v v v v ot v vt oot ae
4.5 Argument Orderttt
5 Imnstruction Set Overview
0 I V= 0 T
B U eDTNetTIes: roie s o n 6 4 & % N M 5 5 W 5 B G N % o 5 W e 8 e 0 W B @ e
5.3 Interned Geometries and VP Sets e
Bk FIBLASE o moomemianmnmmiaionmsimscn cosmn s so7on 1w o0 w w4 0 e B0 RS BRSNS

sk

00 00 G0 =1 =1 & 1 v W

10

13
14
14
14
15
16
16
16

19
19
20
20
21
23

Contents

5.5

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
6.21
5.22
5.23
5.24
5.25
5.26
5.27

6 The
6.1
6.2

6.3
6.4

7 The
7.1
7.2

Copyiig Pields . o i : 0 i v o v5 00 68 S0 S e st e e o o o o 27
Field Aliasing0 ittt it i e e e e e e 28
Bitwise Boolean Operations v v v v v v i v o e e 28
OPBFBUIRIEIGH TREEE ooas conommsmnms s mev e o s a0 8 A T R e el & 29
Dperationg oiy Sigle BIEE oo @ ole e a5 606 oo se e e 30
Unary Arithmetic Operations, 30
Binary Arithmetic Operations0o...... 32
Optimized Floating-Point Computations v v v v v v v o ... 36
Arithivetic CoMPARrIEONe & v wvm i wie visis i3 505 % 5 5 e e e e e o e 37
Pseudo-Random Number Generation 37
ATTAYS . o i e e e e e 38
General COmuieRtion. . « wwwmemae 5% 0% § 5055 200 e WS 38
NEWS Communitation: v awminin 5 %5 5 8 5 5 5 6.8 4 eoereosemm 39
Power of Two NEWS . . ottt ottt vt tne s o oe e on s ose s 41
NEWS with Floating-Point Combiners. 41
Scan, Reduce, Spread, and Multispread 42
Global Reduction Operations v v v .. 46
Memory Data Transfers v v v v v v v v e e e e 46
SOTHIE . & v v v e e e e e e 47
Ling PArM OdE « 5 o s s s wn s s s v s 16 58 S S VRS SR w85 G5 a 47
TRRLIPDE 5 5 5 5 5 4 % 55 55 568 S5 B B BT T 5 46 hemomnemommon oo 48
Front End Operations ii i ... 48
Environmental Interface 48
C/Paris Interface 51
C/Paris Header Files v i it it e st e e e 51
C/Paris Instruction Names and Argument Types 51
B2L TATIPER 5 o5 5 5 0 6 0 4 5 55 F 8 5 o tioeameanomsnensa 52
6.2.2 Operand Field Addresses 52
623 Immediate Operands v ¢ v v v v i v vt v e w s vt oo nnn 53"
6.2.4 Operand Field Lengths 53
6.2.5 Miscellaneous Signed and Unsigned Values 54
6.2.6 Bit SetsandMasks. 54
0.2.7 VectorsofInbegers . . . « .« v o v v v v i v s i v v i ossrvnen 54
6.2.8 Multi-dimensional Front-end Arrays 54
6.2.9 Symbolic Values 54
C/Paris Configuration Variables 55
Calng ParlE ol ¢ o o v v v v v v o b om0 e Sme s C S S B O E L o 55
Fortran/Paris Interface 57
Fortran [Patli Had@er Bios .. i om oo 6000 0550 0t oemae s o s ome s 57
Fortran /Paris Instruction Names and Argument BB 00w 0w st ol &6 & 67
721 IdTypes . . oo v i v it et e e e e e e o8
Toig, Operand Pl AR wwomos s wine baiemim e 608 o o 58
7.23 Immediate Operands v v v v v s v 59

ii

Contents

724 OperandFieldLengths: ivevviivioviessasas 59
7.2.5 Miscellaneous Signed and Unsigned Values 60
7.2.6 BitSetsand Masks.o L 60
727 WVeckorsofIntegers . : v vu v vwicvsv s s s inone omes 60

7.2.8 Multi-dimensional Front-end Arrays 60

729 SymbolicValues .. :..¢sasvivsvssssssisasiaisns 60

7.3 Fortran/Paris Configuration Variables 61
T4 CallingParisfromFortran v ¢ v vt v v v v v e v v o oo v 61
8 The Lisp/Paris Interface 63
8.1 Lisp/Paris Instruction Names and Argument Types. 63
811 TdTypes siciiviisidvsifvasgbeniiigaiansddavs 63
8.1.2 Operand Field Addresses 64
813 Immediate Operands ... v v oo 00 v o v m s o s 56 0 5 s 6o o v s 64
814 Operand FieldTenigths . : ¢ v vovcovsswinwionsawswss 65
8.1.5 Miscellaneous Signed and Unsigned Values 65
8.1.6 BitSetsand Masks. v i i v it vt e e 65
81T VoctofSofINtBgATS . . v o ¢ v e v navs s s s o s s woavownsos 66

8.1.8 Multi-dimensional Front-end Arrays 66
819 SymboHe Values .. :::i:ssinasssssinnvwesnssssa 66

8.2 Lisp/Paris Configuration Variables 66
8.3 CollimgParisFom LiSP . o« o v o s o v snmwes s oo agompns vy 67
9 Dictionary of Paris Instructions 69
9.1 Conventions for Alphabetizing 69
9.2 Programming Language Syntax 0o 70
9.2.1 Syntaxof Names v o v v v v v v v vt e e e 70
9.2.2 Pseudocode Instruction Descriptions 70
F-ABS & v % an e s 55 50 68 8 KBS W EE LR EEE SR KRS S e 73
BO-ABS i s as s nn i v s ol $ B EEF s NS G W BN TR # VS % 74
SSABS . ks v s e s s e ans e s e E s A S L EE AT AT 75
GAEDS & v 5 4o s s R S B S R N E RN S R R RS RIS R E SR X AR B RS 76
FaBCOS & < v v 55 5% 8 % o 5 6 6 8 6 68 A d @ @ N a8 85 B A& %856 =7 77
CGACOSH . 55 i s i v 3 s s B i 4 8 o N ¥ EEE RSN BB AT S S RE TR G B 0 78
FAACOSH. . o o o o2 s o s s g s omeossoonmeenasas®ssnni 79
C-ADD o oo 6 6 9 % % 5 5 8 B % 5 B T B E R K @ m B W E B s W N s R e e 80
F-ABD 46 o nvvvv s 838 3envuss8uy e issdssas &ds85a0 81
AP s i i i RIS VTR AR RRE NGRS 83
U-ADD . . e e e e e e e e e e e e e e 85
S-ADDZCARRY & & s vowson 5 o & % & & % & % % i & & % % 6 @ 6w e @ G e e e 87
U-ADD-CARRY 5 s 5 s s 5 55 s s s s s ume i o Gugmn 2annsainnu 89
SSADD-FLAGS« 0o smmeiion i A0S 33 nuaaamunaaing 91
U-ADD-FLAGS . . . i it i i it e et e e e e e 92
FAABDSNMULT & s i 5o a5 i % 5 s w % % % 5 8 0 % % % & % % 6 & o & 5 % % @ 8 93
ADD-OFESET-TO-FIELD-ID: . . « i ¢ 6 & 6 5 55 S5 me a8 %5665 9 s 95

iii

Contents

BLLOCATEHEAREIEID . . o o s s e s v npw oo ke nmsissuns 96
ALLOCATE-HEAP-FIELD-VP-SET ... o sscsccsouisisns 97
ALLOCATE-STACK-FIELD ittt e e e e 98
ALLOCATE-STACK-FIELD-VP-SET vttt e e e 99
ALLOCATE-VP-SETt e e e e e e e e e e e 100
EEARBAY-FORMAT « - c s s s vv s v v s v v s v v o 68 6 G0 55865 5 8 4 5 101
BREF" « o v s s s ¢ 2 4 4 5 S S U ER U B U PR E S EERF R P i b m m o 103
AREFIZ oo o i v s 6 2 08 88 0 i b i b e s e mw m 105
AREF32-SHARED it it e e e e e e e e 107
ASET . e e e e e e e e 110
ASETA2 ..cvvunpvevsiivicavens b beauiiiasesa 112
ASETBZSHARED . v v v o o556 i s 6 880085 f et nwmernnea 114
| Y 116
F-ASIN . . e e e e e 117
GABINH v s v n s nin o e we e s R RS S E 6K 118
FASINM covwuvvvosioi v ie s smaei@as s 568 66 o b oo 119
C-ATAN & 25 600 0 55 5 08 5 00 08 4 mm oo simom e s € o1 8 e s 120
F-ATAN . . e e e 121
TS PR S 122
L T " 124
T R e 125
B I o050 0 T 0 0 comssmrmsm s e o o T 126
ATTACHED . . . e e e e e e e e e e, 128
AVAILABLE-MEMORYo e e e e e e e e 129
BBCRIING oo s s e s N e S A v i 131
SCEIEING oo s i o 35 e St e oo mecer e o e o areac 132
S-F-CEILING . . o o e e e e e e 134
LELEIUING onmsamszmomann s syt s ugiesiin aimn i i e G 135
U-AECEILNG sosmvmmanasemp g as w00% 55 5.5 5 55 5, 50 b e e e 137
CHANGE-FIELD-ALIAS e e, 138
CFCIS 56 55 50 2 vm mmiemiaimie e o e 1o 54 5 v e s e G e e 4 e e i 139
CLEAR-ALL-FLAGS e 140
CLEAR-BIT & v s camannw i smen s o uasamentannsin 141
CLEAR-EOMNTERT & 5 s 5 5 5 5 % 6 6 55 5 5 5 5 8 55 6 m o 50 10 o o on o0 n 142
CLEAR-flag . . . v v vttt e e e e e 143
COLD-BOOT . .ttt e e e e e 144
FBCOMPABE: « s s vunsanssnanssnsnccssnssapaainsgsss 146
SKOMPRARE. & i 4 5 55 5 5 5 55 55 55 %5 5 600 5 0mmmernmoemma 147
U-COMPARE it e e e e e 148
COMPRESS-HEAP e e e 149
CCONIUGATE .5 s usunsanmsnauiosussasniiisnisdns 150
Y T s L I I T 151
s L F 1 T, 152
C-COSH . . . e e e 153
PCOBM « s s s vvvsuonmuvminboaé v v s 8B s 6885535 154

iv

Contents

CREATE-DETAILED-GEOMETRY .+« v v v ittt it et e e e e as 155
CREATECEQMETRY : - x v s s s i s oS da g s a s an 8w i %o @ o 159
CHOSE NP MONE . .v v emrnr s s sdERaansshanaingm 160
DEALLOCATE-GEOMETRY & v v v v v v e e e e e e e e e e e e e s 163
DEALLOCATEHEAPFIBLD . & o 5« 5 o 5 5 o a6 % % 5 553 &9 s 164
DEALLOCATE-STACK-THROUGH . . . v ¢« v oo o v oo wmainsoms 165
DEALLOCATEVPSET . .00 oo csaaiinesanamnanins sy 166
DEPOSIT-NEWS-COORDINATE . . « . o o e et v e e et e e et 167
FE-DEPOSIT-NEWS-COORDINATE .+ « o o vt e e e e e e e e 168
DEPREH - crpns s E s EE A5 S E A2 55 P59 5 B 5 ERONN B 169
EDIVIDE . ocnnmin st i o s 365555056 68§ 5 958 & 5% Sommmems 171
EDIVIDE: o ovoomncnimammn s sres & b 5 % B 50 55508 650 & e s SEs 173
ENUMERATE & & o e ot e e e et et e e e e e e e e 175
CaEQ o o e e e e e e e e e 177
FEER s s s A S T L R S TR RN R R NS 178
B e e e e R R AR 179
TISED a0 e m et s s e B B T 180
o 5 4 - 182
= 2 R TREO 183
FEEXTRACT-MULTLCOORDINATE .55 o e e wvae e e faasion it 184
EXTRACT-NEWS-COORDINATE . .. oo o oiv oo s siaisiors oo s 185
FE-EXTRACT-NEWS-COORDINATE . . o o vt et et e e e e e e e 186
DEALLOCATE-FFT-SETUP . . v v vt it e e e et et e e e eea 187

B o - R R SRR 00 WA § 188
CERETSETUR: .ii o5 o s e i dia@ e s e e sas smos » 191
FIELDEVRERET |, . o v mmmsmsmmmsment ool il A8 S S & B a4 8 193
F-S-FLOAT o o e e e e e e e e e e e e e e e 194
FoU-FLOAT o v v e 195
EREIOOR .:ccviaiasssad i via s 6EE Gas pao s s e s 196
EFLOOR .. v vovommumpannunpee b iEEELERES 66 . 197
SF-FLOOR & v v o e e e e e e e e e e e . 199
i TR I M T I I T™Y 200
DEEIOOR ... 05057 iieidsdigyisuBpapuenusessdsas 202
FE-FROM-GRAY-CODE . .\ vt vt e e et e et e et e e e e e e e 203
U-FROM-GRAY-CODE . .+ v v v et et e e e e e e e e 204
FEGE o i 5 5 5 @ 5 6 9 o o 6 8 @ @ % & & @ 8 & ¥ B B 8 R K E e B G ¥ E e 86 NS ¥ e 205
Bl o v v s g R E R TR PR B UG RN RN R RO RN 206

1 = Y Tt i T Y 208
GEOMETRY-AXIS-LENGTH + v v v v e e e et e e e e e e e e 210
GEOMETRY-AXIS-OFF-CHIP-BITS . . .+« o o v e e e e e e e e 211
CEOMETRV.AXISOFE-CHIPPOS . o o o s cv s v s o v b winm v o a &u 212
GEOMETRY-AXIS-ON-CHIP-BITS . . . ot t s st e vt eeeenenns 213
GEOMETRY-AXIS-ON-CHIP-POS o i et e e e e e ee e 214
GEOMETRY-AXIS-ORDERING . . « o o ettt e e e e e e e e e e 215
GEOMETRY-AXISVPRATIO . .::csssasanspwssssacssa 216

Contents

GEQOMETRY-COORDINATE-LENGTH ..civo v e e s ss e o 217
GEOMETRYSRANK oo 0 e 058 8 0 08 smmsmrmas e o mrcon caa 218
GEOMETRY-SEND-ADDRESS-LENGTHo..... 219
GEOMETRY-SERIAL-NUMBERo v i e e e 220
GEOMETRV-TOTAL-PROCESSORS: «ov:nvvnimaaprass sis aiaiemniat e 221
GEOMETRY-TOTAL-VP-RATIO vim e iinnnn. 222
L 223
GET-AREF32 e e e 224
SETFROMNENS pnpesasesvnsnonis @ S & S s 226
GET-FROM-POWER-TWO v v %6 65 5 5 55 5 8 5 55055 o s smoe 227
GLOBAE-CUMDD: oovin e 5 6765 5 55 55 556 5 0 a3 0 % covmimims conpce 229
GLOBAL-F-ADDottt et e e, 230
GLOBAL-S-ADDttt e 231
GLOBALUADD & o 5 s s s sss s aun s v n 58 5856 68 35855% 5 232
GLOBAL-COUNT-BIT . . . vttt ittt e e e e e e 233
GLOBAL-COUNT-CONTEXT ittt e 234
GLOBAL-COUNT-flag v v it e e e e e e e e 235
GLOBAL-LOGAND it e s, 236
GLOBAL-LOGAND-BIT .« suvsvisvnsasssa b dodcaiinna 237
GLOBAL-LOGAND-CONTEXT 238
GLOBAL-LOGAND-flag vt it 239
GLOBAL-LOGIOR i 240
GLOBAL-LOGIOR-BIT i v v v i v i v ovsisnoioosomnnnnn 241
GLOBAL-LOGIOR-CONTEXTo ottt e oo 242
GLOBAL-LOGIOR-flag « « « v v v v ot e et e e e e e e e e e 243
GLOBAL-LOGXORttt 244
GLOBALF-MBX. , ¢ v sraovrcuvin o b st 888858 88553 245
GLOBAL-S-MAX. . v v vv v v vin s iss da i v oal s s s 6o en. 247
GLOBAL-U-MAX . . . e e e e e 248
GLOBAL-U-MAX-S-INTLENo, 249
GLOBAL-U-MAX-U-INTLEN 251
GLOBAL-FMIN owvo s aa im0 s soe o m e o seme o 253
GLOBAL-S-MIN 5550005 50 65505000 im0 mm0 0 s sy sce a6 aiat & & 255
GLOBAL-U-MIN e e 256
PRG T cocom s ommwmr o s A A R B R T s 257
DT . o R e R i e 258
e 260
FABEE-TONMAR 51675 5 01000 smimommmimin om i o m sa s a5 550 o a1 263
INIT e e e e e e 264
INITIALIZE-RANDOM-GENERATOR oo, 265
SAUNTEGER-LENGTH & vviaiviais w555 55 5 5m v » o m v ot 0 mvoce orraaie 266
U-INTEGER-LENGTH 267
INTERN-DETAILED-GEOMETRY . & . « s 5 5 % w 5 & 5 5% % 5 % 5 5% % 54 268
INTERN-GEOMETRY" & v 4 o %5 4 505 6 58556 8 8 8885 00 v wos 270
INTERN-IDENTICAL-VP-SET it i e 272

vi

Contents

INVERT-CONTEXT . .. i ittt oo oo v s nannanassnnn s 273
INVERT-flag . . v v v vt v e e e e i e i et e e 274
IS-FIELDLAN-ALIAS . s ¢ s o vwcsamsnnmesnoopronssysss 275
IS-FIELD-IN-HEAP ... ¢ . s e i i swvcaoaosnnssoansanse 276
IS-FIELD-IN-STACKottt et oo v e nsenanonscnas 277
IS-FIELD-VALID . . . i i e e ittt e e i a e e e e 278
IS-STACK-FIELD-NEWER« v i ittt it e e e v e e s 279
ISVPSETNALIE . ssssnsasosmrmunusmeynannmsos 280
CASORT 5 6 6 % 5 55 5 4 6 59 58 5% % % 6 %68 %o @wdsmadssnm 281
UISQRT . o o v s i no @@ o o @ @5 5 @ % v @ i iommain 283
LATCH-LEDS . v v ¢ vt o o v s o m s s as s s v ssoonsonssnsas 285
BEE c s s usnnnanasndpnnusnrnrausenasazedsdiRi is 286
GLE « o 5o fo i e s i % e e e e e e o G e e 8 B I ce C8 e e e i Sn oo G e e om e wom 287
ELE & e e i 3G BE R ARA B S E R H N E R KR WG B SN B R 289
LN s s omsomimsin v cmiom on pup oo w6 A A B AEG R AN SR 291
FoLN & o e e e e et ettt et e e 292
PORD-CONTERT v e o st e 5 0m s msmipmans Simmeses 293
LR s e s o s e e Wy 6050 SR T B S 294
FLOGD .o oo st o 05 0000 0 T R 0 0 i) 0 0 P 8 295
BLOGID ..o smomuns smm wems e b 0w oo e B e AT 296
LOGAND . .. oo i o vt v o m i o s masosoosssenssesssns 297
LOGANDECONTERT e siommmas i s, sm s s s o a7 w5 5w . s 298
LOGAND-CONTEXT-WITH-TEST & oo awvive e s oo s o & 299
LOGAND-HAE o oo vmin mi s oe 0 o ls g ione i s ia e as s v a 300
LEGANBEL o aemimmmmmsor s s s e s ot b s & 2 301
LOGEANDES o iwommmarames o smmm e onie i e Smiss sik e 6 w5 o - 302
SLOGCCOUNT o o v wsiiers e @ o siaaa e £re el sl e suel o @& w9 & 5 4 303
ELOGCOUNT . vy s vaicdidind esdaan i s nas 4 s @& aep s 304
LOGEQV . ..o v ot v onenosnasssssoosassssssssss 305
LOGIOR i cvsenvsvacnanrsomser nEnnn oo msse sy 306
LOGIOR-CONTEXT .. viiidvosvnvonomavponisssesss 307
LOGIORAlaig iccvoviivassscaduevwveneiesous 308
LOGNAND . v v v ittt e o m e et ten vttt n e aas s 309
FOGNOR . :ivveavesivamssnponansmnmnenssyonnes 310
EOBNOT i :civissinsussu @ v s v iR s RET R N w N ® 5 3 0 311
LOGOREL,:c0iiiségssspdénunnoauguevsaioo 312
LOGORC2 . .t v v vt s e m s st st s v s et o s a oot oon oo 313
LOGHDR s o v es oo ossmsuénsamnpnanmnsonenssssi 314
Bl & i s s s sk i s 5 9 i SR U A VUV R R P AN S H R M B R E B & S A 315
BT ¢ o v v 3 6 A8 AU S EFE NS EFEFREINFF P AE SV R R B o o 316
DeLT & v s v s nwvssmmansnsassnsssddiaiiaoniingnas 318
MAKE-FIELD-ALIAS ¢ v vt v ot o oo s s v s s nnooeas oo 321
MAKE-NEWS-COORDINATE o o it ittt et e e e e e e 322
FE-MAKE-NEWS-COORDINATE« .ot ittt it e 323
C-MATRIX-MULTIPLY . . . ¢t i i it it e e e e e et e e 324

vii

Contents

S-MATRIX-MULTIPLYo e e e e e e 326
PaMAR 6 45 0 4 5 555 000 s mremmms s m o monassosasssasi 328
SMAX e e, 330
EMAX. . v v v v puwssa s s s s s o C¥ B RS BRGNSV E 5530 332
F-MIM o o cv v v s s s 6 a5 S A S S NS5 T Ettnnonansa 334
S s 1 1 I L L L E T L T Y 336
U-MIN G v isiiit s nammmmnnnnnonasaosiosssssssss 338
F-MOD . o 340
SMOD. v e E e B s B G EE F e G e n 342
WMOBE ¢ oovovvue s g 088 i i 0B d i tenanmnnn ue e 344
CMOVE . iciiiiiiovinemenmnnannnnenevesesssss 346
F-MOVE . . . 348
L 350
KEMEBNE oo sav @ w war o s 8 g i S 0 R o honammsiareasearons o o o 352
F-MOVE-DECODED-CONSTANTo . 354
MOVE-REVERSED e, 355
F-MULT-ADD W R R e 356
L - T 358
e i T 360
L B B 362
F-MULTIPLY .o e e e e 364
SMULTIPLY oo cmommmmmmunon s % % % 8 5% & 50 0580 % 2 0 366
UEMURTIPEY" oo smmmmomemosmesinion S9%5% 8 55 5 5 Z 5 5 = n 10 1n e ot cmcceree 368
MULTISPREAD-C-ADD i i, 370
MULTISPREAD-F-ADD i, 371
MULTISPREADSADD .+ &« ooomvsvoon o a5 59 858565555554 373
MULTISPREAD-U-ADD 374
MULTISPREAD-COPY e e e e e 375
MULTISPREAD-LOGAND it 376
MULTISPREADLOGIOR ...+ vsvusvvsssiswasissnst s 377
MULTISPREAB-LOGXOR: . & 5 4 4 5 5 5 6 6 455 550 0mmmemenun 378
MULTISPREAD-F-MAX 379
MULTISPREAD-S-MAX e e e e, 380
MULTISPREAD-IDSMAX. & - ¢ o s e v wwvwvv s v s o g 58056 658 2 381
MULTISPREAD-F-MIN oot 382
MULTISPREAD-S-MIN 383
MULTISPREAD-U-MIN 384
MY-NEWS-COORDINATEccoscvnvovcvscnsssssss 385
MY-SEND-ABDBRESS: . : o vvv v v v 6/ 66 5 058 H b to e mo v m s 386
CoNE s oo oo v o 65 88 65 05 200 Prommme s cm 6 s oo o e o 387
BNE & s 00 00050 5 50 8 0 6w v smnims w avsmimom sws anmis i 408 & 04 6 & & § 388
S-NE . 389
LT oo caremamsnns anssmn s orarae. 0 R T & s mcrenea e e 4 390
CNEGRTE! s vt 000 0000 000 oo S e s e 392
FANBGATE. /5755 0 0 mmmnommmomsmsssammaie. o0 e s st 8608 S 50781 393

Contents

SRECATE. oo e s e s e e w s s s s o s eyt § 394
UBIEGATE . vnimmcomommes 0006 50005 7000 0005 70 A0 0 e SRR 5 B M o 9 395
F-NEWS-ADD & v v v et v v vt e s s s s ooa s osssosaassssss 396
ENEWS-ADDMULT wowsavmmummn somwe o dodale 8l 98 § 5§ o & 398
ENEWSMULT oo s sraresmmd o vo gne samwmsw ey & 8 8 8 6 880 400
F-NEWS-MULT-ADD . .+« ¢t v o v v oo e vt s oo e v mme s s s na s 402
F-NEWS-MULT-SUB o it i i v e e e e e e e e m s s e e e e 404
F-NEWS-SUB . . . i i it v i e e v b s e s s s mm s s o n s s s e s 406
F-NEWS-SUB-MULTt i i it et vttt e s e e s me o e st s e 408
NEXT-STACK-FIELD-ID i v v o it e i i i e ie o n e s 410
FE-PACKED-ARRAY-FORMAT it v vt v i ie i oo e s 411
F-C-PHASE . . i i e e e e et e e e et e e 413
PHYSICAL-VP-SET . . o it i i it ittt e s s s s s a e 414
CC-POWER . . . s o o544 ¢ ssioeiastnsgonsnsornsssnensse 415
C-F-POWER . . . i i i i it s st s s e st aaa s s s e e s e 417
C-S-POWER . . s v i it e e it it e e m st 419
C-U-POWER .t it v it e et e e e i it sttt e e s e s e e s 421
FEFPOWER . oo 5 5w s sosomsamemamesnessshiinipis 422
F-S-POVWER 5 i vo o % 5 6 6 6 % 6 % a5 % 8 s 5 % 3 & '8 8 a0 8 8 fems me mos 424
EULPOWER. . o oo o 0 5 5 G %6 (68 58 308 %05 % 6 % Te i 6 6 G sisiiewiie aiowie 426
G- S-POWER . .. ¢ ot e vt nansroassostsssssessssisa 428
C U POWER o ionommues momm o e snmmm e itk o e e siisReEsislies 430
UESEPOWER oomins e s s e oms s i o 0 S0 s s o b s S (S 90 8 432
UAEPOWER. . s ama e i e o0 es s e 5 eeis s s e s e s 434
POWER:DIP . ..o ociw oo a0 50 o ol AR S T s 0 436
F-RANDOM . . i it v v e o e mmam e va s s oot s assssos o 437
EERANDON o s mmsms s m s e g § § ¢ 3 438
FRANK . o 5o 5 ose eyt ae duisve v ibeh s stmreias wes s o & 6 6 & 8 & 9 439
S RANK .ttt e e e e e e e e e e e 441
U-RANK e e e e it e e e e e e e e e s s e e e s 443
C-READ-FROM-NEWS-ARRAY o ittt it e e e s 445
F-READ-FROM-NEWS-ARRAY o v i ii it ee e e 448
S-READ-FROM-NEWS-ARRAY o i v i i oo e 451
U-READ-FROM-NEWS-ARRAY« o v v v ve v vnnonnnn. . 454
C-READ-FROM-PROCESSOR i i s e e e s 457
F-READ-FROM-PROCESSOR« ot i i it e e s 458
S-READ-FROM-PROCESSORo i ittt it i i e 459
U-READ-FROM-PROCESSOR o o i v i i e oo 460
C-RECIPROCAL . . . v i i i it ittt e v v s e s maa s o e e e oe o 461
REDUCE-WITH-C-ADD o o i it i et e e i v e e e e 462
REDUCE-WITH-F-ADDt ittt it i et e n v e e e s s 463
REDUCE-WITH-S-ADD ¢ it it i i i et it i e e e e 464
REDUCE-WITH-U-ADD . . . ¢ ¢ ¢ o v v v v s v s s s n oo s onnnonsos 465
REDUCEMWITH-COPY' v 5 5 6t v oo e e 5w o e iy s6 simgse 466
REDUCE-WITH-LOGAND ¢ttt i it s s v e et v o e s v 467

ix

Contents

REDUCE-WITH-LOGIOR, 468
REDUCE-WITH-LOGXOR it 469
REDUCE-WITH-F-MAX wanoi son 55 % 5 % 5 5% 5 5 % 55 oome 1ocosmss o 470
REDUCE-WITH-S-MAX e, 471
REDUCE-WITH-U-MAX i 472
REDUCE-WITH-F-MIN 473
BEDUCEWITH-SMIN .. . cvuvanvionsssossssessnn ., 474
REDUCE-WITH-U-MIN 475
PREM: v % i 5 8 55 5 5 5 508 G s memnmmenn s Pk ow wom @ 476
i 478
U-REM . .o 480
REMOVE-FIELD-ALIAS s s ¢ v o6 66 5 6 6 86 5 85 5 0 e wneneuao. 482
FF-ROUND o covovo v i 65 0 80 0 0 58 b i nnanonsennss sy 483
L I T T T 1 T P 484
S-F-ROUND ..o 486
D s RE S RN RE R P U R E R F RS B L 487
UFEROUND: . v ccnnvmmains ois aifie st om e o me v oo 489
P OALE: oo w604t & 50 8 05 59000 8 000588 ome cosasare e amissgner = 56 o 4 o o 491
BUSCALE. 506 5700 6 5 5,007 o momvms acsmmom: ottt b 80581 51 4 493
SCAN-WITH-C-ADDo 495
SCANWITHFADD -1o.v:0smiesimisnss om0 8 505 54 oo earg 497
SCAN-WITH-S5-ADD & . ¢ vt it vt vt ve e en e e e e e 499
SCAN-WITH-U-ADDot e 501
SCAN-WITH-COPY e 503
SEANWITHLOGAND . oois moom v 65 55 8 35658885 2 o 505
SCAN-WITH-LOGIOR 507
SCAN-WITH-LOGXOR o 509
SCAN-WITH-F-MAX . .. e e 511
SCAN-WITH-S-MAX 513
SCAN-WITH-U-MAX o 515
SCAN-WITH-F-MIN . ..o 517
SCAN-WITH-S-MINo 519
SCAN-WITH-U-MINo 521
SCAN-WITH-F-MULTIPLY 523
FEND v o v v v it G i e s e s g 525
SEND-ASET32-U-ADD 527
SEND-ASET32-LOGIOR 529
SEND-ASET32-OVERWRITE0umomnmnnnn.. 531
SEND-TO-NEWS i 533
SEND-TO-QUEUE32o i it 534
SEND-WITH-C-ADDo 537
SEND-WITH-F-ADD oo sosiit a0 i 5805155 0 oo v e 539
SEND-WITH-S-ADDottt 541
SEND-WITH-U-ADDo 543
SEND-WITH-LOGAND 545

Contents

SEND-WITH-LOGIOR ot i it v it it e et e e e e 547
SEND-WITH-LOGXOR s i ittt ittt v e e e e e e e e e 549
SEND-WITH-F-MAX it it i i et v o st ae i asss 551
SEND-WITH-S-MAX . . v o e e e ettt et e e s e e e e o a e e 553
SEND-WITH-U-MAX . . i it ittt ie e e e e e em e e en e 555
SEND-WITH-F-MIN ot it i i e i v et e i non st v e 557
SEND-WITH-S-MIN o ittt et e vt et v e e ie e e e s 559
SEND-WITH-U-MIN o it et e e e e e e e e e e e 561
SEND-WITH-OVERWRITE o oo it i it it e e i e 563
CET-BIT 5 s 5 5 5% 6 % % % @ 5 6 5 6 o w80 @ % m @ o wums 565
CET-CONTEXT 565 5 5 05 5% 5 55 %% e toom @ 5 @i ® & % e e e mimme 566
SET-FIELD-ALIAS-VP-SET ¢ v vt mnavnnas 567
SET-SAFETY-MODEt vttt v nmm v ot on oo onnsnnan 568
SET-5YSTEM-LEDS-MODE & « s oiine mmmmenn w00 0 mes 0 000 T w0 569
CETVRBET i o uie oo o as st o0 miss s . A7, 08 35w 809 570
SETNPSET-GEOMETRY: ivvaivinin o s e s alii s o e i gowie: 571
SET-MAE o vonssmomimimn mmomncn e w6 8 W RHR S0l sl B S e et &0 s 572

B BREIET oo comuwimssssisioss oo @i Stisws A ssssasis o m wsain sons opmmicssd s b) V4] & 573
WESBBUPT od s s e variaie i i i i s TR S O, s w0 0 % 8 575
COSIBRIN . .o 5o i 500 R i e T T R R W B b 577
F-RESIGNUM o v ovv vr mmiominie sos s a8 49 8 o/s s/6id g aa oo as s 578
SESIEBNUME ¢ v oo on e ey ¢ e s oy neas b sd 858853 579
SESIGHUM i i isvisvanprosamnypasnosss nssss 580
CSIN (i i e i iR TR U R PR R R R U RO NN ERE R 581
FSIN © cconseonivigiisissdcppvmidavaiassussss 582
C-SINH .o it e e e i et e et s b 583
ESINH i s o6 cuvviavmumupiamps soometessssesasssss 584
SPREAD-FROM-PROCESSOR it e i e e e e 585
SPREAD-WITH-C-ADD . . . vttt vt vt m v e st s nn e aeen 586
SPREAD-WITH-F-ADDt i i i i e e ot e oot e e e 587
SPREAD-WITH-S-ADD ot v i v it e i e e e oo ie e e e 588
SPREAD-WITH-U-ADD ¢ i ittt i et a s en e 589
SPREAD-WITH-COPY i i ittt vt s e aaniae s osanos 590
SPREAD-WITH-LOGAND ot o ittt i it it e e e e e e 591
SPREAD-WITH-LOGIOR o v oo i i e e e e s 592
SPREAD-WITH-LOGXOR o it i vt i e i vt ee e aeee s 593
SPREAD-WITH-F-MAX ittt v nn i voenennansnnssns 594
SPREAD-WITH-S-MAX i ittt e e s e e s 595
SPREADAHTHULMAN o 5 v o mmn mumse g e monsiaib n G EH 596
SPREAD-WITH PN oo o o s tams i s saim & 85 4000w mime 597
SPREADWITH:SMIN 500,00 i ie i e s 0 o sl s s s o 598
SPREAD-WITH-U-MIN0ttt n v oot a oo omassnnseoon 599
CESIORT v 0o 05 5 a3 600
FSRRT o oo s s s i aosas T INrsias SR TR RSN M B W B 1) % % % 601
STORE-CONTERT .o 5 oie a0 S e st vaaeian ab S8t & @ & % % W & 602

Contents

F-SUBF-CONST-MULT & . % coo o5 %5 565 6 4866553 o e p e 606
ESUB-MULT . & & 50 50505 5 G 5 6 %0 S5 S B A5 A 0o mmmum s ie oo 608
C-SUBTRACT = s 5 6 % 505 5 5 5 86 4 n mmnsmmensmesnsimasonss 610
F-SUBTRACT . . . e e e e s 612
PRUBNIRAE] s o onssc R s RN 4SS S USE SRR AR EE ST E & & 614
USUBTRACT & « o% v s v 50 65 4 9 5 6 558885 5880 E i o mumeoa 616
S-SUBTRACT-BORROW it e e e 618
U-SUBTRACT-BORROW ittt 620
SWAP e, 622
L T T I T T ™ 623
i I N Y i T i T N T T e 624
CTANH. o uoc i v v i o i u8m s adis PEEE b ronmnmuneness 625
FsTANM o o v 5 00 25 i AV R E R h i s mm s e b nn s 5 e s 626
TIME . ..t tenev i ten v bioessnassis 627
TIMER . .o 629
BE-TO-GRAY=CODE. ..vcoovovi vaman aiad 58 585 555 5 o v 632
U-TO-GRAYEODE o v o & & 6300 30 55t vamms os 2ot st s ot o o 633
TRANSPOSEID 5/ i i1 4 45550305 415 0 mmmreomom v om s sns, 5 stat st 634
F-F-TRUNCATE et e e e e e 637
S-F-TRUNCATE . . oo e e e e e e e e 638
SETRUNCATE cmcomion s ommssonsos oot s 8 g a0 0 6 e e 639
L 2 T 641
U-F-TRUNCATE iivvs60 60075 5057505 0 s ammre core oo imrmr o s e st 643
EVAXRTOMEEE . 0 60555 8 b0 mmm momon om0 m5s 25 1m oo e 6 S 645
MRS RICCEUMEVIN (cnenmmasorns & = = 6 8 S0 & S8 BEpREEREE 646
WARNEBOOT convommoen o s % 055 5 8 55 3 %505 % 5505 50 647
C-WRITE-TO-NEWS-ARRAY ii i, 648
F-WRITE-TO-NEWS-ARRAY oot 651
S-WRITE-TO-NEWS-ARRAYt 655
U-WRITE-TO-NEWS-ARRAY i 659
CWRITE-TO-PROCESSOR: & 5 & 5 5 5 % 5 5 %% % 5 555 5 5 5 mmmmonvmna 662
F-WRITE-TO-PROCESSOR 5 = 5 ¢ ¢ 4 5 55 55 0 5 o v 0 o0 mmonmons 663
S-WRITE-TO-PROCESSOR v, 664
U-WRITE-TO-PROCESSORo i i 665

xii

List of Figures

2.1 65,530 PrOCESSOIS . . « o o v v o o o s o s s s st v s s m s s s s oo a s

xiii

e

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a back-
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond
to the report.

To contact Thinking Machines Customer Support:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

Internet

Electronic Mail: customer—support@think.com
Usenet

Electronic Mail: ames!think!customer-support
Telephone: (617) 234-4000

(617) 876-1111

For Symbolics Users Only

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail facil-
ity for automatic reporting of Connection Machine system errors. When such an error occurs, simply
press Ctrl-M to create a report. In the mail window that appears, the To: field should be addressed
as follows:

To: customer—support@think.com

Please supplement the automatic report with any further pertinent information.

Part I1
Paris Dictionary

o i

20 R e e o e
G e

Version 6.0, February 1991

Chapter 9

Dictionary of Paris Instructions

9.1 Conventions for Alphabetizing

The operations and variables in this dictionary are ordered alphabetically, but with certain
conventions that cause parts of the names to be ignored. The purpose is to ignore “prefixes”

and “suffixes” in the name so as to group instructions that have the same main operation

narmne.

e If the name contains a colon (and most do), the colon and any characters preceding

it (usually “CM”) are ignored.

e If the name begins with “fe-” then those three characters are dropped.

e Similarly, if the name begin with a single letter followed by a hyphen, those two

characters are dropped.

o Similarly, if the name contains a single letter (or digit) surrounded by hyphens, each

such letter (or digit) and the hyphen following it are dropped.

e Any occurrence of the modifier subsequence “-constant-” or “-const-” or *-always-” is

replaced by a single hyphen.

o If the name ends in a hyphen, a digit, and the letter “L” then those three characters

are dropped.

e Any asterisks in the name are dropped.

These rules are to be applied repeatedly and in any order until a name is reduced to a

form where none of the rules apply.

The running heads on the top outside corners of the dictionary pages show the names
with characters dropped according to these rules. Any ties in the ordering are broken by

reconsidering letters dropped by the preceding rules.

As an example, CM:s-logcount-2-2L and CM:u-logcount-2-2L appear together (and in
that order). As another example, CM:extract-news-coordinate-1L and CM:fe-extract-news-

coordinate appear together (and in that order).

69

9.2 Programming Language Syntax

Paris is not a single language, but rather a library to be used within any of several program-
ming languages, including C, Fortran, and Lisp. These languages have different syntactic
conventions for names, operations, and procedure calls. This dictionary strikes a compro-
mise among these conventions that allows straightforward transformations into the specific
syntax of any of these languages. See chapters 6, 7, and 8 for information about language-
specific aspects of the Paris interface.

9.2.1 Syntax of Names

All names in this dictionary are presented in Lisp syntax (specifically, that of Common
Lisp). A simple rule is given below for converting such names to C or Fortran syntax.

Lisp allows names to contain hyphens, asterisks, and colons, among other characters. For
the Lisp interface, Paris follows Common Lisp conventions for names:

e Words in a multiword name are separated with hyphens.
e The name of a global variable is surrounded with asterisks.

* Related names are grouped into a single package, indicated by a common prefix ending
with a colon. Paris uses the prefix CM: for this purpose. Certain names used as
constants, called keywords, have a null prefix, and therefore begin with a colon.

These rules are applied in the order given. Examples of names are CM:set-system-leds-mode,
CM:s-add-2-1L, :news-order (a keyword), and CM: *maximum-exponent-length* (a global vari-
able).

Fortran and Lisp are not case-sensitive, but C is. Therefore, this dictionary presents Paris
instructions names using the upper-case and lower-case letters appropriate for C syntax.
Similarly, to satisfy C and Fortran conventions, Paris names are limited to 32 characters
(including any suffix and the trailing “L”).

The rule for translating a Lisp name to a C or Fortran name has two parts.

e If the Lisp name begins with a colon, first add “CM” to the front.
e Then drop all asterisks, and convert all colons and hyphens to underscores.

Thus the example Lisp names shown above become CM_set_system_leds_mode,
CM_s_add_2_1L, CM_news_order, and CM_maximum_exponent_length in C syntax.

For Fortran, this assumes a compiler that accepts 31-character names and permits un-
derscores in names.

9.2.2 Pseudocode Instruction Descriptions

For most of the instructions two descriptions of the operation are given. One is in English,
and the other is in pseudocode. The pseudocode is written in an ad hoc combination
of programming constructs, mathematical notation, and occasional dabs of English. For
the most part the notation should be self-explanatory, but several features deserve special
remarks.

70

Chapter 9. Dictionary of Paris Instructions

The constructs “let z = y” and “z « y” are superficially similar; each causes z to have
the value y. There are two differences, however. First, a “let” statement merely defines a
temporary variable for later use in the pseudocode description of that instruction, whereas
an arrow assignment represents an actual effect on the CM machine state (usually in the
processor memories) that may be detected by subsequent Paris operations. Second, a “let”
statement is assumed to give z the precise mathematical value computed for y, whereas
an arrow assignment may have to truncate, round, or otherwise approximate the infinitely
precise mathematical result before storing it.

When referring to actual machine state, square brackets are used to indicate a particular
processor. For example, if dest names a field, then dest[k] refers to the contents of that field
within processor k. Actual subscripts are used rather than square brackets for temporary
quantities; thus one has “dest[k] «— 1” but “let S = 1" because the latter does not involve
machine state.

Angle brackets are used to select bits within a field (or sometimes within an integer value,
to be regarded as a field of bits in binary representation). For example, dest[k](0) is the
least significant bit of the field dest within processor k, and dest[k](0 : 3) is the four least
significant bits.

Multiplication is always indicated explicitly by the symbol X, never by juxtaposition. The
notation |z| means the floor of z, the largest integer that is not greater than z; [3.5| = 3
and |—-3.5] = —4. The notation [2] means the ceiling of z, the smallest integer that is not
less than z; [3.5] = 4 and [-3.5] = -3.

The symbols -, A, V, and @ respectively represent logical (or bitwise, if appropriate)
NOT, AND, inclusive OR, and exclusive OR.

The symbols N represents set intersection; U is set union; \ is set difference (thus A\ B
is the set of elements of A that are not in B); and € is the set inclusion predicate (and so
z € A is true if z is an element of A).

Other mathematical notations are used freely, including square roots, summation signs,
and set notation. The purpose of the pseudocode is to provide a clear explanation of the
results of an operation, not to provide clues to performance; the particular algorithm shown
is not necessarily the one used in the implementation.

71

ABS

F-ABS

Computes, in each selected processor, the absolute value of a floating-point source field and
stores it in the destination field.

Formats CM:f-abs-1-1L dest/source, s, €
CM:f-abs-2-1L dest, source, s, e
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s 4 e 4 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-uvp-set do
if context-flaglk] = 1 then
if source(k] > 0 then dest[k] «— source[k]
else dest(k] «— —source[k]

The absolute value of the source operand is placed in the dest operand.

For floating-point numbers, absolute value is calculated by changing the sign bit to 0 (pos-
itive). All other bits in the number are unchanged.

73

ABS

F-C-ABS

The absolute value of the source field is returned in the destination field.

Formats CM:f-c-abs-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.

s, € The significand and exponent lengths for the dest and source fields.
The total length of the dest field in this format is s + e + 1. The
total length of the source field in this format is 2(s + e + 1).

Overlap The dest field must be either identical to source, identical to (source+s+e+1),
or disjoint from source.

Flags overflow-flagis set if floating-point overflow occurs; otherwise it is unaffected.

Context ~ This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — \/(source[k].real)? + (source[k].imag)?
if {(overflow occurred in processor k) then overflow-flagk] « 1

The absolute value of the source operand is placed in the dest operand.

T4

ABS

S-ABS
Computes the absolute value of a signed integer source field and stores it in the destination
field.
Formats CM:s-abs-1-1L dest/source, len
CM:s-abs-2-1L dest, source, len
CM:s-abs-2-2L dest, source, dlen, slen
Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.
len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*,

slen The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
if source[k] > 0 then dest[k] «— source[k]
else dest[k] — —source[k]
if {overflow occurred in processor k) then overflow-flaglk] — 1

else overflow-flaglk] — 0

The absolute value of the source operand is placed in the dest operand. (If the length of
the dest field equals the length n of the source field, overflow can occur only if the source
field contains —2™. If the length of the dest field is greater than the length of the source
field, then overflow cannot occur.)

75

ACOS

C-ACOS

Computes, in each selected processor, the arc cosine of the complex source field and stores
it in the complex destination field.

Formats CM:c-acos-1-1L dest/source, s, e
CM:c-acos-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
s € The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flagis set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if conteat-flaglk] = 1 then
dest[k] « cos™! source[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

The arc cosine of the value of the source field is stored into the dest field.

The following definition of arc cosine determines the range and branch cuts for a complex

number z.
—1ilog (z +1v1— 2:2)

76

ACOS

F-ACOS

Computes, in each selected processor, the arc cosine of the floating-point source field and
stores it in the floating-point destination field.

Formats CM:f-acos-1-1L dest/source, s, e
CM:f-acos-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, € The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is less than —1 or greater than 1; otherwise it is
cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] «— cos™! source|k]
if source(k] < —1 or source[k] > 1 then
test-flaglk] — 1
else
test-flaglk] «— 0

The arc cosine of the value of the source field is stored into the dest field.

7

C-ACOSH

Computes, in each selected processor, the arc hyperbolic cosine of the complex source field
and stores it in the complex destination field.

Formats CM:c-acosh-1-1L dest/source, s, e
CM:c-acosh-2-1L dest, source, s, €

Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
s, € The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context ~ This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — cosh™! source[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1

The arc hyperbolic cosine of the value of the source field is stored into the dest field.

The following definition of inverse hyperbolic cosine determines the range and branch cuts
of a complex number 2z

log (z+(z+ 1) %j—;i—;)

78

ACOSH

F-ACOSH

Computes, in each selected processor, the arc hyperbolic cosine of the floating-point source
field and stores it in the floating-point destination field.

Formats CM:f-acosh-1-1L dest/source, s, e
CM:f-acosh-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
&% The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is less than 1; otherwise it is cleared.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contexzt-flaglk] = 1 then
dest[k] « cosh™" source[k]
if source < 1 then test-flaglk] — 1
else test-flaglk] — 0
if (overflow occurred in processor k) then overflow-flaglk] — 1

The arc hyperbolic cosine of the value of the source field is stored into the dest field.

9

ADD

C-ADD

The sum of two complex source values is placed in the destination field.

Formats

Operands

Overlap

Flags

Context

CM:c-add-2-1L dest/sourcel, source2, s, e
CM:c-add-always-2-1L dest/sourcel, source2, s, e
CM:c-add-3-1L dest, sourcel, source?, s, e
CM:c-add-always-3-1L dest, sourcel, source2, s, e
CM:c-add-constant-2-1L dest/sourcel, source2-value, s, e
CM:c-add-const-always-2-1L dest/sourcel, source2-value, s, e
CM:c-add-constant-3-1L dest, sourcel, source2-value, s, e
CM:c-add-const-always-3-1L dest, sourcel, source2-value, s, e

dest The field ID of the complex destination field.
sourcel The field ID of the complex first source field.
source2 The field ID of the complex second source field.

source2-value A complex immediate operand to be used as the second
source.

s, € The significand and exponent lengths for the dest, sourcel, and
source? fields. The total length of an operand in this format is
2(s+e+ 1).

The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
complex fields are identical if they have the same address and the same format.
It is permissible for all the fields to be identical.

overflow-flagis set if floating-point overflow occurs; otherwise it is unaffected.

This operation is conditional. The destination and flag may be altered only
in processors whose contezi-flag is 1.

Definition

if (always or context-flaglk] = 1) then
dest[k] « sourcel[k] + source2[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1

Two operands, sourcel and source2, are added as complex numbers. The result is stored
into memory. The various operand formats allow operands to be either memory fields or
constants; in some cases the destination field initially contains one source operand.

The constant operand source2-value should be a double-precision complex front-end value
(in Lisp, automatic coercion is performed if necessary). Before the operation is performed,
the constant is converted, in effect, to the format specified by s and e.

80

ADD

F-ADD

The sum of two floating-point source values is placed in the destination field.

Formats

Operands

Overlap

Flags

Context

CM:f-add-2-1L dest/sourcel, source, s, e
CM:f-add-always-2-1L dest [sourcel, source2, s, €
CM:f-add-3-1L dest, sourcel, source?, s, e
CM:f-add-always-3-1L dest, sourcel, source2, s, e
CM:f-add-constant-2-1L dest [sourcel, source2-value, s, e
CM:f-add-const-always-2-1L dest/sourcel, source2-value, s, e
CM:f-add-constant-3-1L dest, sourcel, source2-value, s, e
CM:f-add-const-always-3-1L dest, sourcel, source2-value, s, €

dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point first source field.

source? The field ID of the floating-point second source field.

sourcef-value A floating-point immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, sourcel, and
source? fields. The total length of an operand in this format is
s+e+ 1.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flagis 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the contezi-flag.

Definition

For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] «— sourcel[k] + source2 k]
if {(overflow occurred in processor k) then overflow-flaglk] « 1

81

ADD

Two operands, source! and source?, are added as floating-point numbers. The result is
stored into memory. The various operand formats allow operands to be either memory
fields or constants; in some cases the destination field initially contains one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

82

ADD

S-ADD

The sum of two signed integer source values is placed in the destination field. Carry-out
and overflow are also computed.

Formats

Operands

Overlap

Flags

Context

CM:s-add-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-add-2-1L dest/sourcel, source2, len
CM:s-add-3-1L dest, sourcel, source2, len

CM:s-add-constant-2-1L dest/sourcel, source2-value, len
CM:s-add-constant-3-1L dest, sourcel, source2-value, len

dest The field ID of the signed integer destination field.
sourcel The field ID of the signed integer first source field.
source?2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second

source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length#,

dlen For CM:s-add-3-3L, the length of the dest field. This must be no

smaller than 2 but no greater than CM: *maximum-integer-lengthx*.

sleni For CM:s-add-3-3L, the length of the source! field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slen2 For CM:s-add-3-3L, the length of the source2field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Twointeger
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

83

ADD

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] «— sourcel[k] + source2[k]
carry-flaglk] « (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] — 0

Two operands, sourcel and source2, are added as signed integers. The result is stored into
the memory field dest. The various operand formats allow operands to be either memory
fields are constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag may be affected by these operations. If overflow occeurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

84

ADD

U-ADD

The sum of two unsigned integer source values is placed in the destination field. Carry-out
and overflow are also computed.

Formats

Operands

Overlap

Flags

Context

CM:u-add-3-3L dest, sourcel, source2, dlen, sleni, slen2
CM:u-add-2-1L dest/sourcel, source2, len
CM:u-add-3-1L dest, sourcel, source2, len

CM:u-add-constant-2-1L dest/sourcel, source2-value, len
CM:u-add-constant-3-1L dest, sourcel, source2-value, len

dest The field ID of the unsigned integer destination field.
sourcel The field ID of the unsigned integer first source field.
source? The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

dlen For CM:u-add-3-3L, the length of the dest field. This must be non-
negative and no greater than CM: *maximum-integer-length*.

slent For CM:u-add-3-3L, the length of the source! field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

slen2 For CM:u-add-3-3L, the length of the source2 field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Twointeger
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

85

ADD

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — sourcel[k] + source2[k]
carry-flagk] « (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] « 1

else overflow-flaglk] « 0

Two operands, source! and source2, are added as unsigned integers. The result is stored into
the memory field dest. The various operand formats allow operands to be either memory
fields are constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag are altered by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

86

ADD-CARRY

S-ADD-CARRY

The sum of the carry-flag and two signed integer source values is placed in the destination
field. Carry-out and overflow are also computed.

Formats

Operands

Overlap

Flags

Context

CM:s-add-carry-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-add-carry-2-1L dest/sourcel, source2, len
CM:s-add-carry-3-1L dest, sourcel, source2, len

dest
sourcel
source?

len

dlen

slent

slen2

The field ID of the signed integer destination field.
The field ID of the signed integer first source field.
The field ID of the signed integer second source field.

The length of the dest, sourcel, and source? fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-

length*.

For CM:s-add-carry-3-3L, the length of the dest field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length¥.

For CM:s-add-carry-3-3L, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM: ¥*maximum-integer-
lengthx.

For CM:s-add-carry-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
lengthx*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

87

ADD-CARRY

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — sourcel[k] + source2[k] + carry-flag(k]
carry-flaglk] « (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] — 1
else overflow-flaglk] « 0

Two operands, source! and source2, are added as signed integers. The carry-flag is used as
the carry-in to the low-order bits; the net effect is to compute the sum of sourcel, source2,
and carry-flag. The various operand formats allow operands to be either memory fields are
constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag may be affected by these operations. If overflow occurs,

then the destination field will contain as many of the low-order bits of the true result as
will fit.

88

ADD-CARRY

U-ADD-CARRY

The sum of the carry-flagand two unsigned integer source values is placed in the destination
field. Carry-out and overflow are also computed.

Formats CM:u-add-carry-3-3L dest, sourcel, source2, dlen, slenl, slen?
CM:u-add-carry-2-1L dest/sourcel, source2, len
CM:u-add-carry-3-1L dest, sourcel, source2, len
Operands dest The field ID of the unsigned integer destination field.
sourcel The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.
len The length of the dest, sourcel, and source? fields. This must be
non-negative and no greater than CM:*maximum-integer-lengthx.

dlen For CM:u-add-carry-3-3L, the length of the dest field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

slenl For CM:u-add-carry-3-3L, the length of the sourcel field. This
must be non-negative and no greater than CM:*maximum-integer-
lengthx.

slen2 For CM:u-add-carry-3-3L, the length of the source2 field. This
must be non-negative and no greater than CM: *maximum-integer-
lengthx*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.
overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
dest[k] — sourcel[k] + source2[k] + carry-flag(k]

89

ADD-CARRY

carry-flaglk] — (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] — 0

Two operands, source! and source2, are added as unsigned integers. The carry-flag is used
as the carry-in to the low-order bits; the net effect is to compute the sum of sourcel, source2,
and carry-flag. The various operand formats allow operands to be either memory fields are
constants; in some cases the destination field initially contains one source operand.

The carry-flag and overflow-flag may be affected by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

90

ADD-FLAGS

S-ADD-FLAGS

The carry-out and overflow are computed for the sum of two signed integer source values.
The sum itself is not stored.

Formats

Operands

Overlap

Flags

Context

CM:s-add-flags-2-1L sourcel, source2, len

dest The field ID of the signed integer destination field.
sourcel The field ID of the signed integer first source field.
source2 The field ID of the signed integer second source field.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The flags may be altered only in processors
whose contezt-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
Compute sourcel[k] + source2(k]|
carry-flaglk] « (carry out in processor k)
if (overflow occurred in processor k) then overflow-flagk] « 1
else overflow-flaglk] « 0

Two operands, sourcel and source, are added as signed integers. The sum is not stored;
only the carry-flag and overflow-flag are affected.

91

ADD-FLAGS

U-ADD-FLAGS

The carry-out and overflow are computed for the sum of two unsigned integer source values.
The sum itself is not stored.

Formats CM:u-add-flags-2-1L dest, sourcel, source2, len

Operands dest The field ID of the unsigned integer destination field.
sourcel The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM: *maximum-integer-lengthx.

Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags carry-flag is set if there is a carry-out from the high-order bit position; oth-
erwise it is cleared.

overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The flags may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
Compute sourcel[k] + source2[k]
carry-flaglk] « (carry out in processor k)
if (overflow occurred in processor k) then overflow-flaglk] « 1

else overflow-flaglk] < 0

Two operands, source! and source2, are added as unsigned integers. The sum is not stored;
only the carry-flag and overflow-flag are affected.

92

ADD-MULT

F-ADD-MULT

Calculates a value (a + z)b and places it in the destination.

Formats CM:f-add-mult-1L dest, sourcel, source2, source3, s, e
CM:f-add-mult-always-1L dest, sourcel, source2, sourced, s, e
CM:f-add-const-mult-1L dest, sourcel, source2-value, source3, s, e
CM:f-add-const-mult-always-1L dest, sourcel, source2-value, source3, s, e
CM:f-add-mult-const-1L dest, sourcel, source2, source3-value, s, e

CM:f-add-mult-const-always-1L dest, sourcel, source2, source3-value, s, €
CM:f-add-const-mult-const-1L dest, sourcel, source2-value, source3-value, s, €
CM:f-add-const-mult-const-a-1L dest, sourcel, source2-value, source3-value, s, €

Operands dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point first source (addend) field.
source2 The field ID of the floating-point second source (augend) field.

source2-value A floating-point immediate operand to be used as the second
source (augend).

sourced The field ID of the floating-point third source (multiplier) field.

sourced-value A floating-point immediate operand to be used as the third
source (multiplier).

s, e The significand and exponent lengths for the dest, sourcel, sourcez2,
and sourced fields. The total length of an operand in this format
iss+e+4 1.

Overlap The fields sourcel, source2, and source3 may overlap in any manner. BEach
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flaglk] = 1) then
dest[k] — (sourcel[k] + source2[k]) x source3[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

93

ADD-MULT
Two operands source! and source2 are added as floating-point numbers, and then the sum

is multiplied by a third operand source8. The result is stored in the destination field.

The various formats allow the second source operand to be either a memory field or a
constant.

The constant operand source2-value or source3-value should be a double-precision front-
end value (in Lisp, automatic coercion is performed if necessary). Before the operation is
performed, the constant is converted, in effect, to the format specified by s and e.

A call to CM:f-add-mult-1L is equivalent to the sequence

CM:f-add-3-1L temp, sourcel, source2, s, e
CM:f-multiply-3-1L dest, temp, source3, s, e

but may be faster.

94

ADD-OFFSET-TO-FIELD-ID

ADD-OFFSET-TO-FIELD-ID

Returns a new field 1D that specifies the same field but possibly a different offset within
that field.

Formats result « CM:add-offset-to-field-id field-id, offset

Operands field-id A field ID.
offset A signed integer, the number of bits by which to offset the field-id.

Result A field ID, identifying the newly offset field 1D.

Context This operation is unconditional. It does not depend on the contezt-flag.

Associates a new field 1D with the portion of the specified field that begins at the specified
bit offset. The size of the field referenced by the new field 1D is equal to the size of the
original field minus the offset. The offset must be smaller than the size in bits of the original
field. Offset fields may themselves have offset fields formed from them.

95

ALLOCATE-HEAP-FIELD

ALLOCATE-HEAP-FIELD

Allocates a heap field of specified length in the current VP set and returns a unique identifier.

Formats result « CM:allocate-heap-field [en
Operands len An unsigned integer, the length in bits of the field to be allocated.

Result A field ID, identifying the new field 1D.

Context This operation is unconditional. It does not depend on the contezt-flag.

A new field of length len is allocated in the heap within the current VP set. A field 1p for
the newly created field is returned.

96

ALLOCATE-HEAP-FIELD-VP-SET

ALLOCATE-HEAP-FIELD-VP-SET

Allocates a new heap field of the specified length in the specified VP set and returns a unique
identifier.

Formats result «— CM:allocate-heap-field-vp-set len, vp-set-id

Operands len An unsigned integer, the length in bits of the field to be allocated.

vp-set-id A VP set ID. This may specify any vP set, including the current
VP set.

Result A field ID, identifying the new field ID.

Context This operation is unconditional. It does not depend on the contexzt-flag.

A new field of length len is allocated on the heap within the specified vp set. A field ID for
the newly created field is returned.

97

ALLOCATE-STACK-FIELD

ALLOCATE-STACK-FIELD

Allocates a new stack field of specified length in the current VP set and returns a unique
identifier.

Formats result « CM:allocate-stack-field len
Operands len An unsigned integer, the length, in bits, of the field to be allocated.
Result A field ID, identifying the new field 1D.

Context This operation is unconditional. It does not depend on the contezt-flag.

A new field of length len is allocated on the stack within the current VP set. A field 1p for
the newly created field is returned.

98

ALLOCATE-STACK-FIELD-VP-SET

ALLOCATE-STACK-FIELD-VP-SET

Allocates a new stack field of the specified length in the specified VP set and returns a
unique identifier.

Formats result « CM:allocate-stack-field-vp-set len, vp-set-id

Operands len An unsigned integer, the length in bits of the field to be allocated.

vp-set-id A VP set ID. This may specify any VP set, including the current
VP set.

Result A field ID, identifying the new field I1D.

Context This operation is unconditional. It does not depend on the contezt-flag.

A new field of length len is allocated on the stack within the specified vP set. A field ip for
the newly created field is returned.

99

ALLOCATE-VP-SET

ALLOCATE-VP-SET

Create a new VP set, within which fields may be allocated.

Formats result « CM:allocate-vp-set geometry-id
Operands geometry-id A geometry TID.
Result A VP set ID, identifying the newly allocated VP set.

Context This operation is unconditional. It does not depend on the context-flag.

This operation returns a vp-set-id for a newly created VP set. This may be given to other
Paris operations in order to create memory fields in which data may be stored. The size
and shape of the VP set is determined by the geometry specified by the geometry-id. It is
possible to alter the geometry later (by using CM:set-vp-set-geometry), but the total number
of virtual processors in the VP set remains forever fixed.

100

ARRAY-FORMAT

FE-ARRAY-FORMAT

This front-end instruction returns an array format descriptor. An array format descriptor
may be passed to any array transfer instruction to specify a front-end array format, although
this is not required.

See also CM:fe-packed-array-format and CM:fe-structure-array-format.

Formats result « CM:fe-array-format [cm-element-size, array-element-size,
stride, ordering]

Operands em-element-size A signed integer immediate operand to be used as the
number of bits each Connection Machine element occupies in the
front-end array. This must be a power of two between 1 and 128.

In Lisp/Paris this is a keyword argument. If not specified, it
defaults to array-element-size. If array-element-size is also not
specified, cm-element-size defaults to the size of the Connection
Machine field being read or written.

array-element-size A signed integer immediate operand to be used as the
number of bits in each front-end array element. This must be a
power of two between 1 and 128.
In Lisp/Paris this is a keyword argument. If not specified,
array-element-size defaults to the actual front-end element size
or, if the front-end array elements are general (i.e., of type t),
array-element-size defaults to the value of cm-element-size.

stride A signed integer immediate operand to be used as the distance,
in units of array-element-size, between adjacent front-end array
elements. This must be either a null value or a positive integer
between 1 and 65,535 that obeys the following restrictions. The
product (stride X array-element-size) must be either a multiple of
cm-element-size or a multiple of 32 bits. If stride is specified as a
null value (null in C, 0 in Fortran, nil in Lisp), it defaults to the
minimum legal value. In Lisp/Paris this is a keyword argument.

ordering The order in which Connection Machine elements are stored
in a front-end array. The value of ordering must be either a
null value or one of: :front-end-order, :Isb-first (least significant
bit first), or :msb-first (most significant bit first). (These are
CM_front_end_order, CM_lIsb_first, or CM_msb_first from C or For-
tran.) If specified as a null value (null in C, 0 in Fortran, nil in
Lisp), it defaults to :front-end-order, which is the standard order-
ing for the front end. (Most significant bit first on Suns; least

101

ARRAY-FORMAT
significant bit first on VAXes.) In Lisp/Paris this is a keyword
argument.
Result The array format descriptor specified.

Context This is a front-end operation. It does not depend on the value of the contezt-

flag.

The return value is a format descriptor for arrays; it can be passed to any array transfer
instruction as the value of format. CM:fe-array-format provides the most generality in spec-
ifying an array format for tranfers. More specific descriptors may be obtained with CM:fe-
packed-array-format and CM:fe-structure-array-format.

The value of cm-element-size defines the unit of measure for the fe-offset-vector argument
to the CM:read-from-news-array and CM:write-to-news-array instructions.

The value of array-element-size defines the unit of measure for the fe-dimension-vector
argument to the CM:read-from-news-array and CM:write-to-news-array instructions. How-
ever, for extended-element array transfers, the unit of measure for the fe-dimension-vector
argument is (array-element-size X stride).

If cm-element-size is less than array-element-size, a packed transfer is specified. That is,
multiple Connection Machine array elements are packed into each front-end array element.
If cm-element-size is greater than array-element-size, an extended-element array is specified.
That is, more than one front-end array element is used to store each Connection Machine
array element.

For most arrays, the value of stride is 1. For packed array transfers, stride must be 1. For
extended-element array transfers, the stride must be large enough to ensure that consecutive
elements do not overlap on the front end. To read or write every other (non-packed, non-
extended) front-end array element, use a stride value of 2.

For a normal (non-packed, non-extended) array transfer, specify ordering as a null value.

A packed format with :lsb-first ordering stores the Connection Machine element with the
smallest coordinates in the least significant bits of the array element. A packed format
with :msb-first ordering stores the CM element with the largest coordinates in the most
significant bits of the front-end array.

An extended-element format with :Isb-first ordering stores the low-order bits of the Con-
nection Machine element in the front-end array location with the smallest coordinate. An
extended-element format with : msb-first ordering stores the high-order bits of the CM ele-
ment in the front-end array location with the smallest coordinate.

102

AREF

AREF

Takes array elements specified by a per-processor index and copies them into a fixed desti-

nation.

Formats

Operands

Overlap

Flags

Context

CM:aref-2L dest, array, indez, dlen, indez-len, indez-limit, element-len

dest The field ID of the destination field.
array The field ID of the source array field.
index The field ID of the unsigned integer index into the array field.

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length#.

indez-len The length of the indez field. This must be non-negative and no
greater than CM:*maximum-integer-length*,

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez.

element-len An unsigned integer immediate operand to be used as the

length of an array element.

The fields array and indez may overlap in any manner. However, the array
and indez fields must not overlap the dest field.

test-flag is set if the value in the indez field is less than the indez-limit;
otherwise it is cleared.

This operation is conditional. The destination and flag may be altered only
in processors whose contexi-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if contexzt-flaglk] = 1 then

if indez[k] < indez-limit then
let p = indez[k] x element-len
dest[k] — array[k](p: p + dlen — 1)
test-flaglk] « 1

else
test-flag[k] « 0

This is a simple form of array reference, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field indez. This is used to

103

AREF

index into an erray, whose length in bits should be indez-limit X element-len. The element
indexed (or a portion of it) is copied into dest in all selected processors. Thus different
processors may access different elements of their arrays.

More precisely, a field of length dlen and starting at address array + i x element-len, where
¢ is the unsigned number stored at indez, is copied to dest in all selected processors.

The argument indez-limit is one greater than the largest allowed value of the index. Those
processors that have index values greater than or equal to indez-limit do not alter the value
of the destination field; they also clear test-flag. All processors in which the index field is less
than indea-limit set test-flag. The argument element-len is the length of individual elements
of the array. Usually this will be the same as dest-length, but for certain applications it is
worthwhile for it to differ. For example, from an array of 128-bit records one may fetch just
one 16-bit component of an indexed record by letting dlen be 32, letting element-len be 128,
and by offsetting the array address by the offset within each record of the 16-bit quantity
to be fetched. As another example, to extract a 4-character substring from a string of 8-bit
characters, one may let dlen be 32 and element-len be 8.

104

AREF32

AREF32

Takes array elements specified by a per-processor index and copies them into a fixed desti-
nation. The array is stored in a special format that allows fast access.

Formats CM:aref32-2L dest, array, indez, dlen, index-len, indez-limit
CM:aref32-always-2L dest, array, indez, dlen, indez-len, indez-limat
Operands dest The field ID of the destination field.
array The field ID of the source array field. This must contain data
stored in a special format by either CM: aset32 or CM:transpose32.
indez The field ID of the unsigned integer index field. This is used as
the per-processor index into the array.
dlen The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*. This is taken as the
array element length and must be a multiple of 32.
indez-len The length of the indez field. This must be non-negative and no
greater than CM: *maximum-integer-length*.
indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez. This is taken as the array
extent.
Overlap The fields array and index may overlap in any manner. However, the array
and indez fields must not overlap the dest field.
Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.
The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.
Definition For every virtual processor k in the current-vp-set do

if (always or contezt-flaglk] = 1) then
if indez(k] < indez-limit then
let » = geometry-total-vp-ratio(geomeiry(current-vp-set))
let m = |_§J mod 32
let © = indez[k]
for all j such that 0 < j < dlen do
dest[k](j) — array[k — m X 7 + (7 mod 32) x 7]{32 x (i + HEJ))
else
{error)

105

AREF32

This is a simple form of array reference for parallel arrays whose elements are stored
across the memory of individual processors. To each processor belongs an array of extent
indez-limit with elements of length dlen.

The array element indexed by each active processor is copied into the dest field of that
processor. Different processors may reference different elements of their arrays. For this
reason, this form of array referencing is known as indirect addressing.

Each processor has an array index stored in the field indez. This is used to index into an
area of CM memory, array, whose allocated length in bits should be at least

dlen

(index-limit X [—-ﬁ]) x 32

The argument indez-limit is one greater than the largest allowed value of the index. It is
an error for any indez value to equal or exceed this limit.

A field of length dlen, and starting at address array + i x 32, where i is the the unsigned
number stored at indez, is copied to dest in all selected processors. Even this is not quite
accurate, because the array data is not organized in the same manner as for CM: aref. Instead,
it is organized in a peculiar way for fast per-processor access. Parallel arrays stored in this
format are termed slicewise parallel arrays.

Slicewise parallel array data is arranged with successive bits stored in successive processors
within groups of 32 virtual processors. Thus, slicewise array data belonging to one processor
is spread over the memories of the 32 processors in its group and the memory of each
processor holds data belonging to all 32 processors.

A region of memory set aside for a slicewise array of the format required by CM: aref32 should
be accessed only through the operations CM:aset32 and CM:aref32, related operations such
as CM: get-aref32 and CM:send-aset32-overwrite, or operations that copy the array as a whole
from all processors (such as I/O operations). It is also possible to operate on this memory
in blocks of 32-bit square matrices with the CM:transpose32 instruction.

106

AREF32-SHARED

AREF32-SHARED

Takes an array element specified by a per-processor index and copies it into to a fixed
destination. The source array is stored in a special format that allows fast access, and is
accessed in such a way that all the virtual processors within a group of 32 physical processors
share the same array.

Formats CM:aref32-shared-2L dest, array, indez, dlen, indez-len, indez-limit
CM:aref32-shared-always-2L dest, array, indez, dlen, indez-len, index-limit
Operands dest The field ID of the destination field.
array The field ID of the source array field. This must be a contiguous
region in ¢M memory. It need not be in the current vp set.
index The field ID of the unsigned integer index field. This is used as
the per-processor index into array.
dlen The length of the dest field. This must be non-negative and
no greater than CM:*maximum-integer-length*. This is normally
taken as the length of array elements and must be a multiple of
32. As a special case, dlen may be 8 or 16 and, if so, access into
both the source and the destination fields is offset appropriately.
indez-len The length of the index field. This must be non-negative and no
greater than CM:*maximum-integer-length*.
indez-limit An unsigned integer immediate operand to be used as the
ezclusive upper bound for the index. This is taken as the extent of
array if dlen is a multiple of 32. However, if dlen is 8 or 16, then
indez-limit is taken as the number of 32-bit elements that would
fit into the array field.
Overlap The fields array and indez may overlap in any manner. However, the array
and indez fields must not overlap the dest field.
Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flagis 1.
The always operations are unconditional. The destination may be altered
regardless of the value of the contezt-flag.
Definition For every virtual processor k in the current-vp-set do

if (always or contezt-flaglk] = 1) then
if indez[k] < indez-limit then

107

AREF32-SHARED

for all j such that 0 < j < dlen do
dest[k](j) «
array [32 lg—};—rj + (7 mod 32)} (indem-limit l?‘»LZJ + indez[k])
else
(error)

where r is the VP ratio, and where j is the bit position in each field.

This is a simple form of array reference for arrays whose elements are stored across the
memory of individual processors and accessed in such a way that many processors appear
to share a single array of extent indez-limit with elements of length dlen.

The shared array element (or a portion of it) indexed is copied into dest in all (selected)
processors. Different processors may access different elements of the shared array. For this
reason, this form of array referencing is known as indirect addressing.

Each processor has an array index stored in the field indez. This is used to index into array.
The argument indez-limit is one greater than the largest allowed value of the index. It is
an error for any indez value to equal or exceed this limit.

The data within the source array area is not organized in the same manner as for CM: aref;
instead, it is organized in a peculiar way for fast per-processor access. Shared arrays stored
in this format are termed slicewise shared arrays.

Slicewise shared array data is arranged with successive bits stored in successive processors,
within groups of 32 physical processors. Each 32-bit word of each element is stored sepa-
rately in processor memories, as follows: The low-order 32 bits of all elements are grouped
together across processor memories in a field of length 32 x index-limit bits. Similarly, the
next 32 bits of all elements are grouped together, and so on, up to the high-order bits of all
array elements. This data format allows fast hardware-supported access to the individual
elements of a shared array.

A region of memory set aside for an array of the format required by CM: aref32-shared must
be contiguous in memory. It must therefore be allocated all at once, at a VP ratio of 1, with
a single call to CM:allocate-stack-field or to CM:allocate-heap-field. Alternatively, from Lisp,
the memory may be allocated within a with-stack-field form at a vp ratio of 1.

The area of CM memory occupied by array should be allocated at a VP ratio of 1 as a field
whose length in bits is exactly

indez-limit x [dlen]

32

Shared array memory should be accessed only with the operations CM:aref32-shared and
CM:aset32-shared, or with operations that copy the array as a whole from all Processors
(such as I/O operations). Data in such a region of memory may, however, be reoriented
with the CM:transpose32 instruction.

108

AREF32-SHARED

As a special case, if the dlen argument is specified as 8 or 16, then each processor accesses
one byte or one half-word of a 32-bit element. The indez-limit argument must be specified
as the extent of the array when considered to contain 32-bit elements. Nonetheless, valid
index values are integers 0 through 2 or 4 times this indez-limit. The indez argument may
be thought of as consisting of two fields, one that indexes a 32-bit array element and one
that indexes an 8- or 16-bit offset into that element. To index bytes, the low 2 bits of indez
specify the offset. To index half-words, the low 1 bit of indezx specifies the offset.

109

ASET

ASET
Stores into an array element specified by a per-processor index a value copied from a fixed
source field.
Formats CM:aset-2L source, array, indez, slen, indez-len, index-limit, element-len
Operands source The field ID of the source field.
array The field ID of the destination array field.
indez The field ID of the unsigned integer index into the array field.
slen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-lengthx,
indez-len The length of the indez field. This must be non-negative and no
greater than CM:*maximum-integer-lengthx,
indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez.
element-len An unsigned integer immediate operand to be used as the
length of an array element.
Overlap The fields source and indez may overlap in any manner. However, the source
and indez fields must not overlap the array field.
Flags test-flag is set if the value in the indez field is less than the indez-limit;
otherwise it is cleared.
Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
if indez[k] < indez-limit then.
let p = indez[k] X elemeni-len
array[k](p : p+ slen — 1) « source[k]
test-flaglk] — 1
else
test-flaglk] «— 0

This is a simple form of array modification, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field indez. This is used to

110

ASET

index into an array, whose length in bits should be indez-limit x element-len. The source
field is copied into the element indexed (or a portion of it) in all selected processors. Thus
different processors may modify different elements of their arrays.

More precisely, the source field is copied to a field of length slen and starting at address
array 4+ i X element-len, where i is the unsigned number stored at indez, in all selected
Pprocessors.

The argument indez-limit is one greater than the largest allowed value of the index. Those
processors that have index values greater than or equal to indez-limit do not alter the value
of the destination field; they also clear test-flag. All processors in which the index field is less
than indez-limit set test-flag. The argument element-lenis the length of individual elements
of the array. Usually this will be the same as dest-length, but for certain applications it
is worthwhile for it to differ. For example, within an array of 128-bit records one may
store into just one 16-bit component of an indexed record by letting slen be 32, letting
element-len be 128, and by offsetting the array address by the offset within each record of
the 16-bit quantity to be modified. As another example, to modify a 4-character substring
of a string of 8-bit characters, one may let slen be 32 and element-len be 8.

111

ASET32

ASET32

Copies data from a fixed source to the destination array elements specified by a per-processor
index. The destination array is stored in a special format that allows fast access.

Formats CM:aset32-2L source, array, indez, slen, indez-len, index-limit

Operands source The field ID of the source field.
array The field ID of the destination array field.

index The field ID of the unsigned integer index field. This is used as
the per-processor index into array.

slen The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*. This is taken as the
array element length and must be a multiple of 32.

indez-len The length of the index field. This must be non-negative and no
greater than CM:*maximum-integer-lengthx.

indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez. This is taken as the array
extent.

Overlap The fields source and indez may overlap in any manner. However, the source
and indez fields must not overlap the array field.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if ndez(k] < indez-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))
let m = HJ mod 32
let i = indez k]
for all j such that 0 < j < slen do
arraylk — m x r + (j mod 32) x |(32 x (i + iﬁ%})) — source[k](j)
else
(error)

This is a simple form of array modification for parallel arrays whose elements are stored
across the memory of individual processors. To each processor belongs an array of extent
indez-limit with elements of length slen.

112

ASET32

The source field value for each active processor is copied into the indexed array element
belonging to that processor. Thus different processors may modify different elements of
their arrays. For this reason, this form of array access is known as indirect addressing.

Each processor has an array index stored in the field indez. This is used to index into an
area of CM memory, array, whose allocated length in bits should be at least

(éndez-limit X [sgﬂD X 32
32

The argument indez-limit is one greater than the largest allowed value of the index. It is
an error for any indez value to equal or exceed this limit.

In all selected processors, the source field is copied to a field of length slen and starting at
address array +1i x 32, where i is the the unsigned number stored at indez. Even this is not
quite accurate, because the data within the destination array area is not organized in the
same manner as for CM:aset. Instead, it is organized in a peculiar way for fast per-processor
access. Parallel arrays stored in this format are termed slicewise parallel arrays.

Slicewise parallel array data is arranged with successive bits stored in successive processors
within groups of 32 virtual processors. Thus, slicewise array data belonging to one processor
is spread over the memories of the 32 processors in its group and the memory of each
processor holds data belonging to all 32 processors.

A region of memory set aside for a slicewise array of the format required by CM:aset32 should
be accessed only through the operations CM:aref32 and CM:aset32, related operations such
as CM:send-aset32-overwrite and CM: get-aref32, or operations that copy the array as a whole
from all processors (such as I/O operations). It is also possible to operate on this memory
in blocks of 32-bit square matrices with the CM:transpose32 instruction.

113

ASET32-SHARED

ASET32-SHARED

Copies data from a fixed source to the destination array elements specified by a per-processor
index. The array is stored in a special format that allows fast access, and is accessed in
such a way that all the virtual processors within a group of 32 physical processors share the
same array.

Formats CM:aset32-shared-2L source, array, indez, slen, index-len, indez-limit

Operands source The field ID of the source field.

array The field ID of the destination array field. This must be contiguous
region in CM memory. It need not be in the current vp set.

index The field ID of the unsigned integer index field. This is used as
the per-processor index into the array.

slen The length of the source field. This must be non-negative and
no greater than CM:*maximum-integer-length*x, This must be a
multiple of 32 and is taken as the array element length.

indez-len The length of the indez field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez. This is taken as the extent
of array.

Overlap The fields source and indez may overlap in any manner. However, the source
and indez fields must not overlap the array field.

Context ~ This operation is conditional, but whether data is copied depends only on the
contezt-flag of the originating processor; the data, once transmitted to the
receiving processor, is stored into the field indicated by array regardless of
the context-flag of the receiving processor.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if indez(k] < indez-limit then
for all j such that 0 < j < dlen do
array [32 [%J + (j mod 32]] (indea-timit [ggj + indez[k])
— source[k](7)
else
(error)

114

ASET32-SHARED

where 7 is the VP ratio, and where j is the bit position in each field.

For any two active virtual processors, k and k', if indez[k] = indez[k'], then
either source[k] or source[k'] is stored in dest, depending upon the implemen-
tation.

This is a simple form of array modification for arrays whose elements are stored across the
memory of individual processors and accessed in such a way that many processors appear
to share a single array of extent indez-limit with elements of length slen.

The source field in each selected processor is copied into the array element (or a portion of
it) indexed. Different processors may modify different elements of the shared array. For this
reason, this form of array referencing is known as indirect addressing. If several processors
sharing the same array attempt to modify the same element in a single CM:aset32-shared
operation, then one of the values is stored and the rest are discarded.

Each processor has an array index stored in the field indez. This is used to index into array.
The argument indez-limit is one greater than the largest allowed value of the index. It is
an error for any indez value to equal or exceed this limit.

The data within the destination array area is not organized in the same manner as for
CM:aset; instead, it is organized in a peculiar way for fast per-processor access. Shared
arrays stored in this format are termed slicewise shared arrays.

Slicewise shared array data is arranged with successive bits stored in successive processors,
within groups of 32 physical processors. Each 32-bit word of each element is stored sepa-
rately in processor memories, as follows: The low-order 32 bits of all elements are grouped
together across processor memories in a field of length 32 X indez-limit bits. Similarly, the
next 32 bits of all elements are grouped together, and so on, up to the high-order bits of all
array elements. This data format allows fast hardware-supported access to the individual
elements of a shared array.

A region of memory set aside for an array of the format required by CM:aset32-shared must
be contiguous in memory. It must therefore be allocated all at once, at a VP ratio of 1, with
a single call to CM:allocate-stack-field or to CM:allocate-heap-field. Alternatively, from Lisp,
the memory may be allocated within a with-stack-field form at a vP ratio of 1.

An area of CM memory occupied by array should be allocated at a vP ratio of 1 as a field
whose length in bits is exactly

indez-limit X [slﬂ"
32

Shared array memory should be accessed only with the operations CM:aref32-shared and
CM:aset32-shared, or with operations that copy the array as a whole from all processors
(such as I/O operations). Data in such a region of memory may, however, be reoriented
with the CM:transpose32 instruction.

115

ASIN

C-ASIN

Calculates the arc sine of the complex source field values and stores the result in the complex
destination field.

Formats CM:c-asin-1-1L dest/source, s, e
CM:c-asin-2-1L dest, source, s, e
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] « sin~' source[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1

The arc sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

The following definition of arc sine determines the range and branch cuts of a complex

number z.
—ilog (i X z+ /1= 2?)

116

ASIN

F-ASIN

Calculates the arc sine of the floating-point source field values and stores the result in the
floating-point destination field.

Formats CM:f-asin-1-1L dest/source, s, e
CM:f-asin-2-1L dest, source, s, €
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, € The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e+ 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is less than —1 or greater than 1; otherwise it is
cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] « sin~" source[k]
if source[k] < —1 or source(k] > 1 then
test-flaglk] « 1
otherwise test-flaglk] < 0

The arc sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e= 8 or s = 52 and e = 11.

117

ASINH

C-ASINH

Calculates the arc hyperbolic sine of the complex source field values and stores the result
in the complex destination field.

Formats CM:c-asinh-1-1L dest/source, s, e
CM:c-asinh-2-1L dest, source, s, e
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — sinh™" source[k]

The arc hyperbolic sine of the value of the source field is stored into the dest field.

The following definition of the inverse hyperbolic sine determines the range and branch cuts
for a complex number 2
log (z +v1 +22)

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23and e=8or s =52 and e = 11.

118

ASINH

F-ASINH

Calculates the arc hyperbolic sine of the floating-point source field values and stores the
result in the floating-point destination field.

Formats CM:f-asinh-1-1L dest/source, s, e
CM:f-asinh-2-1L dest, source, s, €
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.

s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag s set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] — sinh™" source[k]
if (overflow occurred in processor k) then overflow-flagk] « 1

The arc hyperbolic sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23and e= 8or s = 52 and e = 11.

119

ATAN

C-ATAN

Calculates the arc tangent of the complx source field values and stores the result in the
complex destination field.

Formats CM:c-atan-1-1L dest/source, s, e
CM:c-atan-2-1L dest, source, s, e
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
s, € The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.
test-flag is set if source contains i or —i, where i C(0,1) ; otherwise it is
cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — tan~! source[k]

The arc tangent of the value of the source field is stored into the dest field.

The following definition for arc tangent determines the range and branch cuts for a complex

number z

—ilog ((1+i><z)x fﬁlz?_))

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23and e =8 or s = 52 and e = 11.

120

ATAN

F-ATAN

Calculates the arc tangent of the floating-point source field values and stores the result in
the floating-point destination field.

Formats CM:f-atan-1-1L dest/source, s, €
CM:f-atan-2-1L dest, source, s, €
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.
Qverlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.
Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flagis 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] =1 then
dest[k] « tan~! source[k]

The arc tangent of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

121

ATAN?2

F-ATAN2

Calculates the arc tangent of the quotient of two floating-point source fields and stores the
result in the floating-point destination field.

Formats CM:f-atan2-3-1L dest, sourcel, source2, s, e

Operands dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point y source field.

source2 The field ID of the floating-point x source field.

s, € The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+ 1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flagis set if floating-point overflow occurs; otherwise it is unaffected.

test-flag is set if sourcel and source2 are both zero; otherwise it is unaffected.

Context ~ This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then

if source2[k] > 0 then
dest[k] — tan~1 %{%}
else if source2[k] < 0 then
dest[k] + sign(source1[k]) x (?r — tan™! %%D
else if sourcel[k] = 0 A sign(source2[k]) > 0 then
dest[k] — sign(source1[k]) x 0
else if sourcel[k] = 0 A sign(source2[k]) < 0 then
dest[k] «— sign(source1[k]) x =
else
dest(k] «— sign(sourcel[k]) x %
if {overflow occurred in processor k) then overflow-flaglk] « 1

122

ATAN2

The arc tangent of the quotient of the sourcel and source? fields is stored into the dest
field. The signs of the source fields are taken into account to produce a result in the correct
quadrant of the Cartesian plane.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e =8 or s = 52 and e = 11.

123

ATANH

C-ATANH

Calculates the arc hyperbolic tangent of the complex source field values and stores the result
in the complex destination field.

Formats CM:c-atanh-1-1L dest/source, s, e
CM:c-atanh-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
s e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.
test-flag is set if sowrce is 1 or —1; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] «— tanh™" source[k]

The arc hyperbolic tangent of the value of the source field is stored into the dest field.

The following definition of the arc hyperbolic tangent determines the range and branch cuts

for a complex number 2.
1 1
og | (14 2)4/1 - =

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

124

ATANH

F-ATANH

Calculates the arc hyperbolic tangent of the floating-point source field values and stores the
result in the floating-point destination field.

Formats CM:f-atanh-1-1L dest/source, s, e
CM:f-atanh-2-1L dest, source, s, e
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + € + 1.
Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.
Flags test-flagis set if the magnitude of source is greater than or equal to 1; otherwise
it is cleared.
overflow-flagis set if floating-point overflow occurs; otherwise it is unaffected.
Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
dest[k) «— tanh™! source[k]
if (overflow occurred in processor k) then overflow-flagk] — 1
if |source[k]| > 1 then test-flagk] — 1
otherwise test-flaglk| — 0

The arc hyperbolic tangent of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

125

ATTACH

ATTACH

Attaches the Connection Machine hardware to the front end computer and returns the
number of physical processors attached.

This instruction is available only from the Lisp/Paris interface. For Fortran/Paris and
C/Paris users, the equivalent functionality is provided by the shell level cmattach command,
documented in the CM System User’s Guide.

Formats result «— CM:attach [physical-size], [interface], [wait-p]

Operands physical-size The number of physical processors to be attached. This ar-
gument is an optional argument.

tnterface The integer indicating a particular bus interface to be used. This is
an optional keyword argument and defaults to 0. When specified,
the invocation must include the keyword :interface followed by an
integer.

wait-p The answer to the question, “Do you want to wait for processors
to become available?”. This is an optional keyword argument and
defaults to nil. When specified, the invocation must include the
keyword :wait-p followed by T or NIL.

Result An unsigned integer, the exact number of physical processors allocated.

Context This operation is unconditional. It does not depend on the contezt-flag.

From the Lisp/Paris interface, this function allocates Connection Machine processors for
use by the front end. To deallocate the processors, use CM:detach.

In the Lisp/Paris interface, CM:attach is a function of several arguments.

The physical-size argument is optional; if no physical-size argument is specified, then the
smallest possible amount of hardware will be allocated. This default is the smallest number
of processors associated with one sequencer, and varies between 8,192 and 16,384 physical
processors, depending of site requirements.

If specified, the physical-size argument indicates the number of processors desired. It may
be any one of the following values:

:8kp or 8192 Exactly 8,192 physical processors are to be allocated.

:16kp or 16384 Exactly 16,384 physical processors are to be allocated.

126

ATTACH

:32kp or 32768 Exactly 32,768 physical processors are to be allocated.

:64kp or 65536 Exactly 65,536 physical processors are to be allocated.

Alternatively, the physical-size argument may specify the sequencer or sequencers desired
by using one of the following values: (These options are useful primarily for hardware
diagnostic procedures.)

:ucc0, :uccl, :ucc2, or :ucc3 Exactly the specified sequencer (also known as a microcon-
troller port) is to be attached, regardless of whether that port controls 8,192 or 16,384
physical processors.

:ucc0-1, :ucc2-3, or :ucc0-3 Exactly the specified sequencers (0 and 1, 2 and 3, or all
four) are to be attached, regardless of the number of physical processors involved.

The :interface keyword argument is used at sites with more than one Connection Machine.
If used, it indicates which Connection Machine is to be attached by specifying the integer
value of the interface for the desired Connection Machine.

The :wait-p keyword is used if you want to wait for the requested processors to become
available. To quit waiting, type Ctrl-C. (From Gmacs, type Ctrl-C, Ctrl-C; from a Lisp
Machine front end, type Ctrl-ABORT.)

The value returned by CM:attach is the number of physical processors that were attached.

An error is signalled if the required number of physical processors or the required set of
microcontroller ports is not available.

The

variable CM:*before-attach-initializations* and the variable CM: *after-attach-initializations*
contain sets of initialization forms that are respectively evaluated before and after anything
else occurs.

Note: On a Symbolics Lisp Machine, the Lisp/Paris interface will also accept :8k, :16k,
:32k, and :64k as physical-size specifications. However, these are not valid symbols in all
Common Lisp implementations—technically speaking, they have the syntax of “potential
numbers” in Common Lisp—and therefore users are encouraged to use the forms :8kp,
:16kp, :32kp, and :64kp in code to ensure portability. The “k” forms will continue to be
available to preserve back-compatibility with existing code that uses them.)

In the C/Paris and Fortran/Paris interfaces, the attaching operation is performed by a user
command cmattach at shell level. See the CM System User’s Guide manual or the emattach
man page for more information.

127

ATTACHED

ATTACHED

Returns true if the front end process has Connection Machine processors attached for use.

Formats result + CM:attached

Result True if the front end process has Connection Machine processors attached for
use, and false otherwise.

Context ~ This operation is unconditional. It does not depend on the contezt-flag.

This predicate allows a program to determine whether there are any Connection Machine
processors attached (whether actual hardware or simulated) before it issues other Paris
operations.

128

AVAILABLE-MEMORY

AVAILABLE-MEMORY

Determines the number of bits of memory, per virtual processor, that remain available for
allocation on either the heap or the stack.

Formats result «+ CM:available-memory
Result An unsigned integer, the number of bits available.

Context This operation is unconditional. It does not depend on the context-flag.

The number of bits available for allocation by either CM:allocate-heap-field or CM:allocate-
stack-field is returned to the front end as an integer. The return value represents the number
of bits available for each virtual processor in the current VP set.

129

CEILING

F-F-CEILING

Determines the smallest integral value that is not less than the floating-point source field
value in each selected processor and stores it in the floating-point destination field.

Formats CM:f-f-ceiling-1-1L dest/source, s, €
CM:f-f-ceiling-2-1L dest, source, s, €
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, € The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] — [source(k]]

The source field, treated as a floating-point number, is rounded to the nearest integer in

the direction of +o0o0, which is stored into the dest field as a floating-point-number.

Note that overflow cannot occur.

131

CEILING

S-CEILING

The ceiling of the quotient of two signed integer source values is placed in the destination
field. Overflow is also computed.

Formats

Operands

Overlap

Flags

Context

CM:s-ceiling-3-3L dest, sourcel, source2, dlen, sleni, slen2
CM:s-ceiling-2-1L dest/sourcel, source?, len
CM:s-ceiling-3-1L dest, sourcel, source2, len

CM:s-ceiling-constant-2-1L dest/sourcel, source2-value, len
CM:s-ceiling-constant-3-1L dest, sourcel, source2-value, len

dest

sourcel

source?

The field ID of the signed integer quotient field.
The field ID of the signed integer dividend field.
The field ID of the signed integer divisor field.

source2-value A signed integer immediate operand to be used as the second

len

dlen

sleni

slen2

source.

The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

For CM:s-ceiling-3-3L, the length of the dest field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

For CM:s-ceiling-3-3L, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
lengthx*.

For CM:s-ceiling-3-3L, the length of the source? field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. Tt is
permissible for all the fields to be identical.

overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if the divisor is zero; otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

132

CEILING

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 the

sourcel k]
deailf] — [301&?&32 k

if (overflow occurred in processor k) then overflow-flaglk] «— 1
else overflow-flaglk] — 0
if source2[k] = 0 then
test[k] «— 1
else test[k] — 0

The signed integer sourcel operand is divided by the signed integer source2 operand. The
ceiling of the mathematical quotient is stored into the signed integer memory field dest.

The various operand formats allow the second source operand to be either a memory field
or a constant; in some cases the destination field initially contains one source operand.

The overflow-flag and tesi-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

133

CEILING

S-F-CEILING

The floating-point source field values are converted to signed integer values and stored in
the destination field.

Formats CM:s-f-ceiling-2-2L dest, source, dlen, s, e

Operands dest The field ID of the signed integer destination field.
source The field ID of the floating-point source field.

len The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap ~ The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — [source[k]]
if (overflow occurred in processor k) then overflow-flaglk] «— 1

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of +oco. The result is stored into the dest field as a signed integer.

134

CEILING

U-CEILING

The ceiling of the quotient of two unsigned integer source values is placed in the destination
field. Overflow is also computed.

Formats CM:u-ceiling-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:u-ceiling-2-1L dest/sourcel, source2, len
CM:u-ceiling-3-1L dest, sourcel, source2, len
CM:u-ceiling-constant-2-1L dest/sourcel, source2-value, len
CM:u-ceiling-constant-3-1L dest, sourcel, source2-value, len
Operands dest The field ID of the unsigned integer quotient field.
sourcel The field ID of the unsigned integer dividend field.
source2 The field ID of the unsigned integer divisor field.
len The length of the dest, sourcel, and source? fields. This must be
non-negative and no greater than CM:*maximum-integer-length*,
dlen For CM:u-ceiling-3-3L, the length of the dest field. This must be
non-negative and no greater than CM:*maximum-integer-length*,
slent For CM: u-ceiling-3-3L, the length of the sourcel field. This must be
non-negative and no greater than CM:*maximum-integer-length*,
slen2 For CM:u-ceiling-3-3L, the length of the source2 field. This must be
non-negative and no greater than CM:*maximum-integer-lengthx.
Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Twointeger
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.
Flags overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.
test-flag is set if the divisor is zero; otherwise it is cleared.
Context This operation is conditional. The destination and flags may be altered only
in processors whose contezi-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then

dest[k] — Poumef]k[]

source2|k]

135

CEILING

if (overflow occurred in processor k) then overflow-flaglk] — 1
else overflow-flaglk] — 0
if source2[k] = 0 then
test[k] « 1
else test[k] — 0

The unsigned integer sourcel operand is divided by the unsigned integer source2 operand.
The ceiling of the mathematical quotient is stored into the unsigned integer memory field
dest.

The various operand formats allow the second source operand to be either a memory field
or a constant; in some cases the destination field initially contains one source operand.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

136

CEILING

U-F-CEILING

The floating-point source field values are converted to unsigned integer values and stored
in the destination field.

Formats CM:u-f-ceiling-2-2L dest, source, dlen, s, e

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the floating-point source field.

len The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

s, € The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezi-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest — [source]
if (overflow occurred in processor k) then overflow-flagk] « 1

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of 400, which is stored into the dest field as an unsigned integer.

137

CHANGE-FIELD-ALIAS

CHANGE-FIELD-ALIAS

Changes the referent of the specified field alias.

Formats CM:change-field-alias alias-id, field-id
Operands alias-id An alias field ID. This must be an alias field 1D returned by
CM:make-field-alias. It need not be in the current VP set.

field-id A field ID. This must be a field id returned by CM:allocate-stack-
field or CM:allocate-heap-field; it may not be an offset into a field.
The field need not be in the current vp set.

Context This operation is unconditional. It does not depend on the context-flag.

The alias field ID alias-id is made to reference the field identified by field-id. This function
allows field aliases to be recycled.

After a call to CM:change-field-alias, the field length and the physical length associated with
alias-id are exactly what they would be if CM: make-field-alias had been called with field-id.

An error is signaled if the physical length of the aliased field is not exactly divisible by the
VP ratio of the VP set to which field-id belongs. (For more on the physical length associated
with an alias field see the dictionary entry for CM:make-field-alias.)

The alias field 1D can be used in all the same ways as a regular field D can, with the
following exceptions:

e It cannot be passed to CM:deallocate-heap-field.

e It cannot be passed to CM:deallocate-stack-through.

138

CIS

C-F-CIS

Calculates the cosine and sine for the floating-point source field and stores the result in the
complex destination field.

Formats CM:e-f-cis-2-1L dest, source, s, €

Operands dest The field ID of the complex destination field.
source The field ID of the floating-point source field.

s,e Thesignificand and exponent lengths for the dest and source fields.
The total length of the dest field in this format is 2(s + e+ 1). The
total length of the source field in this format is s + e + 1.

Overlap The source field must be either identical to dest, identical to (dest+ s+ e+ 1),
or disjoint from dest.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k].real « cos source[k]
dest[k].imag « sin source[k]

The result is a complex number whose real part is the cosine of the source and whose
imaginary part is the sine of the source. The term cis signifies cos +1 sin.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

139

CLEAR-ALL-FLAGS

CLEAR-ALL-FLAGS

Clears all flags (but not the context bit).

Formats CM:clear-all-flags
CM:clear-all-flags-always

Context The non-always operation is conditional,

The always operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
test-flaglk] — 0
overflow-flaglk] — 0

Within each processor, all flags for that processor are cleared (but not the context bit).

140

CLEAR-BIT

CLEAR-BIT

Clears a specified memory bit.

Formats CM:clear-bit dest
CM:clear-bit-always dest

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.
The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-up-set do
if (always or contezt-flaglk] = 1) then
dest[k] — 0

The destination memory bit is cleared within each selected processor.

141

CLEAR-CONTEXT

CLEAR-CONTEXT

Unconditionally makes all processors inactive.

Formats CM:clear-context

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
context-flaglk] «— 0

Within each processor, the context bit for that processor is unconditionally cleared.

142

CLEAR-flag

Clears a specified flag bit.

CLEAR-FLA

Formats CM:clear-test
CM:clear-overflow

Context This operation is conditional.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
flag[k] <0

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, the indicated flag for that processor is cleared.

143

COLD-BOOT

COLD-BOOT

This operation completely resets the state of the hardware allocated to the executing front
end, loads microcode, initializes system tables, and clears user memory.

Formats result « CM:cold-boot microcode-version, dimensions

Operands microcode-version Either :paris or :diagnostics. This specifies which ver-
sion of the microcode is to be used. This argument is optional
(actually a keyword argument in the Lisp interface).

dimensions The dimension information for initializing the NEWs grid.
This argument is optional (actually a keyword argument in the
Lisp interface).

Result In the Lisp/Paris interface three results are returned (as Common Lisp “mul-
tiple values”):
An unsigned integer, the number of virtual processors.
An unsigned integer, the number of physical processors.

An unsigned integer, the number of bits available per virtual processor.

Context This operation is unconditional. It does not depend on the contezt-flag.

The facility for cold-booting Connection Machine hardware is provided in different ways in
the Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces
(on the other hand).

In the Lisp/Paris interface, CM:cold-boot is a function that accepts optional keyword argu-
ments.

The :microcode-version argument specifies what set of microcode is to be loaded into the
microcontroller(s). There are two choices for this argument: :paris (the default) specifies
microcode that interprets the macroinstruction set, and :diagnostics specifies special
microcode used for hardware maintenance.

The :dimensions argument is largely obsolete now that multiple VP sets may be allocated,
but it is still supported for the sake of compatibility with previous releases of Paris. The
‘dimensions argument must be an integer, a list of 1 or 2 integers, or unsupplied. (Passing
nil as the value is the same as not supplying a value.) An integer or a list of one integer
specifies the total number of virtual processors desired. A list of two integers specifies the
desired size of the virtual NEws grid. Each dimension must be a power of two.

If the :dimensions argument is unsupplied, then the configuration of virtual Processors
depends on the most recent CM:cold-boot or CM:attach operation preceding this one. If the

144

COLD-BOOT

most recent such operation was CM: cold-boot, then the same virtual processor configuration
set up then will be used this time. If the most recent such operation was CM:attach, then
the number of virtual processors will be equal to the number of physical processors, and
the virtual NEWs grid will have the same shape as the physical NEWs grid.

Bootstrapping a Connection Machine system includes the following actions:
o Evaluating all initialization forms stored in the variable CM:*before-cold-boot-
initializations*. This is done before anything else.

e Loading microcode into the Connection Machine microcontroller and initiating mi-
crocontroller execution.

e Clearing and initializing the memory of allocated Connection Machine processors.
e Initializing all of the global configuration variables described in section 3.7.

o Initializing the pseudo-random number generator by effectively invoking the operation
CM:initialize-random-number-generator with no seed.

o Initializing the system lights-display mode by effectively invoking the operation
CM: set-system-leds-mode with an argument of t.

e Evaluating all initialization forms stored in the variable CM: *after-cold-boot-
initializations*. This is done after everything else.

If the cold-booting operation fails, then an error is signalled. If it succeeds, then three
values are returned: the number of virtual processors, the number of physical processors,
and the number of bits available for the user in each virtual processor. (These are exactly
the values of the configuration variables CM: *user-cube-address-limit*, CM:*physical-cube-
address-limit*, and CM: *user-memory-address-limit*.

In the C/Paris and Fortran/Paris interfaces, the cold-booting operation is performed by a
user command cmcoldboot at shell level. See the Front End Subsystems manual.

145

COMPARE

F-COMPARE

Compares two floating-point source values and stores into the signed integer destination
field the result -1, 0, or 1 depending on whether the first source value is less than, equal
to, or greater than the second source value.

Formats CM:f-compare-3-2L dest, sourcel, source2, dlen, s, e

Operands dest The field ID of the signed integer destination field.
sourcel The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source field.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-lengthx.

s € The significand and exponent lengths for the source! and source?
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields dest and source! must not overlap in any manner. The fields dest
and source2 must not overlap in any manner. The fields sourcel and source?
may overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then

if sourcel[k] < source2[k] then
dest[k] — —1

else if sourcel[k] > source2[k] then
dest[k] «— 1

else
dest[k] — 0

Two operands are compared as floating-point numbers. The destination receives the signed
integer value -1, 0, or 1 depending on whether the first source value is less than, equal‘to,
or greater than the second source value.

146

COMPARE

S-COMPARE

Compares two signed integer source values and stores into the signed integer destination
field the result -1, 0, or 1 depending on whether the first source value is less than, equal
to, or greater than the second source value.

Formats CM:s-compare-3-3L dest, sourcel, source2, dlen, slenl, slen2

Operands dest The field ID of the signed integer destination field.
sourcel The field ID of the signed integer first source field.
source2 The field ID of the signed integer second source field.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

sleni The length of the sourcel field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

slen2 The length of the source? field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*,

Overlap The fields dest and sourcel must not overlap in any manner. The fields dest
and source2 must not overlap in any manner. The fields sourcel and source2
may overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then

if sourcel(k] < source2[k] then
dest[k] «— —1

else if source1[k] > source2[k] then
dest[k] — 1

else
dest[k] — 0

Two operands are compared as signed integers. The destination receives the value -1, 0,
or 1 depending on whether the first source value is less than, equal to, or greater than the
second source value.

147

COMPARE

U-COMPARE

Compares two unsigned integer source values and stores into the signed integer destination
field the result -1, 0, or 1 depending on whether the first source value is less than, equal
to, or greater than the second source value.

Formats CM:u-compare-3-3L dest, sourcel, source2, dlen, slenl, slen?

Operands dest The field ID of the signed integer destination field.
sourcel The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-lengthx.

sleni The length of the sourcei field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

slen? The length of the source2 field. This must be non-negative and no
greater than CM:*maximum-integer-lengthx.

Overlap The fields dest and sourcel must not overlap in any manner. The fields dest
and source2 must not overlap in any manner. The fields source! and source2
may overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then

if sourcel[k] < source2[k] then
dest[k] — —1

else if sourcel[k] > source2[k] then
dest[k] « 1

else
dest[k] — 0

Two operands are compared as unsigned integers. The destination receives the signed
integer value -1, 0, or 1 depending on whether the first source value is less than, equal to,
or greater than the second source value.

148

COMPRESS-HEAP

COMPRESS-HEAP

Invokes the heap compression mechanism on demand.

Formats CM:compress-heap

Context This operation is unconditional. It does not depend on the contexi- flag.

Heap compression removes heap memory fragmentation.

By default, the configuration variable CM:*heap-compression-enabled* is T (true), causing
automatic heap compression whenever the stack and heap try to grow into each other.
Therefore, under normal circumstances it not necessary to use the CM:compress-heap in-
struction.

Automatic heap compression can, however, make performance calculations unpredictable.
To ensure deterministic performance, set CM:*heap-compression-enabled* to niL (false,
0), arrange data structures to avoid fragmentation where possible, and explicitly invoke
CM: compress-heap as necessary.

The variable CM:*heap-compression-messages-enabled* determines whether a message is
issued when heap compression occurs. By default, this value is T (true, 1) and heap
compression messages are issued. If this variable is NIL (false, 0), heap compression occurs
without report.

149

CONJUGATE

C-CONJUGATE

The conjugate of the complex source field is placed in the complex dest field.

Formats CM:c-conjugate-1-1L dest/source, s, e
CM:c-conjugate-2-1L dest, source, s, e
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.

s e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1]

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k].real — source[k].real
dest[k].imag «— —source[k].imag

Given a complex number C the conjugate C’ consists of a real part equal to the real part of
C and an imaginary part equal to the negation of the imaginary part of C. The conjugate
of the complex source field is placed in the dest field.

150

Cos

C-COS

Calculates the cosine of the complex source field and stores the result in the complex
destination field.

Formats CM:c-cos-1-1L dest/source, s, e
CM:c-cos-2-1L dest, source, s, €

Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contexzt-flaglk] = 1 then
dest(k] « cos source(k]
if (overflow occurred in processor k) then overflow-flagk] « 1

The cosine of the value of the complex source field is stored into the complex dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

151

Cos

F-COS

Calculates, in each selected processor, the cosine of the floating-point source field value and
stores it in the floating-point destination field.

Formats CM:f-cos-1-1L dest/source, s, e
CM:f-cos-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
5 e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] «— cos source[k]

The cosine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23and e= 8 or s = 52 and e = 11.

152

COSH

C-COSH

Calculates, in each selected processor, the hyperbolic cosine of the complex source field
value and stores it in the complex destination field.

Formats CM:c-cosh-1-1L dest/source, s, e
CM:c-cosh-2-1L dest, source, s, e
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
s € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1)

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contexzt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] « cosh source[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

The hyperbolic cosine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

153

COSH

F-COSH

Calculates the hyperbolic cosine of the floating-point source field and stores it in the floating-
point destination field.

Formats CM:f-cosh-1-1L dest/source, s, e
CM:f-cosh-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, € The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap ~ The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] «— cosh source[k]
if {overflow occurred in processor k) then overflow-flaglk] — 1

The hyperbolic cosine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e =8 or s = 52 and e = 11.

154

CREATE-DETAILED-GEOMETRY

CREATE-DETAILED-GEOMETRY

Creates a new geometry given detailed information about how the grid is laid out.

For most applications, the simpler CM: create-geometry instruction is recommended over this
one. Use CM:create-detailed-geometry only to tune the performance of an application with
stable, known inter-processor communication patterns. (See also CM:intern-geometry and
CM:intern-detailed-geometry).

Formats result « CM:create-detailed-geometry agzis-descriptor-array, [rank]

Operands azis-descriptor-array A front-end vector of descriptors for the grid axes.

In the C interface, the elements of the azis-descriptor-array must
be of type CM _axis_descriptor_t, that is, they must be pointers to
structures of type CM_axis_descriptor.

In the Lisp interface, the azis-descriptor-array may be either a list
of descriptors or an array of descriptors.

rank An unsigned integer, the rank (number of dimensions) of the ge-
ometry being created. This must be between 1 and CM:*max-
geometry-rank*, inclusive. This argument is not provided when
calling Paris from Lisp.

Result A geometry ID, identifying the newly created geometry. This is of type
CM_geometry_id_t in C, of type CM:geometry-id in Lisp, and an integer in

Fortran.

Context This operation is unconditional. It does not depend on the contezt-flag.

CM:create-detailed-geometry takes an array of axis descriptors, one for each axis. The oper-
ation returns a geometry ID, which may then be used to create a VP set or to respecify the
geometry of an existing vP set.

Each axis descriptor specified by CM: axis-descriptor-array is a structure describing one NEWS
axis in some detail. Most of the descriptor components are unsigned integers, but the
value of the ordering component is different. From Lisp, the ordering component must be
either :news-order, :send-order, or :framebuffer-order. From C or Fortran, it must be either
CM_news_order, CM_send_order, or CM_framebuffer_order.

The C definitions of the type of the ordering component and of the axis descriptor are shown
below. Notice that the elements of the azis_descriptor_array must be pointers to type struct
CM_axis_descriptor.

155

CREATE-DETAILED-GEOMETRY

typedef enum {CM_news_order, CM_send_order } CM_axis_order_t;

typedef struct CM_axis_descriptor {
unsigned length;
unsigned weight;
CM_axis_order_t ordering;
unsigned char on_chip_bits;
unsigned char off_chip_bits;

} o CM_axis_descriptor_t;

Actually, this structure has other components as well. C code should use the definition of
CM _axis_descriptor from the cmtypes.h include file.

The Fortran/Paris interface defines CM_axis_descriptor as an array:
INTEGER RANK,DESCRIPTOR_ARRAY(7,RANK)

The elements of each Fortran axis descriptor are defined such that:

DESCRIPTOR_ARRAY (1,1) is the length of axis T
DESCRIPTOR_ARRAY (2,1) is the weight of axis T

) is the ordering of axis I
)

)

DESCRIPTOR_ARRAY (3,1
DESCRIPTOR_ARRAY (4,I) is the on-chip bits of axis I
DESCRIPTOR_ARRAY (6,1) is the off-chip bits of axis [

Thus CM:axis-descriptor-array is, in Fortran, an array of axis descriptor arrays.

The Lisp definitions of the type of the ordering component and of the axis descriptor are
shown below.

(deftype cm:axis-order () ’(member :news-order :send-order))

(defstruct CM:axis-descriptor
(length 0) (weight 0) (ordering :news-order)
(on-chip-bits 0) (off-chip-bits 0))

The axis-descriptor-array operand must be created by first making one axis descriptor for
each axis and then using these to assign values to the array elements. An example in C is
given below. Notice that azis and azis2 are pointers to axis descriptor structures and that
the descriptor structures are zeroed before any values are assigned.

CM_geometry_id_t my_geometry;
CH_axis_descriptur_t my_geometry_axes[2];
CM_axis_descriptor_t axisi, axis2;

156

CREATE-DETAILED-GEOMETRY

axisl = (cm_axis_descriptor_t)malloc(sizeof(struct CM_axis_descriptor));
axis2 (cm_axis_descriptor_t)malloc(sizeof(struct CM_axis_des criptor));
bzero(axisi, sizeof(struct CM_axis_descriptor));

bzero(axis2, sizeof(struct CM_axis_descriptor));

axisl->length = 128;

axis2->length = 256;
axisl->weight = 5;
axis2->weight = 10;

axisl->ordering = CM_news_order;
axis2->ordering = CM_news_order;

my_geometry_axes[0] = axisi;
my_geometry_axes[1] = axis2;
my_geometry = CM_create_detailed_geometry(my_geometry_axes, 2);

The following example specifies the same axes, descriptor array, and geometry in Lisp.
Notice that the constructor CM: make-axis-descriptor is used.

(setq my-geometry-axes make-array(2))
(setq axisil
(CM:make-axis-descriptor :length 128 :weight 5
:ordering :news-order))
(setq axis2
(CM:make-axis-descriptor :length 256 :weight 10
:ordering :news-order)))
(setf (aref my-geometry-axes 0) axisi)
(setf (aref my-geometry-axis 1) axis2)
(setq my-geometry (CM:make-detailed-geometry my-geometry-axes 2)

Once the geometry has been created, the user may destroy the descriptors and the array
used to provide axis information. All necessary information is copied out of these structures
as the geometry is created.

The “length” component of an axis descriptor specifies the length of the axis; it must be a
power of two.

The “weight” component of the axis descriptors specifies the relative frequency of inter-
processor communication along different axes. For instance, in the above example it is
assumed that communication occurs about half as often along azis1, which is given a weight
of 5, as along azis2, which is given a weight of 10. Only the relative values of the weight
components matter. The same communication traffic could be specified with weights of
1 and 2, or of 3 and 6. If all weights are 1, it is assumed that all axes are used equally
frequently.

157

CREATE-DETAILED-GEOMETRY

Given a set of weight components, Paris lays out the hypercube grid for optimal per-
formance. Virtual processors are mapped onto the physical hypercube in a pattern that
exploits the fact that communication is especially rapid among virtual processors within
the same physical processor and among virtual processors within the same physical chip.

The “ordering” component of an axis descriptor specifies how NEWs coordinates are mapped
onto physical processors for that axis. The value :news-order specifies the usual embedding
of the grid into the hypercube such that processors with adjacent NEWS coordinates are in
fact neighbors within the hypercube. The value :send-order specifies that, if processor A has
a smaller NEWS coordinate than processor B, then A also has a smaller send-address than B.
This ordering is rarely used. However, :send-order ordering is useful for specific applications
such as FFT. The value :framebuffer-order is provided solely for creating VP sets that are
used as image buffers (for details, see chapter 1 of the Generic Display Interface Reference
Manual).

If the “weight” components are all 1, then the mapping of virtual to physical processors
can be specified with the “on-chip-bits” and “off-chip-bits” components of the axis descrip-
tors. This is not recommended. To tune performance for communication, use the weight
component.

158

CREATE-GEOMETRY

CREATE-GEOMETRY

Creates a new geometry given the grid axis lengths. See also CM:intern-geometry.

Formats - result « CM:create-geometry dimension-array, [rank]

Operands dimension-array A front-end vector of unsigned integer lengths of the
grid axes. In the Lisp interface, this may be a list of dimension
lengths instead of an array of dimension lengths, at the user’s
option.

rank An unsigned integer, the rank (number of dimensions) of the
dimension-array. This must be between 1 and CM: *max-geometry-
rank*, inclusive. This argument is not provided when calling Paris
from Lisp.

Result A geometry ID, identifying the newly created geometry.

Context This operation is unconditional. It does not depend on the contezt-flag.

The dimension-array must be a one-dimensional array of nonnegative integers; each must
be a power of 2. The product of all these integers must be a multiple of the number of
physical processors attached for use by this process.

This operation returns a geometry ID for a newly created geometry whose dimensions are
specified by the dimension-array. The length of axis j of the resulting geometry will be
equal to dimension-array[j]. Such a geometry ID may then be used to create a VP set, or
to respecify the geometry of an existing VP set.

The geometry will be laid out so as to optimize performance under the assumption that
the axes are used equally frequently for NEWS communication. The operation CM:create-
detailed-geometry may be used instead to get more precise control over layout for perfor-
mance tuning.

Once the geometry has been created, the user may destroy the array used to provide the
dimension information. All necessary information is copied out of this array as the geometry
is created.

159

CROSS-VP-MOVE

CROSS-VP-MOVE

Copies data from a source field with a particular shape and orientation to a destination
field with the same shape, but possibly with a different orientation within the CM. The
source and destination VP sets are not required to have matching dimensionality along all
axes. However, every source axis selected for inclusion in this copying operation must be
mapped to a destination axis of the same length. The source field must be in the current
VP set; the destination field may be in a different vp set.

Formats CM: cross-vp-move-1L dest, source, azris-mapping,
source-azis-coords, dest-axis-coords, len

CM:cross-vp-move-always-1L dest, source, azis-mapping,
source-azxis-coords, dest-azis-coords, len

Operands dest The field ID of the dest field. This is in the destination VP set.
source The field ID of the source field. This is in the current VP set.

axis-mapping A front-end vector of unsigned integer values. The set of
valid values also includes the null value CM:*cvpm-indexed*.

This vector defines how the source axes are mapped to the desti-
nation axes during data transfer. The length of this vector is equal
to the number of axes in the source VP set. Thus, axis-mapping
element 0 corresponds to source axis 0, and so forth. The value of
each vector element should indicate to which destination axis the
corresponding source axis is mapped.

For any source axis that is not to be copied, give the corresponding
axis-mapping element the value CM:*cvpm-indexed*: treatment of
such axes is further specified by the next argument.

source-azis-coords A front-end vector of unsigned integer values.. The set
of valid values also includes the null value CM: *cvpm-mappeds*.

This vector defines what source data is copied by the operation.
The length of this vector is equal to the number of axes in the
source VP set. Thus, source-axis-coords element 0 corresponds to
source axis 0, and so forth. Any source axis that is mapped in
the axis-mapping vector should have a source-axis-coords value of
CM: *cvpm-mapped#; the shape of the data to be copied is described
by these mapped axes.

The remaining, unmapped, source-axis-coords elements should be
integers, each of which indexes a specific point along its corre-
sponding source axis; these coordinates describe the location of
the source data to be copied.

160

CROSS-VP-MOVE

dest-azis-coords A front-end vector of unsigned integer values.. The set of
valid values also includes the null value CM: *cvpm-mapped*.
This vector defines where within the destination vp set the source
data is transferred. The length of this vector is equal to the number
of axes in the destination vP set. Thus, dest-axis-coords element
0 corresponds to dest axis 0, and so forth. Any destination axis
that is mapped in the axis-mapping vector should have a dest-axis-
coords value of CM:*cvpm-mapped*; the final orientation of the
copied data is described by these mapped axes.
The remaining, unmapped, dest-axis-coords elements should be in-
tegers, each of which indexes a specific point along its correspond-
ing dest axis; these coordinates describe the final location of the
copied data.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length#.

Overlap For d, e, s, and t, the fields s, o, u, 7, ¢, and e must be either nonoverlapping
or identical.

Context This operation is conditional.

Data values of len bits each are copied from the source field into the dest field, where the
source field is in the current VP set and the dest field may be in the same or a different
vP set. During this operation, the copied data is mowved from one orientation within the
Connection Machine — dictated by the layout of the participating source axes — into another
orientation dictated by the layout of the participating dest axes.

The three vector arguments determine what source data is copied, where within the des-
tination geometry it is put, and how it is moved or reoriented within the CM during this
process.

The source-azis-coords vector specifies what source data is copied. It contains one element
for each source geometry axis such that element 0 corresponds to axis 0, and so forth. It
is not necessary to copy all the source data: along each axis, either one point or all points
may be included in the shape that is copied. For example, to copy a 2-dimensional shape
from a 3-dimensional geometry, we include two entire axes and one point along the third
axis.

To include all the data along a particular source axis, specify the corresponding
source-azis-coords value as CM:*cvpm-mapped* — meaning this axis is mapped in its en-
tirety to some destination axis. The shape of the source data to copy is defined by the
lengths of the axes specified as mapped. The exact mapping is given by the azis-mapping
vector. To include only one point along a particular source axis, specify the corresponding
source-azis-coords value as an unsigned integer between 0 and one less than the extent of
the axis.

161

CROSS-VP-MOVE

The dest-azis-coords vector specifies where in the destination to put the source data. This
vector is analogous to source-azis-coords in that it specifies which destination axes recieve
data and where along the remaining axes the copying is carried out. There must be one
dest-azis-coords element for each destination geometry axis and each element value must
be either an integer or CM:*cvpm-mapped*.

To transfer data to an entire axis, specify the corresponding dest-azis-coords value as
CM:*cvpm-mapped*. To transfer data only at a specific coordinate along an axis, specify
an integer value. In dest-azis-coords and source-azis-coords, the number and lengths of the
axes specifed as mapped must exactly match. For example, when copying a 2-dimensional
shape from a 3-dimensional VP set into a 2-dimensional VP set, the source-azis-coords will
include two mapped axes and one coordinate while the dest-azis-coords will include two
mapped axes and no coordinates.

The azis-mapping vector specifies how the copied data is reoriented as it is transferred from
the source geometry to the destination geometry. As discribed above, the source-azis-coords
and dest-azis-coords vectors each specify certain source and dest axes as “mapped.” The
azis-mapping vector determines which source axis is mapped to which destination axis. It
contains one element for each source geometry axis such that element 0 corresponds to
source axis 0 and so forth. Each element value is either an integer or CM: *cvpm-indexeds.

For each source axis that is mot mapped to a destination axis, give the corresponding
azis-mapping element the value CM:*cvpm-indexed* — meaning that this axis is indexed.
The source-azis-coords vector gives coordinates from which data along an indexed axis is
copied. For each source axis that is mapped to a destination axis, give the corresponding
azis-mapping element an unsigned integer value indicating which destination axis is to
recieve data from this source axis. Each pair of mapped axes must be of the same length.

Note: Proper execution of this instruction requires that the lengths of the source and
destination axes not be changed between invocations. Be especially careful if a CM: set-vp-
set-geometry call changes the geometry of either the source or destination VP set between
invocation of CM: cross-vp-set-move-1L.

The code fragment below demonstrates copying a 2-dimensional shape from a 3-dimensional
source geometry into a 2-dimensional destination geometry. Source axes 0 and 1 are copied
from coordinate 7 along source axis 2. Source axis 0 maps to destination axis 1 and source
axis 1 maps to destination axis 0.

162

DEALLOCATE-GEOMETRY

DEALLOCATE-GEOMETRY

Declare that a geometry will no longer be used.

Formats CM:deallocate-geometry geometry-id
Operands geometry-id A geometry ID.

Context This operation is unconditional. It does not depend on the contezt-flag.

By this operation a user program declares that a geometry will no longer be used. The
system is permitted to reclaim any and all resources associated with that geometry. It is
an error for the user program to give the specified geometry ID as an argument to any Paris
operation once it has been deallocated.

It is an error to deallocate a geometry that is still in use by some VP set.

163

DEALLOCATE-HEAP-FIELD

DEALLOCATE-HEAP-FIELD

Declare that a heap field will no longer be used.

Formats CM:deallocate-heap-field heap-field-id
Operands heap-field-id A field ID.

Context This operation is unconditional. It does not depend on the contezt-flag.

By this operation a user program declares that a field will no longer be used. The system
is permitted to reclaim any and all resources associated with that field, in particular the
memory that it occupied. It is an error for the user program to give the specified field 1D
as an argument to any Paris operation once it has been deallocated.

164

DEALLOCATE-STACK-THROUGH

DEALLOCATE-STACK-THROUGH

Declare that a stack field and all fields allocated more recently than it will no longer be
used.

Formats CM:deallocate-stack-through stack-field-id
Operands stack-field-id A field ID.

Context This operation is unconditional. It does not depend on the contezt-flag.

By this operation a user program declares that the specified field on the stack, and all fields
allocated more recently than it, will no longer be used. (Note that any fields allocated more
recently than the specified field are necessarily closer to the top of the stack.) The system
is permitted to reclaim any and all resources associated with those fields, in particular the
memory that they occupied. It is an error for the user program to give the field ID of a
deallocated field as an argument to any Paris operation.

165

DEALLOCATE-VP-SET

DEALLOCATE-VP-SET

Declare that a vP set will no longer be used.

Formats CM:deallocate-vp-set vp-set-id
Operands wvp-set-id A VP set ID.

Context This operation is unconditional. It does not depend on the context-flag.

By this operation a user program declares that a vP set will no longer be used. The system
is permitted to reclaim any and all resources associated with that vp set. It is an error for
the user program to give the specified VP set ID as an argument to any Paris operation once
it has been deallocated.

It is an error to deallocate a VP set for which there are still fields that have not yet been
deallocated. The user should first deallocate all fields belonging to that VP set, except the
flags, which are deallocated automatically when the vP set is deallocated.

166

DEPOSIT-NEWS-COORDINATE

DEPOSIT-NEWS-COORDINATE

Modifies a send address to reflect a specific NEWS coordinate.

Formats CM:deposit-news-coordinate-1L geometry, dest/send-address,
azis, coordinate, slen

CM:deposit-news-constant-1L geometry, dest/send-address,

azis, coordinate-value, slen

Operands geometry A geometry ID. This geometry determines the NEWs dimensions
to be used.

dest The field ID of the unsigned integer destination field. (In the
instruction formats currently provided, the dest field is always the
same as the send-address source field. The length of this field is
implicitly the same as geometry-send-address-length(geometry).)

send-address The field ID of the unsigned integer send address field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

coordinate The field ID of the unsigned integer NEWS coordinate. field.
This specifies the position along the corrsponding axis of the pro-
cessor whose send address is to be calculated.

coordinate-value An unsigned integer immediate operand to be used as
the NEWs coordinate along the specified axis.

slen The length of the coordinate field. This must be non-negative and
no greater than CM:*maximum-integer-length*.

Overlap For CM:deposit-news-coordinate-1L, the coordinate field must not overlap the
dest field.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest(k] «— deposit-news-coordinate(geometry, send-address, azis, coordinate)

where deposit-news-coordinate is as defined on page 40.

This function calculates, within each selected processor, the send-address of a processor
that has a specified coordinate along a specified NEWs axis, with all other coordinates equal
to those for the processor identified by send-address.

167

DEPOSIT-NEWS-COORDINATE

FE-DEPOSIT-NEWS-COORDINATE

Calculates on the front end the modification of a send address to reflect a specific NEWS

coordinate.

Formats

Operands

Result

Context

result « CM:fe-deposit-news-coordinate geometry, send-address,
azis, coordinate

geometry A geometry ID. This geometry determines the NEWs dimensions
to be used.

send-address ~ An unsigned integer immediate operand to be used as the
send address of some processor.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along the specified axis.

An unsigned integer, the send address of the processor whose coordinate along
the specified axis is coordinate and whose coordinate along all other axes
equals those of send-address.

This operation is performed on the front end. It does not depend on the CM
context-flag.

Definition

Return deposit-news-coordinate(geometry, send-address, azis, coordinate)

where deposit-news-coordinate is as defined on page 40.

This function calculates, entirely on the front end, the send-address of a processor that has
a specified coordinate along a specified NEWS axis, with all other coordinates equal to those
for the processor identified by send-address.

168

DETACH

DETACH

Detaches the specified front-end computer from the Connection Machine hardware previ-
ously allocated for and attached to it.

This instruction is available only from the Lisp/Paris interface. For Fortran/Paris and
C/Paris users, the equivalent functionality is provided by the shell level cmdetach command,
documented in the CM System User’s Guide.

Formats CM:detach front-end-name, suppress-confirmation

Operands front-end-name The name of a front end, or a list of a front end name and a
bus-interface specifier. This argument is optional.

suppress-confirmation The confirmation suppression flag. This argu-
ment is optional. If supplied and not false, then the interactive
query and prompt requesting confirmation of the detach opera-
tion is suppressed.

Context This operation is unconditional. It does not depend on the contezt-flag.

The facility for detaching Connection Machine hardware is provided in different ways in the
Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces (on
the other hand).

In the Lisp/Paris interface, CM:detach is a function of two arguments. The arguments are
optional.

In most normal use no argument is specified. In this case the front end executing the call to
CM:detach releases all Connection Machine hardware to which it had been attached, reset-
ting relevant parts of the Nexus so that the front end can no longer issue macroinstructions
to the Connection Machine system. (An error is signalled if in fact no hardware had been
attached in the first place.) This use of CM:detach is the normal way of releasing attached
hardware and will not disrupt users on other front ends.

If a front-end-name argument is specified, it must be the name of a front end that is con-
nected to the same Connection Machine system (that is, Nexus) as the front end executing
the call, or perhaps a list of a front end name and a small integer identifying a bus interface
on that front end. A front end name may be either a string or a symbol. Examples (assum-
ing, for the sake of exposition, that front end computers are named after Shakespearean
characters):

(detach ‘hamlet) ;Detach front end named Hamlet

169

DETACH

(detach "lear" t) ;Detach front end named Lear, and don’t confirm
(detach ’(desdemona 1)) ;:Detach bus interface 1 of front end Desdemona

Specifying the name of the front end that is executing the call has the same effect as
specifying no argument; the front end is gracefully detached. But specifying the name of
some other front end forcibly detaches that other front end, possibly disrupting any ongoing
interaction with the Connection Machine system. The external communications network is
used to send a message to the detached front end to inform its user that it has been forcibly
detached.

There are two sets of initialization forms, kept in the variables CM:*before-detach-
initializations* and CM: *after-detach-initializations*, that are evaluated before and after any-
thing else occurs.

In the C/Paris and Fortran/Paris interfaces, the detaching operation is performed by a user
command cmdetach at shell level. See the Front End Subsystems manual or the cmdetach
man page.

170

DIVIDE

C-DIVIDE

The quotient of two complex source values is placed in the destination field. Note: Integer
division is performed by the round, truncate, rem, and mod operations.

Formats

Operands

Overlap

Flags

Context

CM:c-divide-2-1L dest/sourcel, source?, s, e
CM:c-divide-always-2-1L dest/sourcel, source?2, s, e
CM:c-divide-3-1L dest, sourcel, source, s, e
CM:c-divide-always-3-1L dest, sourcel, source2, s, e
CM:c-divide-constant-2-1L dest/sourcel, source2-value, s, e
CM:c-divide-const-always-2-1L dest/sourcel, source2-value, s, e
CM:c-divide-constant-3-1L dest, sourcel, source2-value, s, e
CM:c-divide-const-always-3-1L dest, sourcel, source2-value, s, e
CM:c-divinte-2-1L dest/source2, sourcel, s, e
CM:c-divinto-always-2-1L dest/source2, sourcel, s, e
CM:c-divinto-constant-2-1L dest/source2, sourcel-value, s, e
CM:c-divinto-const-always-2-1L dest/source2, sourcel-value, s, e
CM:ec-divinto-constant-3-1L dest, source2, sourcel-value, s, e
CM:c-divinto-const-always-3-1L dest, source2, sourcel-value, s, e
dest The field ID of the complex destination field. This is the quotient.

sourcel The field ID of the complex first source field. This is the dividend.
source? The field ID of the complex second source field. This is the divisor.
sourcel-value A complex immediate operand to be used as the first source.

source2-value A complex immediate operand to be used as the second

source.

s, e The significand and exponent lengths for the dest, sourcel, and
source? fields. The total length of an operand in this format is
2(s+e+1).

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
complex fields are identical if they have the same address and the same format.
It is permissible for all the fields to be identical.

test-flag is set if division by zero occurs; otherwise it is unaffected.

overflow-flagis set if floating-point overflow occurs; otherwise it is unaffected.

This operation is conditional. The destination and flags may be altered only
in processors whose contezi-flag is 1.

171

DIVIDE

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] — sourcel[k]/source2[k]
if source2[k] = 0 then test-flag[k] « 1
if (overflow occurred in processor k) then overflow-flaglk] « 1

The sourcel operand is divided by the source2 operand, treating both as complex numbers.
The result is stored into memory. The various operand formats allow operands to be either
memory fields or constants; in some cases the destination field initially contains one source
operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

172

DIVIDE

F-DIVIDE

The quotient of two floating-point source values is placed in the destination field.

Note: Integer division is performed by the round, truncate, rem, and mod operations.

Formats CM:f-divide-2-1L dest/sourcel, source, s, e
CM:f-divide-always-2-1L dest/sourcel, source2, s, €
CM:f-divide-constant-2-1L dest/sourcel, source2-value, s, €
CM:f-divide-const-always-2-1L dest/sourcel, source2-value, s, e
CM:f-divinto-2-1L dest/source2, sourcel, s, e
CM:f-divinto-always-2-1L dest/source2, sourcel, s, e
CM:f-divinto-constant-2-1L dest/source2, sourcel-value, s, e
CM:f-divinto-const-always-2-1L dest/source2, sourcel-value, s, e
CM:f-divide-3-1L dest, sourcel, source2, s, e
CM:f-divide-always-3-1L dest, sourcel, source2, s, e
CM:f-divide-constant-3-1L dest, sourcel, source2-value, s, €
CM:f-divide-const-always-3-1L dest, sourcel, source2-value, s, e
CM:f-divintoe-constant-3-1L dest, source2, sourcel-value, s, e
CM:f-divinto-const-always-3-1L dest, source2, sourcel-value, s, e

Operands dest The field ID of the floating-point destination field. This is the
quotient.
sourcel The field ID of the floating-point first source field. This is the
dividend.
source2 The field ID of the floating-point second source field. This is the
divisor.

sourcel-value A floating-point immediate operand to be used as the first
source.

source2-value A floating-point immediate operand to be used as the second

source.

s, e The significand and exponent lengths for the dest, sourcel, and
source? fields. The total length of an operand in this format is
s+e+1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags test-flag is set if division by zero occurs; otherwise it is unaffected.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

173

DIVIDE

Context ~ The non-always operations are conditional. The destination and flags may be
altered only in processors whose context-flagis 1.

The always operations are unconditional. The destination and flags may be
altered regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] «— sourcel[k]/source2[k]
if source2(k] = 0 then test-flag — 1
if {(overflow occurred in processor k) then overflow-flaglk] « 1

The sourcel operand is divided by the source2 operand, treating both as floating-point
numbers. The result is stored into memory. The various operand formats allow operands to
be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

174

ENUMERATE

ENUMERATE

The destination field in every selected processor receives the number of processors below or
above it in some ordering of the processors.

Formats CM:enumerate-1L dest, azis, len, direction, inclusion, smode, sbit

Operands dest
azis
len
direction
tnclusion

smaode

shat

The field ID of the unsigned integer destination field.

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Either :upward or :downward.
Either :exclusive or :inclusive.
Either :none, :start-bit, or :segment-bit.

The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: #no-field*.

Overlap The sbit field must not overlap the dest field.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
let Si = scan-subset(k, azis, len, direction, inclusion, smode, sbit)
dest[k] — | S|

where scan-subset is as defined on page 45.

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:enumerate-1L operation stores into the dest field of each selected processor the size
of the scan subset for that processor. This means that every processor within a scan set of
size N will receive a different integer in the range 0 to N — 1 (for an exclusive enumeration)
or in the range 1 to N (for an inclusive enumeration).

A call to CM:enumerate-1L is equivalent to the sequence below, but may be faster.

175

ENUMERATE

CM:u-move-constant-1L temp, 1, len
CM:scan-with-u-add-1L dest, temp, azis, len, direction, inclusion, smode, sbit
CM:u-subtract-constant-1L dest, 1, len

176

EQ

C-EQ

Compares two complex source values. The test-flag is set if they are equal, and otherwise

it is cleared.

Formats CM:c-eq-1L sourcel, source, s, e
CM:c-eq-constant-1L sourcel, source2-value, s, e
CM:c-eq-zero-1L sourcel, s, e
Operands sourcel The field ID of the complex first source field.
source2 The field ID of the complex second source field.
source2-value A complex immediate operand to be used as the second
source. For CM:c-eqg-zero-1L, this implicitly has the value zero.
s, € The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is 2(s+ e+ 1).
Overlap The fields source! and source2 may overlap in any manner.
Flags test-flag is set if sourcel is equal to source?; otherwise it is cleared.
Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if conteat-flaglk] = 1 then
if sourcel|k] = source2 k]
test-flaglk] « 1
else
test-flaglk] «— 0

Two operands are compared as complex numbers. The first operand is a memory field; the
second is a memory field or an immediate value. The test-flag is set if the first operand is
equal to the second operand, and is cleared otherwise. Note that comparisons ignore the
sign of zero; +0 and —0 are considered to be equal.

The constant operand source2-value should be a double-precision complex front-end value
(in Lisp, automatic coercion is performed if necessary). Before the operation is performed,
the constant is converted, in effect, to the format specified by s and e.

177

EQ

F-EQ

Compares two floating-point source values. The test-flag is set if they are equal, and other-
wise is cleared.

Formats CM:f-eq-1L sourcel, source?, s, e
CM:f-eq-constant-1L sourcel, source2-value, s, e
CM:f-eq-zero-1L sourcel, s, e

Operands sourcel The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-eq-zero-1L, this implicitly has the value zero.

5, € The significand and exponent lengths for the source! and source?
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields sourcel and source? may overlap in any manner.
Flags test-flag is set if sourcel is equal to source?; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if sourcel k] = source2|k]
test-flaglk] — 1
else
test-flaglk] «— 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is equal to the second operand, and is cleared otherwise. Note that comparisons ignore the
sign of zero; +0 and —0 are considered to be equal.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

178

EQ

S-EQ

Compares two signed integer source values. The test-flag is set if they are equal, and
otherwise is cleared.

Formats CM:s-eq-1L sourcel, source2, len
CM:s-eq-2L sourcel, source?, slenl, slen2
CM:s-eq-constant-1L sourcel, source2-value, len
CM:s-eq-zero-1L sourcel, len

Operands sourcel The field ID of the signed integer first source field.
source? The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source. For CM:s-eg-zero-1L, this implicitly has the value zero.

len The length of the sourcel and source? fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.
slent The length of the source! field. This must be no smaller than 2

but no greater than CM:*maximum-integer-length*.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner.
Flags test-flag is set if sourcel is equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if sourcel[k] = source2[k] then
test-flaglk] « 1
else
test-flaglk] — 0

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an immediate value. The tesi-flag is set if the first
operand is equal to the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

179

EQ

U-EQ

Compares two unsigned integer source values. The test-flag is set if they are equal, and
otherwise is cleared.

Formats

Operands

Overlap
Flags

Context

CM:u-eq-1L sourcel, source?, len

CM:u-eq-2L sourcel, source2, sleni, slen2
CM:u-eq-constant-1L sourcel, source2-value, len

CM:u-eq-zero-1L sourcel, len

sourcel ~ The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source. For CM:u-eq-zero-1L, this implicitly has the value
zero.

len The length of the sourcel and source2 fields. This must be non-
negative and no greater than CM:*maximum-integer-length*.

sleni The length of the sourcel field. This must be non-negative and no
greater than CM:*maximum-integer-lengthx,

slen? The length of the source2 field. This must be non-negative and no
greater than CM:*maximum-integer-length+.

The fields sourcel and source2 may overlap in any manner.
test-flag is set if sourcel is equal to source?; otherwise it is cleared.

This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if source1[k] = source2[k] then
test-flaglk] — 1
else

test-flaglk] «— 0

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is equal to the second operand, and is cleared otherwise.

180

EQ

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

181

EXP

C-EXP

The exponent of the complex source field is stored in the complex destination field.

Formats CM:c-exp-1-1L dest/source, s, e
CM:c-exp-2-1L dest, source, s, e
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.

s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1)

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context ~ This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] — exp source[k]
if (overflow occurred in processor k) then overflow- flaglk] — 1

The value e® is stored into the dest field, where s is the value of the source field, and e is
the base of the natural logarithms; e ~ 2.718281828 ..

182

EXP

F-EXP

Calculates, in each selected processor, the exponential function e of the floating-point
source field and stores it in the floating-point destination field.

Formats CM:f-exp-1-1L dest/source, s, €
CM:f-exp-2-1L dest, source, s, e
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + ¢+ 1.
Qverlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format,
Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.
Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

Call the value of the source field s; the value e is stored into the dest field, where e

if context-flaglk] = 1 then
if source[k] = +oo then

dest[k] — +o0
else if source[k] = —co then
dest[k] — +0
else
dest[k] «— exp source[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

2.718281828... is the base of the natural logarithms.

183

EXTRACT-MULTI-COORDINATE

FE-EXTRACT-MULTI-COORDINATE

Calculates, on the front end, the NEWS multi-coordinate of a processor specified by send-
address. A multi-coordinate is needed in order to use the CM:multispread-copy-1L instruc-

tion.
Formats result «— CM:fe-extract-multi-coordinate geometry, axis-mask, send-address
Operands geometry A geometry ID. This geometry determines the NEWS dimensions
to be used. '
azis-mask An unsigned integer, the mask indicating a set of NEWS axes.
send-address ~ An unsigned integer immediate operand to be used as the
send address of some processor.
Result An unsigned integer, the NEwWs multi-coordinate of the specified processor
along the specified axes.
Context This operation is performed on the front end. It does not depend on the CM
contezi-flag.
Definition Let azis-set = {m | 0 < m < r A (azis-mask(m) = 1)}

Return eztract-multi-coordinate(geometry, azis-set, send-address)

where extraci-multi-coordinate is as defined on page 44.

This function calculates, entirely on the front end, the NEWs multi-coordinate of a processor
along specified NEWs axes. The axes are indicated by the azis-mask argument; the processor
is identified by its send-address.

184

EXTRACT-NEWS-COORDINATE

EXTRACT-NEWS-COORDINATE

Determines the NEWS coordinate of a processor specified by send-address.

Formats CM:extract-news-coordinate-1L geometry, dest, azis, send-address, dlen
Operands geomeiry A geometry ID. This geometry determines the NEWS dimensions
to be used.
dest The field ID of the unsigned integer destination field.
aris An unsigned integer immediate operand to be used as the number
of a NEWS axis.
send-address The field ID of the send address field. For each processor,
this identifies the send address of some other processor.
dlen The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.
Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
dest[k] — eztract-news-coordinate(geometry, azis, send-address)

where eztract-news-coordinate is as defined on page 40.

This function calculates, within each selected processor, the NEWS coordinate of a processor
along a specified NEWs axis. The axis is indicated by the azis argument; the processor is
identified by its send-address.

185

EXTRACT-NEWS-COORDINATE

FE-EXTRACT-NEWS-COORDINATE

Calculates, on the front end, the NEWs coordinate of a processor specified by send-address.

Formats result « CM:fe-extract-news-coordinate geometry, azis, send-address

Operands geometry A geometry ID. This geometry determines the NEWs dimensions
to be used.

azxis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

send-address ~ An unsigned integer immediate operand to be used as the
send address of some processor.

Result An unsigned integer, the NEWS coordinate of the specified processor along the
specified axis.

Context This operation is performed on the front end. It does not depend on the CM
contezt-flag.

Definition Return eztract-news-coordinate(geometry, azis, send-address)

where eztract-news-coordinate is as defined on page 40.

This function calculates, entirely on the front end, the NEWS coordinate of a processor along

a specified NEWs axis. The axis is indicated by the azis argument; the processor is identified
by its send-address.

186

FFT

DEALLOCATE-FFT-SETUP

Deallocates a front-end setup descriptor that has been used to prepare information for
execution of an FFT routine.

Note: For historical reasons, this operation uses the prefix CMSSL: in place of the standard
CM: Paris instruction prefix. A more efficient set of FFT routines are included in the cm
Scientific Subroutines Library.

Formats CMSSL: deallocate-fft-setup setup-id
Operands setup-id The 1D of the FFT setup descriptor to be deallocated.

Context This is a front-end operation. It does not depend on the value of the contezt-

flag.

This routine may be used to remove an FFT setup descriptor when it is no longer needed.
The setup-id argument must have been obtained by a call to CMSSL:c-fft-setup.

An fft setup descriptor occupies memory both on the front end and on the Connection
Machine. It is therefore wise to free this space by calling CMSSL:deallocate-fft-setup after
completion of all FFT routines that use the specified setup descriptor.

187

FFT

C-C-FFT

The Discrete Fourier Transform of the complex source field is calculated using a Fast Fourier
Transform (FFT) algorithm. The complex result is stored in the destination field.

A Fourier transform routine converts (possibly multidimensional) sequences between the
time or space domain and the frequency domain. This type of transform has a variety
of useful applications. For example, an FFT can be used to filter discrete signals, to
smooth input data or output images, to interpolate or extrapolate from a given data set,
to measure the correlation between two samples, or to multiply polynomials and extremely
large integers.

The Fast Fourier Transform is called a fast transform because it exhibits O(N log N') com-
plexity, where O is the order of complexity and N is the length of the input sequence. By
comparison, the Discrete Fourier Transform exhibits only O(N?) complexity.

Note: For historical reasons, this operation uses the prefix CMSSL: in place of the standard
CM: Paris instruction prefix. It also uses the prefix c-c- to signify that single-precision
complex operands are involved. A more efficient set of FFT routines are included in the cM
Scientific Subroutines Library.

Formats CMSSL:c-c-fft dest, source, setup, ops, source-bit-order, dest-bit-order,
source-cm-order, dest-cm-order, scale

Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.

setup The setup-id. This must be a setup 1D returned by CMSSL:c-fft-
setup. The geometry information of the setup must be identical to
that of the source and destination fields.

ops A front-end vector of operation identifiers. Each element spec-
ifies whether the corresponding source axis is transformed and,
if so, by what method. Valid vector element values are :f-xform
(FFT fxform in C; 1 in Fortran) for a forward transform, :i-xform
(FFT.dxfrom in C; 2 in Fortran) for an inverse transform, and :nop
(FFT_nop in C; 0 in Fortran) for no transform.

source-bit-order A front-end vector of input bit orderings. Each element iden-
tifies the bit ordering of the corresponding source axis and must
be either :normal or :bit-reversed. (The corresponding values are
are FFT_normal and FFT_bit_reversed in C, and 0 and 1 in Fortran,
respectively.)

dest-bit-order A front-end vector of output bit orderings. Each element
identifies the bit ordering of the corresponding destination axis

188

FET

and must be either :normal or :bit-reversed. (The corresponding
values are are FFT_normal and FFT bit_reversed in C, and 0 and 1
in Fortran, respectively.)

source-cm-order A front-end vector of input orderings. Each element
declares the addressing mode of the corresponding source axis and
must be one of the following: :send-order, :news-order, or :default.
(The corresponding values are FFT_send_order, FFT news_ order,
and FFT_default in C, and 1, 2, and 0 in Fortran, respectively.)

A value of :default causes the current ordering of an axis to be
used.

dest-cm-order A front-end vector of output orderings. Each element
declares the addressing mode of the corresponding destination
axis and must be one of the following: :send-order, :news-
order, or :default. (The corresponding values are FFT _send_order,
FFT_news_order, and FFT_default in C, and 1, 2, and 0 in Fortran,
respectively.)
A value of :default causes the current ordering of an axis to be
used.

scale A front-end vector of output scaling methods. Each element spec-
ifies whether the corresponding destination axis is rescaled and,
if so, by what method. Valid values are :noscale for no rescaling,
:scale-sqrt for scaling by the inverse square root of the FFT, and
:scale-n for scaling by the inverse of the size of the FFT. (The corre-
sponding values are FFT_noscale, FFT scale_sqrt, and FFT scale_n
in C, and 0, 1, and 2 in Fortran, respectively.)

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same

format. FFT performance is slightly better if the two fields are identical.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
dest[k] — FFT(sourcelk])

The Discrete Fourier Transform of the source field is stored in the dest field. A multi-
dimensional transform is computed by performing the transform across each dimension in
sequence.

The source and destination fields must either belong to the same VP set or to VP sets of
identical shape and size.

189

FFT

The ops, source-bit-order, dest-bit-order, source-cm-order, dest-cm-order, and scale argu-
ments are one-dimensional front-end arrays. The length of each is equal to the rank of the
setup geometry.

By convention, a Fast Fourier Transform operation reverses the order of the data bits when
storing the result in the destination. The vectors source-bit-order and dest-bit-order specify
whether the source and destination data are treated as normal or as bit-reversed.

Along any given dimension of the data’s geometry, the Connection Machine FFT instruction
is most efficient for data arranged in send order. Many FFT applications do not depend
on the order of the data elements. The dest-cm-order and source-cm-order arguments are
therefore provided to permit the most efficient execution possible along each dimension.

C/Paris code that calls the Paris FFT routine must include the line
#include <cm/cmtypes.h>

at the top of the main program file. This declares all C/Paris functions and symbolic
constants, including those for the Paris FFT.

Fortran /Paris code should include the line

INCLUDE ’/usr/include/cm/cmssl-paris-fort.h’

at the top of any program unit that calls the Paris FFT.

190

FFT

C-FFT-SETUP

Allocates a front-end setup descriptor for use with the CMSSL:fft Fast Fourier Transform
routines and returns a setup ID.

Note: For historical reasons, this operation uses the prefix CMSSL: in place of the standard
CM: Paris instruction prefix. It also uses the prefix c- to signify that single-precision complex
operands are involved. A more efficient set of FFT routines are included in the cM Scientific
Subroutines Library.

Formats result « CMSSL:c-fft-setup geometry-id
Operands geometry A geometry ID.
Result The 1D of the newly created FFT setup descriptor.

Context This is a front-end operation. It does not depend on the value of the context-

flag.

This routine computes information needed to perform a Fast Fourier Transform (FFT),
stores it in an FFT setup descriptor, and return the setup-id.

In Lisp/Paris, a setup ID is a structure of type CMSSL:fft-setup. In C/Paris, it is a pointer
to a structure of type FFT_fft setup_t. In Fortran/Paris it is an integer.

The geometry argument must be a geometry 1D returned by a call to CM:create-geometry,
CM:create-detailed-geometry, intern-geometry, or intern-detailed-geometry.

The returned setup 1D is a valid value for the setup argument to any CMSSL FFT routine
if the following requirement is obeyed. The geometries of the FFT source and destination
fields must be identical to that of the setup geometry.

This routine must be reinvoked whenever the geometry of an FFT source field VP set is
changed. CMSSL:c-fft-setup allocates memory both on the front end and on the cMm. To free
this memory, use CMSSL: deallocate-fft-setup.

C/Paris code that calls the Paris FFT routine must include the line

#include <cm/cmtypes.h>

at the top of the main program file. This declares all C/Paris functions and symbolic
constants, including those for the Paris FFT.

19

EET
Fortran /Paris code should include the line

INCLUDE °/usr/include/cm/cmssl-paris-fort.h’

at the top of any program unit that calls the Paris FFT.

192

FIELD-VP-SET

FIELD-VP-SET

Returns the VP set associated with a field.

Formats result « CM:field-vp-set field
Operands field The field ID of the field.
Result A VP set ID, identifying the vP set to which the field belongs.

Context This operation is unconditional. It does not depend on the contexzt-flag.

Definition Return vp-set(field)

This operation may be used to determine the VP set with which any given field is associated.
The field need not belong to the current vp set.

193

FLOAT

F-S-FLOAT

Converts a signed integer field into a floating-point number field.

Formats CM:f-s-float-2-2L dest, source, slen, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the signed integer source field.

slen The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

s, € The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.
Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — source[k]
if (overflow occurred in processor k) then overflow-flaglk] + 1

The source field, treated as a signed integer, is converted to a floating-point number, which
is stored into the dest field.

194

FLOAT

F-U-FLOAT

Converts an unsigned integer field into a floating-point number field.

Formats CM:f-u-float-2-2L dest, source, slen, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the unsigned integer source field.

slen The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

s, € The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.
Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flagis 1.

Definition For every virtual processor k in the current-up-set do
if contezt-flaglk] = 1 then
dest[k] — source[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

The source field, treated as an unsigned integer, is converted to a floating-point number,
which is stored into the dest field.

195

FLOOR

F-F-FLOOR

In each selected processor, calculates the largest integer that is not greater than a specified
floating-point value and stores the result as a floating-point field.

Formats CM:f-f-floor-1-1L dest/source, s, €
CM:f-f-floor-2-1L dest, source, s, €

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap ~ The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context ~ This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — |source[k]]

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of —oo, which is stored into the dest field as a floating-point number.

Note that overflow cannot occur.

196

FLOOR

S-FLOOR

The floor of the quotient of two signed integer source values is placed in the destination
field. Overflow is also computed.

Formats

Operands

Qverlap

Flags

Context

CM:s-floor-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-floor-2-1L dest/sourcel, source2, len
CM:s-floor-3-1L dest, sourcel, source?, len

CM:s-floor-constant-2-1L dest/sourcel, source2-value, len
CM:s-floor-constant-3-1L dest, sourcel, source2-value, len

dest The field ID of the signed integer quotient field.
sourcel The field ID of the signed integer dividend field.
source2 The field ID of the signed integer divisor field.

source2-value A signed integer immediate operand to be used as the second

source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
lengthx,

dlen For CM:s-floor-3-3L, the length of the dest field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-lengthx.

slenl For CM:s-floor-3-3L, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*,

slen?2 For CM:s-floor-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
lengthx,

The fields source! and source? may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if the divisor is zero; otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezi-flag is 1.

197

FLOOR

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
sourcel [k
desyif] lsourcez"k”
if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] «— 0
if source2(k] = 0 then
test[k] — 1

else test[k] — 0

The signed integer sourcel operand is divided by the signed integer source2 operand. The
floor of the mathematical quotient is stored into the signed integer memory field dest.

The various operand formats allow the second source operand to be either a memory field
or a constant; in some cases the destination field initially contains one source operand.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

198

S-F-FLOOR

Calculates, in each selected processsor, the largest integer that is not greater than a specified
floating-point value and stores the result as a signed integer field.

Formats CM:s-f-floor-2-2L dest, source, dlen, s, e

Operands dest The field ID of the signed integer destination field.
source The field ID of the floating-point source field.

len The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

s, € The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] « |source[k]|
if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] «— 0

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of —oo, which is stored into the dest field as a signed integer.

199

FLOOR

U-FLOOR

The floor of the quotient of two unsigned integer source values is placed in the destination
field. Overflow is also computed.

Formats CM:u-floor-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:u-floor-2-1L dest/sourcel, source2, len
CM:u-floor-3-1L dest, sourcel, source2, len
CM:u-floor-constant-2-1L dest/sourcel, source2-value, len
CM:u-floor-constant-3-1L dest, sourcel, source2-value, len
Operands dest The field ID of the unsigned integer quotient field.
sourcel The field ID of the unsigned integer dividend field.
source2 The field ID of the unsigned integer divisor field.
source2-value An unsigned integer immediate operand to be used as the
second source.
dlen For CM:s-floor-3-3L, the length of the dest field. This must be
non-negative and no greater than CM:*maximum-integer-length#.
slenl For CM:s-floor-3-3L, the length of the sourcel field. This must be
non-negative and no greater than CM:*maximum-integer-length*,
slen2 For CM:s-floor-3-3L, the length of the source? field. This must be
non-negative and no greater than CM:*maximum-integer-length*,
Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. Tt is
permissible for all the fields to be identical.
Flags overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.
test-flag is set if the divisor is zero; otherwise it is cleared.
Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then

dest[k] «— {MJ

source2[k]

200

FLOOR

if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] «— 0

if source2[k] = 0 then
test[k] — 1

else test[k] — 0

The unsigned integer source! operand is divided by the unsigned integer source2 operand.
The floor of the mathematical quotient is stored into the unsigned integer memory field
dest.

The various operand formats allow the second source operand to be either a memory field
or a constant; in some cases the destination field initially contains one source operand.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

201

FLOOR

U-F-FLOOR

Converts floating-point source field values into unsigned integers by rounding towards —oco.

Formats CM:u-f-floor-2-2L dest, source, dlen, s, e

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the floating-point source field.

len The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

s € The significand and exponent leﬁgths for the source field. The
total length of an operand in this format is s + ¢ + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-up-set do
if context-flaglk] = 1 then
dest «— |source]|
if (overflow occurred in processor k) then overflow-flaglk] — 1

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of —oo. The result is stored into the dest field as an unsigned integer.

202

FROM-GRAY-CODE

FE-FROM-GRAY-CODE

Calculates, on the front end, the Gray code representation of a specified integer.

Formats result « CM:fe-from-gray-code code
Operands code An unsigned integer immediate operand to be used as the Gray
encoding, represented as a nonnegative integer.
Result An unsigned integer, the nonnegative integer represented by code.
Context This operation is unconditional. It does not depend on the contezt-flag.
Definition Let n = integer-length(code)

n—1

Return @ {%@J

This function calculates, entirely on the front end, the integer represented by a bit-string
encoding code in a particular reflected binary Gray code.

Note that the binary value 0 is always equivalent to a Gray code string that is all 0-bits.

203

FROM-GRAY-CODE

U-FROM-GRAY-CODE

Converts a bit string representing a Gray-coded integer value to the usual unsigned binary
representation.

Formats CM:u-from-gray-code-1-1L dest/source, len
CM:u-from-gray-code-2-1L dest, source, len

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the source field.
len The length of the dest and source fields. This must be non-negative

and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
for j from len — 1 to 0 do

dest[k](j) — (kéi_l source[k](i))

i=j

The source operand is considered to be a value in a particular reflected binary Gray code.
The position of that value in the standard Gray code sequence is calculated as an unsigned
binary integer. This is done as follows: bit i of the result is 1 if and only if all the bit
positions of the source to the left of (and including) bit 7 contain an odd number of 1’s.

Note that a Gray code string that is all 0-bits is always equivalent to the binary value 0.

204

GE

F-GE

Compares two floating-point source values. The test-flag is set if the first is greater than or
equal to the second, and otherwise is cleared.

Formats CM:f-ge-1L sourcel, sourcel, s, e
CM:f-ge-constant-1L sourcel, source2-value, s, €
CM:f-ge-zero-1L sourcel, s, e
Operands sourcel The field ID of the floating-point first source field.
source? The field ID of the floating-point second source field.
source2-value A floating-point immediate operand to be used as the second
source. For CM:f-ge-zero-1L, this implicitly has the value zero.
s, € The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is s + e + 1.
Overlap The fields sourcel and source2 may overlap in any manner.
Flags test-flag is set if sourcel is greater than or equal to source2; otherwise it is
cleared.
Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
if source1[k] > source2[k]
test-flaglk] — 1
else
test-flaglk] — 0

Two operands are compared as floating-point numbers. The first operand is a memory
field; the second is a memory field or an immediate value. The fest-flag is set if the first
operand is greater than or equal to the second operand, and is cleared otherwise. Note that
comparisons ignore the sign of zero; +0 and —0 are considered to be equal.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

2056

GE

S-GE

Compares two signed integer source values. The test-flag is set if the first is greater than or
equal to the second, and otherwise is cleared.

Formats CM:s-ge-1L sourcel, source2, len
CM:s-ge-2L sourcel, source2, slenl, slen?2
CM:s-ge-constant-1L sourcel, source2-value, len
CM:s-ge-zero-1L sourcel, len
Operands sourcel The field ID of the signed integer first source field.
source2 The field ID of the signed integer second source field.
source2-value A signed integer immediate operand to be used as the second
source. For CM:s-ge-zero-1L, this implicitly has the value zero.
len The length of the source! and source2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-lengths.
slent The length of the sourcei field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.
slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.
Overlap The fields sourcel and source2 may overlap in any manner.
Flags test-flag is set if sourcel is greater than or equal to source?; otherwise it is
cleared.
Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.
Definition For every virtual processor k in the current-up-set do

if context-flaglk] = 1 then
if sourcel[k] > source2[k] then
test-flaglk] — 1
else
test-flaglk] «— 0

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is greater than or equal to the second operand, and is cleared otherwise.

206

GE

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

207

GE

U-GE

Compares two unsigned integer source values. The test-flag is set if the first is greater than
or equal to the second, and otherwise is cleared.

Formats CM:u-ge-1L sourcel, source2, len
CM:u-ge-2L sourcel, source2, slenl, slen2
CM:u-ge-constant-1L sourcel, source2-value, len
CM:u-ge-zero-1L sourcel, len

Operands source! The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source. For CM:u-ge-zero-1L, this implicitly has the value
ZETO.

len The length of the sourcel and source2 fields. This must be non-
negative and no greater than CM: *maximum-integer-length*.

slent The length of the source! field. This must be non-negative and no
greater than CM:*maximum-integer-lengths.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM:*maximum-integer-length*,

Overlap The fields source! and source2 may overlap in any manner.

Flags test-flag is set if sourcel is greater than or equal to source?; otherwise it is
cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if sourcel[k] > source2[k] then
test-flaglk] — 1
else

test-flaglk] — 0

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source? is a memory field or an immediate value. The test-flag is set if the
first operand is greater than or equal to the second operand, and is cleared otherwise.

208

GE

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

209

GEOMETRY-AXIS-LENGTH

GEOMETRY-AXIS-LENGTH

Returns the length of one axis of a geometry.

Formats result « CM:geometry-axis-length geometry-id, azis

Operands geometry-id A geometry ID.

azis An unsigned integer, the number of the axis whose length is de-
sired.
Result An unsigned integer, the length of the indicated axis.

Context This operation is unconditional. It does not depend on the contezi-flag.

Definition Return azis-descriptors(geometry-id)[azis).length

This operation returns the length of the specified axis of the geometry specified by the
geometry-id.

210

GEOMETRY-AXIS-OFF-CHIP-BITS

GEOMETRY-AXIS-OFF-CHIP-BITS

Returns the number of off-chip bits that are allocated for the specified NEWS axis within
the off-chip bits portion of a send address associated with the specified geometry.

Formats result «— CM:geometry-axis-off-chip-bits geometry-id, azis

Operands geometry-id A geometry ID.

azis An unsigned integer, the number of the axis whose off-chip bits
count is desired. This must be between 0 and the rank of the
geometry minus one. Note that VP set geometry dimensions are
zero-based; the first axis is numbered 0.

Result An unsigned integer, the count of the off-chip bits associated with the specified
azis. If azis has no off-chip bits, the result is 0.

Context This operation is unconditional. It does not depend on the contezt-flag.

The send addresses associated with a particular geometry are partitioned into three portions:
off-chip bits, on-chip bits, and vP bits.

The off-chip bits identify one CM chip. The on-chip bits identify one physical processor on
that CM chip. The VP bits give an offset in the memory of the physical processor and thus
identify a virtual processor within that physical processor.

Within each partition, a certain number of bits are used for each dimension of the geometry.
This instruction indicates how many of the off-chip bits within the off-chip bits partition
are used in the send addresses of virtual processors that lie along the specified dimension.

Note that the integer returned does not indicate the total number of all off-chip bits within
the send address but the number of off-chip bits used for a particular dimension.

211

GEOMETRY-AXIS-OFF-CHIP-POS

GEOMETRY-AXIS-OFF-CHIP-POS

Returns the starting position for the off-chip bits that are allocated for the specified NEWS
axis within the off-chip bits portion of a send address associated with the specified geometry.

Formats result « CM:geometry-axis-off-chip-pos geometry-id, azis

Operands geometry-id A geometry ID.

azis An unsigned integer, the number of the axis whose off-chip bits
position is desired. This must be between 0 and the rank of the
geometry minus one. Note that VP set geometry dimensions are
zero-based; the first axis is numbered 0.

Result An unsigned integer, the location in the send address of the first off-chip bit
associated with the specified axis. This is zero-based; the first location is
numbered 0.

Context ~ This operation is unconditional. It does not depend on the contezt-flag.

The send addresses associated with a particular geometry are partitioned into three portions:
off-chip bits, on-chip bits, and vp bits.

The off-chip bits identify one CM chip. The on-chip bits identify one physical processor on
that CM chip. The vP bits give an offset in the memory of the physical processor and thus
identify a virtual processor within that physical processor.

Within each partition, a certain number of bits are used for each dimension of the geometry.
This instruction indicates where, within the off-chip bits partition, the off-chip bits for the
specified dimension lie.

Note that the integer returned does not indicate the absolute position of all oft-chip bits
within the send address but the position of the off-chip bits for a particular dimension
relative to the start of all off-chip bits in an address.

212

GEOMETRY-AXIS-ON-CHIP-BITS

GEOMETRY-AXIS-ON-CHIP-BITS

Returns the number of on-chip bits that are allocated for the specified NEWs axis within
the on-chip bits portion of a send address associated with the specified geometry.

Formats result «— CM:geometry-axis-on-chip-bits geometry-id, axis

Operands geometry-id A geometry ID.

azis An unsigned integer, the number of the axis whose on-chip bits
count is desired. This must be between 0 and the rank of the
geometry minus one. Note that VP set geometry dimensions are
zero-based; the first axis is numbered 0.

Result An unsigned integer, the count of the on-chip bits associated with the specified
azis. If azis has no on-chip bits, the result is 0.

Context This operation is unconditional. It does not depend on the contezt-flag.

The send addresses associated with a particular geometry are partitioned into three portions:
off-chip bits, on-chip bits, and vp bits.

The off-chip bits identify one CM chip. The on-chip bits identify one physical processor on
that CM chip. The VP bits give an offset in the memory of the physical processor and thus
identify a virtual processor within that physical processor.

Within each partition, a certain number of bits are used for each dimension of the geometry.
This instruction indicates how many of the on-chip bits within the on-chip bits partition
are used in the send addresses of virtual processors that lie along the specified dimension.

Note that the integer returned does not indicate the total number of all on-chip bits within
the send address but the number of on-chip bits used for a particular dimension.

213

GEOMETRY-AXIS-ON-CHIP-POS

GEOMETRY-AXIS-ON-CHIP-POS

Returns the starting position for the on-chip bits that are allocated for the specified NEWS
axis within the on-chip bits portion of a send address associated with the specified geometry.

Formats result « CM:geometry-axis-on-chip-pos geometry-id, azis

Operands geometry-id A geometry ID.

azxis An unsigned integer, the number of the axis whose on-chip bits
position is desired. This must be between 0 and the rank of the
geometry minus one. Note that VP set geometry dimensions are
zero-based; the first axis is numbered 0.

Result An unsigned integer, the location in the send address of the first on-chip bit
associated with the specified axis. This is zero-based; the first location is
numbered 0.

Context This operation is unconditional. It does not depend on the contezt-flag.

The send addresses associated with a particular geometry are partitioned into three portions:
off-chip bits, on-chip bits, and vp bits.

The off-chip bits identify one CM chip. The on-chip bits identify one physical processor on
that CM chip. The VP bits give an offset in the memory of the physical processor and thus
identify a virtual processor within that physical processor.

Within each partition, a certain number of bits are used for each dimension of the geometry.
This instruction indicates where, within the on-chip bits partition, the on-chip bits for the
specified dimension lie,

Note that the integer returned does not indicate the absolute position of all on-chip bits
within the send address but the position of the on-chip bits for a particular dimension
relative to the start of all on-chip bits in an address.

214

GEOMETRY-AXIS-ORDERING

GEOMETRY-AXIS-ORDERING

Returns the ordering of one axis of a geometry.

Formats result «— CM:geometry-axis-ordering geometry-id, azis

Operands geometry-id A geometry ID.

azis An unsigned integer, the number of the axis whose ordering is
desired.
Result The ordering of the specified axis (either :news-order or :send-order).

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition Return azis-descriptors(geometry-id)|azis].ordering

This operation returns the ordering of the specified axis of the geometry specified by the
geometry-id.

215

GEOMETRY-AXIS-VP-RATIO

GEOMETRY-AXIS-VP-RATIO

Returns the vP ratio of one axis of a geometry.

Formats result « CM:geometry-axis-vp-ratio geometry-id, azis

Operands geometry-id A geometry ID.

azis An unsigned integer, the number of the axis whose VP ratio is
desired.
Result An unsigned integer, the VP ratio of the indicated axis.

Context This operation is unconditional. It does not depend on the contert-flag.

Definition Return azis-descriptors(geometry-id)|azis).vp-ratio

This operation returns the VP ratio of the specified axis of the geometry specified by the
geometry-id.

216

GEOMETRY-COORDINATE-LENGTH

GEOMETRY-COORDINATE-LENGTH

Returns the number of bits needed to represent a NEWS coordinate.

Formats result «— CM:geometry-coordinate-length geomelry-id, axis

Operands geometry-id A geometry ID.

axis An unsigned integer, the number of the axis whose coordinate
length is desired.

Result An unsigned integer, the number of bits required to represent a coordinate
for the indicated axis.

Context This operation is unconditional. It does not depend on the context-flag.

Definition Return integer-length(azis-descriptors(geometry-id)|azis|.length — 1)

This operation returns the number of bits required to represent (as an unsigned integer) a
NEWS coordinate for the specified axis of the geometry specified by the geometry-id.

217

GEOMETRY-RANK

GEOMETRY-RANK

Returns the number of axes for a geometry.

Formats result « CM:geometry-rank geomelry-id
Operands geometry-id A geometry ID.
Result An unsigned integer, the rank (number of axes) of the specified geometry.

Context This operation is unconditional. It does not depend on the context-flag.

Definition Return rank(geometry)

This operation returns the number of grid axes for the geometry specified by the
geomelry-id.

218

GEOMETRY-SEND-ADDRESS-LENGTH

GEOMETRY-SEND-ADDRESS-LENGTH

Returns the number of bits needed to represent a send-address.

Formats result « CM:geometry-send-address-length geometry-id
Operands geometry-id A geometry ID.

Result An unsigned integer, the number of bits required to represent a send-address
for a processor in the specified geometry.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition Let n = rank(geometry-id)

n—1
Return 3. integer-length(azis-descriptors(geometry-id)(j].length — 1)
=0

This operation returns the number of bits required to represent a send-address for a virtual
processor in any VP set whose geometry is the one specified by the geometry-id. This will
be equal to the sum of the numbers of bits needed to represent NEWS coordinates for all
the axes.

219

GEOMETRY-SERIAL-NUMBER

GEOMETRY-SERIAL-NUMBER

Assigns a unique number to the specified geometry.

Formats result «— CM:geometry-serial-number geometry-id

Operands geometry-id A geometry ID. This geometry ID must be obtained by call-
ing CM:create-geometry or CM:create-detailed-geometry.

Result The serial number that uniquely identifies the geometry.

Context This operation is unconditional. It does not depend on the contezt-flag.

A unique number, the serial number, is assigned to the specified geometry. This facilitates
geometry-based caching; geometry serial numbers are useful as hash table keys.

Note that geometry 1D’s are not unique identifiers. After a geometry is deallocated, its 1D
may be reused for another geometry. In contrast, geometry serial numbers are guaranteed
to be unique.

220

GEOMETRY-TOTAL-PROCESSORS

GEOMETRY-TOTAL-PROCESSORS

Returns the number of virtual processors for a geometry.

Formats result « CM:geometry-total-processors geometry-id
Operands geometry-id A geometry ID.
Result An unsigned integer, the total number of processors in the specified geometry.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition Let n = rank(geometry-id)
n—1
Return [[azis-descriptors(geometry-id)[j].length
3=0

This operation returns the total number of virtual processors in any VP set whose geometry
is the one specified by the geometry-id. This will be equal to the product of the lengths of
all the axes.

221

GEOMETRY-TOTAL-VP-RATIO

GEOMETRY-TOTAL-VP-RATIO

Returns the total vP ratio for a specified geometry.

Formats result « CM:geometry-total-vp-ratio geometry-id
Operands geometry-id A geometry ID.

Result An unsigned integer, the number of virtual processors represented within each
physical processor for the specified geometry.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition Let n = rank(geometry-id)
n—1
Return [] azis-descriptor(geometry-id)[j].vp-ratio
=0

This operation returns the total VP ratio for a specified geometry. This is equal to the
total number of virtual processors for the geometry, divided by the total number of physical
Processors.

222

GET

GET

Each selected processor gets a message from a specified source processor, possibly itself. A
source processor may supply messages even if it is not selected. Messages are all retrieved
from the same memory address within each source processor, and all the source processors
may be in a vP set different from the vP set of the destination processors.

Formats CM:get-1L dest, send-address, source, len

Operands dest The field ID of the destination field.

send-address The field ID of the send address field. For each processor,
this indicates from which processor a message is retrieved.

source The field ID of the source field.
len The length of the dest and source fields.
Overlap The send-address and dest may overlap in any manner. Similarly, the send-

address and source may overlap in any manner. However, it is forbidden for
the dest and source to overlap.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contexi-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] «— source|send-address|[k]]

For every selected processor py, a message length bits long is sent to p; from the processor p,
whose send-address is in the field send-address in the memory of processor py. The message
is taken from the source field within processor p, and is stored into the field at location
dest within processor py. Although the send-address operand is a field in the vP set of the
destination processors, its value must specify a valid send address for source, which may
belong to a different VP set.

Note that more than one selected processor may request data from the same source processor
ps, in which case the same data is sent to each of the requesting processors.

223

GET-AREF32

GET-AREF32

Each selected processor gets a message from a specified array field within any specified
source processor (possibly itself). A source processor may supply messages even if it is
not selected. Messages are all retrieved from the same memory address within each source

processor.
Formats CM:get-aref32-2L dest, send-address, array, indez, dlen, indez-len, indez-limit
Operands dest The field ID of the destination field.
send-address ~ The field ID of the send address field. For each processor,
this indicates from which processor a message is retrieved.

array The field ID of the source array field. This must be stored in the
special format required by CM:aref32.

ndex The field ID of the unsigned integer index into the array field. This
is used as a per-processor index into array. It specifies portions of
the array memory area in increments of dlen.

dlen The length of the dest field.

indez-len The length of the indez field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

indez-limat An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez. This is taken as the extent
of array.

Overlap ~ The send-address and array may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
array and dest to overlap.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
if indez[k] < indez-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))
let m = [ﬂ mod 32
let i = indez[k]
for all j such that 0 < j < dlen do
let ¢ = send-address[k] — m X r + (j mod 32) x »

224

GET-AREF32

letb=i+ | 4]
1 dest[k](7) — array[q](b)
(error)

For every selected processor pg, a message length bits long is sent to pg from the processor p,
whose send-address is in the field send-address in the memory of processor ps. The message
is taken from the array field within processor p, as if by the operation aref32 and is stored
into the field at location dest within processor pg4.

Note that more than one selected processor may request data from the same source processor
s, possibly from different locations within the array. Note also that in each case the array
element to be sent from processor p, to processor pg is determined by the value of index
within pg, not the value within p,.

225

GET-FROM-NEWS

GET-FROM-NEWS

Each processor gets a message from a specified neighbor processor.

Formats CM:get-from-news-1L dest, source, axis, direction, len
CM:get-from-news-always-1L dest, source, azis, direction, len

Operands dest The field ID of the destination field.
source The field ID of the source field.
azxis An unsigned integer immediate operand to be used as the number

of a NEWs axis.
direction Either :upward or :downward.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context The non-always operation is conditional. The destination may be altered only
in processors whose contezt-flag is 1.

The always operation is unconditional. The destination may be altered re-
gardless of the value of the contezt-flag.

Note that in the conditional case the storing of data depends only on the
context-flag of the processor receiving the data, not on the context-flag of the
processor from which the data is obtained.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flaglk] = 1) then
let g = geometry(current-vp-set)
dest[k] « source[news-neighbor(g,k, azis, direction)]

where news-neighbor is as defined on page 40.

The dest field in each processor receives the contents of the source field of that processor’s
neighbor along the NEWS axis specified by azis in the direction specified by direction.

If direction is :upward then each processor retrieves data from the neighbor whose NEWS
coordinate is one greater, with the processor whose coordinate is greatest retrieving data
from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWSs
coordinate is one less, with the processor whose coordinate is zero retrieving data from the
processor whose coordinate is greatest.

226

GET-FROM-POWER-TWO

GET-FROM-POWER-TWO

Each processor gets a message from a processor that is a specified distance away in the
NEWS grid. The distance must be a power of two.

Formats CM: get-from-power-two-1L dest, source, azis, log-2-distance, direction, len
CM:get-from-power-two-always-1L dest, source, azis, log-2-distance, direction, len
Operands dest The field ID of the destination field.
source The field ID of the source field.

aris An unsigned integer immediate operand to be used as the number
of a NEWS axis.

log-2-distance An unsigned integer immediate operand to be used as the
base 2 logarithm of distance, where distance must be a power of
2. '

direction Either :upward or :downward.
len The length of the dest and source fields. This must be non-negative

and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flagis 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Note that in the conditional case data storage depends only on the context-flag
of the processor receiving the data, not on the context-flag of the processor
from which the data is obtained.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flaglk] = 1) then
let ¢ = geometry(current-vp-set)
dest[k] — source[news-relative(g, k, azis, direction, log-2-distance))

where news-relative is defined in the NEws Communication section of the
Instruction Set Overview chapter.

The dest field in each processor receives the contents of the source field of that processor’s
relative along the NEWS axis specified by azis, in the direction specified by direction, and
at the distance specified by log-2-distance.

227

GET-FROM-POWER-TWO

The immediate operand log-2-distance, is log, distance, where distance is the distance, along
axis azis, between each destination processor and the source processor from which it re-
trieves data. In terms of this operand, distance is 2/°9-2-distance

If direction is :upward then each processor retrieves data from a relative whose NEWS coor-
dinate is (coordinate + distance mod azis-length). For most processors, this means getting
from a processor whose coordinate is greater. The GET wraps around however; the pro-
cessor whose coordinate is greatest retrieves data from the processor whose coordinate is
(0 + distance).

If direction is :downward then each processor retrieves data from a relative whose NEWS
coordinate is (coordinate — distance mod azis-length). For most processors, this means
getting from a processor whose coordinate is less. The GET wraps around however; the
processor whose coordinate is zero retrieves data from the processor whose coordinate is
(maz-coordinate(azis) — distance).

228

GLOBAL-ADD

GLOBAL-C-ADD
The sum of the values in the complex source field is returned to the front end as a complex
number.
Formats result « CM:global-c-add-1L source, s, e
Operands source The field ID of the complex source field.
s, € The significand and exponent lengths for the source field. The
total length of an operand in this format is 2(s + e + 1).
Result A complex number, the sum of the source field.
Overlap There are no constraints, because overlap is not possible.
Context This operation is conditional. The result returned depends only upon proces-
sors whose context-flag is 1.
Definition Let P = {m |0 < m < CM:*user-send-address-limit* }

Let S = {m | m € P A context-flaglm] = 1}

If |S| = 0 then
return 40 to front end
else

return | Y source[m]| to front end
meSs

The CM:global-c-add-1L operation sums the source field values from all selected processors,
treated as complex numbers. The sum is sent to the front-end computer as a complex
number and returned as the result of the operation. If there are no selected processors,
then the value 40 is returned.

229

GLOBAL-ADD

GLOBAL-F-ADD

One floating-point number is examined in every selected processor, and the sum of all these
fields is returned to the front end as a floating-point number.

Formats result « CM:global-f-add-1L source, s, e
Operands source The field ID of the floating-point source field.
s, € The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e 4 1.
Result A floating-point number, the sum of the source fields.
Overlap There are no constraints, because overlap is not possible.
Context ~ This operation is conditional. The result returned depends only upon proces-
sors whose context-flag is 1.
Definition Let § = {m | m € current-vp-set A contezt-flaglm] =1}

If |S] = 0 then
return 40 to front end
else

return (b5 source[m]) to front end
meS

The CM:global-f-add operation sums the source fields, treated as floating-point numbers,
in all selected processors. The sum is sent to the front-end computer as a floating-point
number and returned as the result of the operation. If there are no selected processors,
then the value +0 is returned.

230

GLOBAL-ADD

GLOBAL-S-ADD

One signed integer is examined in every selected processor, and the sum of all these fields
is returned to the front end as a signed integer.

Formats result « CM:global-s-add-1L source, len

Operands source The field ID of the signed integer source field.

len The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Result A signed integer, the sum of the source fields.
Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.

Definition Let S = {m | m € current-vp-set A contert-flagim] = 1}

If |S| = 0 then
return 0 to front end
else

return (X source[m}) to front end
meS

The CM:global-s-add operation sums the source fields, treated as signed integers, in all
selected processors. The sum is sent to the front-end computer as a signed integer and
returned as the result of the operation. If there are no selected processors, then the value
0 is returned.

231

GLOBAL-ADD

GLOBAL-U-ADD

One unsigned integer is examined in every selected processor, and the sum of all these fields
is returned to the front end as an unsigned integer.

Formats result « CM:global-u-add-1L source, len

Operands source The field ID of the unsigned integer source field.

len The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

Result An unsigned integer, the sum of the source fields.
Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.

Definition Let § = {m | m € current-vp-set A contezt-flaglm] = 1}

If |S| = 0 then
return 0 to front end
else

return | 3 sourcelm]| to front end
meS

The CM: global-u-add operation sums the source fields, treated as unsigned integers, in all
selected processors. The sum is sent to the front-end computer as an unsigned integer and
returned as the result of the operation. If there are no selected processors, then the value
0 is returned.

232

GLOBAL-COUNT-BIT

GLOBAL-COUNT-BIT

One bit is examined in every selected processor, and the count of bits that are 1 is delivered
to the front end.

Formats

Operands
Result
Qverlap

Context

Definition

result «— CM:global-count-bit source
result « CM:global-count-bit-always source

source The field ID of the source bit (a one-bit field).
An unsigned integer, the number of 1 bits.
There are no constraints, because overlap is not possible.

The non-always operations are conditional. The result returned depends only
upon processors whose contezi-flag is 1.

The always operations are unconditional. The result returned does not depend
on the context-flag.

If always then

let § = {m|m € current-vp-set A\ source[m| =1}
else

let § = {m | m € current-vp-set A context-flagim] = 1 A source[m] =1}
return |.5| to front end

The CM:global-count-bit operation sums the one-bit bit-source fields in all selected proces-
sors; in other words, it returns a count of how many processors have a 1-bit in that field.
The count is then sent to the front-end computer as an unsigned integer and returned as
the result of the operation. If there are no selected processors, then the value 0 is returned.

Using CM:global-count-bit is identical in effect to using CM:global-unsigned-add on a one-bit
field, but may be faster.

233

GLOBAL-COUNT-CONTEXT

GLOBAL-COUNT-CONTEXT

Returns the number of active processors.

Formats result « CM:global-count-context

Context This operation is unconditional.

Definition Let § = {m | m € current-vp-set A contezt-flaglm] = 1}
Return |§| to front end

The number of processors whose context bit is 1 is returned to the front end.

234

GLOBAL-COUNT-flag

GLOBAL-COUNT-flag

Returns the number of processors that have a specified flag set.

Formats CM:global-count-test
CM:global-count-overflow

Context This operation is conditional.

Definition Let § = {m | m € current-vp-set A contezt-flaglm] = 1 A flaglm] =1}
Return |S| to front end
where flag is test-flag or overflow-flag, as appropriate.

The number of processors for which the specified flag is 1 is returned to the front end.

235

GLOBAL-LOGAND

GLOBAL-LOGAND

One field is examined in every selected processor, and the bitwise logical AND of all these
fields is returned to the front end as an unsigned integer.

Formats result « CM:global-logand-1L source, len

Operands source The field ID of the source field.

len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length#.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical AND
of all the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces-
sors whose context-flag is 1.

Definition Let § = {m | m € current-vp-set A contezt-flagim| = 1}

If |S| = 0 then
return 2™ — 1 to front end
else

return | A source[m]) to front end
meS

The CM:global-logand operation combines the source fields in all selected processors by
performing bitwise logical AND operations. A bit is 1 in the result field if the corresponding
bit is a 1 in all of the fields to be combined. The resulting combined field is then sent to
the front-end computer as an unsigned integer and returned as the result of the operation.
If there are no selected processors, then the value —2'*" — 1 is returned, representing a field
of length len containing all ones.

236

GLOBAL-LOGAND-BIT

GLOBAL-LOGAND-BIT

One memory bit is examined in each processor; 1 is returned if they are all 1, 0 if any is
ZEeTo.

Formats result «— CM:global-logand-bit source
result « CM:global-logand-bit-always source

Operands source The field ID of the source field.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical AND
of all the source bits.

Overlap There are no constraints, because overlap is not possible.

Context The non-always operations are conditional. The result returned depends only
upon processors whose context-flag is 1.

The always operations are unconditional. The result returned does not depend
on the context-flag.

Definition If always then
let § = current-vp-set
else
let §$={m|m € current-vp-set A context-flagim] = 1}
If |S| = 0 then
return 1 to front end
else

return | A source[m]| to front end
meS

The CM:global-logand-bit operation combines the source bits in all selected processors by
performing a bitwise logical AND operation. The result is 1 if all the examined bits are 1;
otherwise the result is 0. The result is sent to the front-end computer as an unsigned integer
and returned as the result of the operation. If there are no selected processors, then the
value 1 is returned.

Using CM:global-logand-bit is identical in effect to using CM:global-logand on a one-bit field,
but may be faster.

237

GLOBAL-LOGAND-CONTEXT

GLOBAL-LOGAND-CONTEXT

Return 1 if all processors are active, 0 if any processor is inactive.

Formats result « CM:global-logand-context

Context This operation is unconditional.

Definition Return (A conte:ct-ﬂag[m]) to front end

meEcurrent-vp-set

If all processors are active, then 1 is returned to the front end; otherwise 0 is returned.

238

GLOBAL-LOGAND-flag

GLOBAL-LOGAND-flag

Return 1 if a specified flag is set in all processors, 0 if it is clear in any processor.

Formats CM:global-logand-test
CM:global-logand-overflow

Context This operation is conditional.

Definition Let S = {m | m € current-vp-set A contezt-flagim] = 1 A flaglm] = 1}

If |S| = 0 then
return 0 to front end
else

return (A ﬁag[m]) to front end
meS

where flag is test-flag or overflow-flag, as appropriate.

If all processors have the indicated flag set, then 1 is returned to the front end; otherwise 0
is returned.

239

GLOBAL-LOGIOR

GLOBAL-LOGIOR

One field is examined in every selected processor, and the bitwise logical inclusive oRr of all
these fields is returned to the front end as an unsigned integer.

Formats result « CM:global-logior-1L source, len

Operands source The field ID of the source field.

len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-lengthx.

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical
INCLUSIVE OR of all the source fields.

Overlap ~ There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.

Definition Let S = {m | m € current-vp-set A contezt-flagim] = 1}

If | S| = 0 then
return 0 to front end
else

return | \/ source[m]| to front end
meSs

The CM:global-logior operation combines the source fields in all selected processors by per-
forming bitwise logical INCLUSIVE OR operations. A bit is 1 in the result field if the cor-
responding bit is a 1 in any of the fields to be combined. The resulting combined field is
then sent to the front-end computer as an unsigned integer and returned as the result of
the operation. If there are no selected processors, then the value 0 is returned, representing
a field of length len containing all zeros.

240

GLOBAL-LOGIOR-BIT

GLOBAL-LOGIOR-BIT

One memory bit is examined in each processor; 1 is returned if any is 1, 0 if they are all

zero.
Formats result « CM:global-logior-bit source
result « CM:global-logior-bit-always source
Operands source The field ID of the source field.
Result An unsigned integer to be regarded as a vector of bits, the bitwise logical or
of all the source bits.
Overlap There are no constraints, because overlap is not possible.
Context The non-always operation is conditional. The result returned depends only
upon processors whose contezt-flag is 1.
The always operation is unconditional. The result returned does not depend
on the context-flag.
Definition If always then

let 5 = current-vp-set
else

let § = {m | m € current-vp-set A context-flaglm] = 1}
If |S| = 0 then

return 0 to front end
else

return (\/ source[m] | to front end
meS

The CM:global-logior-bit operation combines the source bits in all selected processors by
performing a bitwise logical inclusive or operation. The result is 1 if any examined bit is
1; otherwise the result is 0. The result is sent to the front-end computer as an unsigned
integer and returned as the result of the operation. If there are no selected processors, then
the value 0 is returned.

Using CM:global-logior-bit is identical in effect to using CM:global-logior on a one-bit field,
but may be faster.

241

GLOBAL-LOGIOR-CONTEXT

GLOBAL-LOGIOR-CONTEXT

Return 1 if any processor is active, 0 if no processors are active.

Formats result « CM:global-logior-context

Context ~ This operation is unconditional.

Definition Return (Vv contea:t-ﬂag[m]) to front end

meEcurrent-vp-set

If any processor has its context bit set, then 1 is returned to the front end; otherwise 0 is
returned.

242

GLOBAL-LOGIOR-flag

GLOBAL-LOGIOR-flag

Return 1 if a specified flag is set in any processor, 0 if it is clear in all processors.

Formats CM:global-logior-test
CM:global-logior-overflow

Context This operation is conditional.

Definition Let § = {m | m € current-vp-set A contezi-flaglm] = 1 A flaglm| = 1}
If |S| = 0 then
return 0 to front end
else

return (V _ﬂag[m]) to front end

meS
where flag is test-flag or overflow-flag, as appropriate.

If any processor has the indicated flag set, then 1 is returned to the front end; otherwise 0
is returned.

243

GLOBAL-LOGXOR

GLOBAL-LOGXOR

One field is examined in every selected processor, and the bitwise exclusive or of all these
fields is returned to the front end as an unsigned integer.

Formats result « CM:global-logxor-1L source, len

Operands source The field ID of the source field.

len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*,

Result An unsigned integer to be regarded as a vector of bits, the bitwise logical
exclusive oRr of all the source fields.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.

Definition Let § = {m | m € current-vp-set A conteat-flagim] = 1}

If |§| = 0 then
return 0 to front end
else

return | € source[m]| to front end
mes

The CM:global-logxor operation combines the source fields in all selected processors by per-
forming bitwise logical EXCLUSIVE OR operations. A bit is 1 in the result field if the
corresponding bit is a 1 in an odd number of the fields to be combined. The resulting com-
bined field is then sent to the front-end computer as an unsigned integer and returned as
the result of the operation. If there are no selected processors, then the value 0 is returned,
representing a field of length len containing all zeros.

244

GLOBAL-MAX

GLOBAL-F-MAX

One floating-point number is examined in every selected processor, and the largest of all
these integers (that is, the one closest to +oc0) is returned to the front end as a floating-point

number.
Formats result «— CM:global-f-max-1L source, s, €
Operands source The field ID of the floating-point source field.
s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.
Result A floating-point number, the largest of the source fields.
Overlap There are no constraints, because overlap is not possible.
Flags test-flag is set if the value in a particular processor equals the maximum;
otherwise it is cleared.
Context This operation is conditional. The result returned depends only upon proces-
sors whose contexi-flag is 1.
Definition Let § = {m | m € current-up-set A context-flagim| = 1}

If |§| = 0 then
return —oo to front end
else

let B = (max source[m])
mes

For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if source(k] = R then
test-flaglk] — 1
else
test-flaglk] — 0
return R to front end

The CM:global-f-max operation returns the largest (that is, closest to +c0) of the floating-
point source fields of all selected processors. This largest value is sent to the front-end
computer as a floating-point number and returned as the result of the operation. In addition,
the test-flag is set in every selected processor whose field is equal to the finally computed
value, and is cleared in all other selected processors. If there are no selected processors,
then the value —oo is returned.

245

GLOBAL-MAX

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

246

GLOBAL-MAX

GLOBAL-S-MAX

One signed integer is examined in every selected processor, and the largest of all these
integers (that is, the one closest to +00) is returned to the front end as a signed integer.

Formats result « CM:global-s-max-1L source, len
Operands source The field ID of the signed integer source field.
len The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length#*.
Result A signed integer, the largest of the source fields.
Overlap There are no constraints, because overlap is not possible.
Flags test-flag is set if the value in a particular processor equals the maximum;
otherwise it is cleared.
Context This operation is conditional. The result returned depends only upon proces-
sors whose contexzt-flagis 1.
Definition Let S = {m | m € current-uvp-set A context-flagim] = 1}

If | S| = 0 then
return —2%"1 to front end
else

let R = (ma.x sour‘ce[m])
meS

For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if source[k] = R then
test-flaglk] — 1
else
test-flaglk] «— 0
return R to front end

The CM:global-s-max operation returns the largest (that is, closest to +oc0) of the signed-
integer source fields of all selected processors. This largest value is sent to the front-end
computer as a signed integer and returned as the result of the operation. In addition, the
test-flag is set in every selected processor whose field is equal to the finally computed value,
and is cleared in all other selected processors. If there are no selected processors, then the

value —2ln-1

is returned.

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

247

GLOBAL-MAX

GLOBAL-U-MAX

One unsigned integer is examined in every selected processor, and the largest of all these
integers is returned to the front end as an unsigned integer.

Formats result « CM:global-u-max-1L source, len
Operands source The field ID of the unsigned integer source field.
len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-lengthx.
Result An unsigned integer, the largest of the source fields.
Overlap There are no constraints, because overlap is not possible.
Flags test-flag is set if the value in a particular processor equals the maximum;
otherwise it is cleared.
Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.
Definition Let $ = {m | m € current-vp-set A contezt-flaglm] = 1}

If |S| = 0 then
return 0 to front end
else

let R = (max source[m])
mes

For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if source[k] = R then
test-flaglk] — 1
else
test-flaglk] — 0
return R to front end

The CM:global-u-max operation returns the largest of the unsigned-integer source fields of
all selected processors. This largest value is sent to the front-end computer as an unsigned
integer and returned as the result of the operation. In addition, the test-flag is set in every
selected processor whose field is equal to the finally computed value, and is cleared in all
other selected processors. If there are no selected processors, then the value 0 is returned.

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

248

GLOBAL-MAX-INTLEN

GLOBAL-U-MAX-S-INTLEN

One signed integer is examined in every selected processor, and the largest length of all
these integers is returned to the front end as an unsigned integer.

Formats result « CM:global-u-max-s-intlen-1L source, len
Operands source The field ID of the signed integer source field.
len The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-lengthx.
Result An unsigned integer, the length of the source field value of greatest length.
Overlap There are no constraints, because overlap is not possible.
Flags test-flag is set if the value in a particular processor has a length equal to the
maximum; otherwise it is cleared.
Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.
Definition Let § = {m | m € current-vp-set A context-flagim| =1}

If | S| = 0 then
return 0 to front end
else

let R = (t;lg}st |‘10g2 (% + \% + source[m]D])
For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if source[k] = R then
test-flaglk] « 1
else
test-flaglk] — 0
return R to front end

The CM: global-u-max-s-intlen operation computes the integer-length of each signed integer
source value. The largest length is sent to the front-end computer as an unsigned integer
and returned as the result of the operation. In addition, the test-flag is set in every selected
processor whose field is equal to the finally computed value, and is cleared in all other

selected processors. If there are no selected processors, then the value 0 is returned.

A call to CM:global-u-max-s-intlen-1L is equivalent to the sequence

249

GLOBAL-MAX-INTLEN

CM:s-integer-length-2-2L temp, source, len, len
CM:global-u-max-1L temp, len

but may be faster.

250

GLOBAL-MAX-INTLEN

GLOBAL-U-MAX-U-INTLEN

One unsigned integer is examined in every selected processor, and the largest length of all
these integers is returned to the front end as an unsigned integer.

Formats result « CM:global-u-max-u-intlen-1L source, len
Operands source The field ID of the unsigned integer source field.
len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-lengthx*.
Result An unsigned integer, the length of the source field value of greatest length.
Overlap There are no constraints, because overlap is not possible.
Flags test-flag is set if the value in a particular processor has a length equal to the
maximum; otherwise it is cleared.
Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.
Definition Let § = {m | m € current-vp-set A contezxt-flagim| = 1}

If |S| = 0 then
return 0 to front end
else

let R = (rfsg..ngc [log, (1 + source[m]ﬂ)

For every virtual processor k in the current-uvp-set do
if contect-flaglk] = 1 then
if source(k] = R then
test-flaglk] « 1
else
test-flaglk] < 0
return R to front end

The CM:global-u-max-u-intlen operation computes the integer-length of each unsigned in-
teger source value. The largest length is sent to the front-end computer as an unsigned
integer and returned as the result of the operation. In addition, the fest-flag is set in every
selected processor whose field is equal to the finally computed value, and is cleared in all
other selected processors. If there are no selected processors, then the value 0 is returned.

A call to CM:global-u-max-u-intlen-1L is equivalent to the sequence

261

GLOBAL-MAX-INTLEN

CM:u-integer-length-2-2L temp, source, len, len
CM:global-u-max-1L temp, len

but may be faster.

252

GLOBAL-MIN

GLOBAL-F-MIN

One floating-point number is examined in every selected processor, and the smallest of all
these integers (that is, the one closest to —co) is returned to the front end as a floating-point

number.
Formats result « CM:global-f-min-1L source, s, e
Operands source The field ID of the floating-point source field.
s, € The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.
Result A floating-point number, the smallest of the source fields.
Overlap There are no constraints, because overlap is not possible.
Flags test-flag is set if the value in a particular processor equals the minimum;
otherwise it is cleared.
Context This operation is conditional. The result returned depends only upon proces-
sors whose context-flag is 1.
Definition Let S = {m | m € current-vp-set A context-flagim] =1}

If | S| = 0 then
return +oo to front end
else

let R = (m.in source[m]
meSs

For every virtual processor k in the current-uvp-set do
if context-flaglk] = 1 then
if source(k] = R then
test-flaglk] — 1
else
test-flaglk] — 0
return R to front end

The CM:global-f-min operation returns the smallest (that is, closest to —oco) of the floating-
point source fields of all selected processors. This smallest value is sent to the front-end
computer as a floating-point number and returned as the result of the operation. In addition,
the test-flag is set in every selected processor whose field is equal to the finally computed
value, and is cleared in all other selected processors. If there are no selected processors,
then the value 400 is returned.

2563

GLOBAL-MIN

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

254

GLOBAL-MIN

GLOBAL-S-MIN

One signed integer is examined in every selected processor, and the smallest of all these
integers (that is, the one closest to —o0) is returned to the front end as a signed integer.

Formats

Operands

Result
Overlap

Flags

Context

result « CM:global-s-min-1L source, len

source The field ID of the signed integer source field.

len The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

A signed integer, the smallest of the source fields.
There are no constraints, because overlap is not possible.

test-flag is set if the value in a particular processor equals the minimum;
otherwise it is cleared.

This operation is conditional. The result returned depends only upon proces-
sors whose contert-flag is 1.

Definition

Let S = {m | m € current-vp-set A contezt-flagim] = 1}

If |S| = 0 then
return 2"~ _ 1 to front end
else

let R = (min soume[m]) to front end
mes

For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if source(k] = R then
test-flaglk] «— 1
else
test-flaglk] < 0
return R to front end

The CM:global-s-min operation returns the smallest (that is, closest to —oco) of the signed-
integer source fields of all selected processors. This smallest value is sent to the front-end
computer as a signed integer and returned as the result of the operation. In addition, the
test-flag is set in every selected processor whose field is equal to the finally computed value,
and is cleared in all other selected processors. If there are no selected processors, then the
value 2"~1 _ 1 is returned.

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

255

GLOBAL-MIN

GLOBAL-U-MIN

One unsigned integer is examined in every selected processor, and the smallest of all these
integers is returned to the front end as an unsigned integer.

Formats result « CM:global-u-min-1L source, len

Operands source The field ID of the unsigned integer source field.

len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-lengthx.

Result An unsigned integer, the smallest of the source fields.
Overlap ~ There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the minimum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces-
sors whose contezt-flag is 1.

Definition Let S = {m | m € current-vp-set A contezxt-flaglm] = 1}

If |S| = 0 then
return 2'en — 1 to front end
else

let R = (m.in source[m])
meSs

For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if source[k] = R then
test-flaglk] — 1
else
test-flaglk] — 0
return R to front end

The CM: global-u-min operation returns the smallest (that is, closest to zero) of the unsigned-
integer source fields of all selected processors. This smallest value is sent to the front-end
computer as an unsigned integer and returned as the result of the operation. In addition,
the test-flag is set in every selected processor whose field is equal to the finally computed
value, and is cleared in all other selected processors. If there are no selected processors,
then the value 2/" — 1 is returned.

In the Lisp/Paris interface, this function returns two values; the second value is T if no
processors are selected and nil if any processors are selected.

256

GT

F-GT

Compares two floating-point source values. The test-flag is set if the first is strictly greater
than the second, and otherwise is cleared.

Formats CM:f-gt-1L sourcel, source2, s, e
CM:f-gt-constant-1L sourcel, source2-value, s, e
CM:f-gt-zero-1L sourcel, s, e

Operands source! The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-gt-zero-1L, this implicitly has the value zero.

s, e The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is s + e 4 1.

Overlap The fields sourcel and source? may overlap in any manner.
Flags test-flag is set if sourcel is greater than source?; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-up-set do
if context-flaglk] = 1 then
if sourcel k] > source2[k]
test-flaglk] — 1
else
test-flaglk] « 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is greater than the second operand, and is cleared otherwise. Note that comparisons ignore
the sign of zero; +0 is not greater than —0.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

257

GT

S-GT

Compares two signed integer source values. The test-flag is set if the first is strictly greater
than the second, and otherwise is cleared.

Formats CM:s-gt-1L sourcel, source2, len
CM:s-gt-2L sourcel, source2, slenl, slen2
CM:s-gt-constant-1L sourcel, source2-value, len
CM:s-gt-zero-1L sourcel, len
Operands sourcel The field ID of the signed integer first source field.
source2 The field ID of the signed integer second source field.
source2-value A signed integer immediate operand to be used as the second
source. For CM:s-gt-zero-1L, this implicitly has the value zero.
len The length of the sourcel and source2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length.
slent The length of the source! field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length.
slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length.
Overlap The fields source! and source2 may overlap in any manner.
Flags test-flag is set if source! is greater than source?; otherwise it is cleared.
Context ~ This operation is conditional. The flag may be altered only in processors
whose contezt-flagis 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
if sourcel[k] > source2[k] then
test-flaglk] «— 1
else
test-flaglk] — 0

Two operands are compared as signed integers. Operand sourcei is always a memory field;
operand source? is a memory field or an immediate value. The test-flag is set if the first
operand is greater than the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly

258

GT

required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

259

GT

U-GT

Compares two unsigned integer source values. The test-flag is set if the first is strictly
greater than the second, and otherwise is cleared.

Formats

Operands

Overlap
Flags

Context

CM:u-gt-1L sourcel, source2, len

CM:u-gt-2L sourcel, source2, sleni, slen?
CM:u-gt-constant-1L sourcel, source2-value, len

CM:u-gt-zero-1L sourcel, len

sourcel The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source. For CM:u-gt-zero-1L, this implicitly has the value
Zero.

len The length of the sourcef and source? fields. This must be non-
negative and no greater than CM:*maximum-integer-length*.

slent The length of the source! field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

The fields source! and source2 may overlap in any manner.
test-flag is set if sourcel is greater than source2; otherwise it is cleared.

This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition

For every virtual processor k in the current-uvp-set do
if context-flaglk] = 1 then
if sourcel[k] > source2[k] then
test-flaglk] « 1
else
test-flaglk] « 0

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is greater than the second operand and is cleared otherwise.

260

GT

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

261

IEEE-TO-VAX

F-IEEE-TO-VAX

Converts the floating-point source field values from IEEE floating-point format to vax
floating-point format and stores the result in the destination field.

Formats CM:f-ieee-to-vax-1L vaz-dest, teee-source, len

Operands wvaz-dest The field ID of the floating-point destination field.

ieee-source The field ID of the floating-point source field.
len The length of the vaz-dest and teee-source fields. The value of len
must be either 32 or 64.
Overlap The fields vaz-dest and ieee-source may overlap in any manner.
Flags overflow-flag is set if the ieee-source cannot be represented in the destination

field; otherwise it is cleared. If ieee-source represents co or NaN, then vaz-dest
is set to the “undefined variable” value in vaX format and the overflow-flag
is cleared. If teee-source represents —0.0, it is converted to vax 0.0 and the
overflow-flag is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flagis 1.

The Connection Machine operates internally on floating point data in IEEE format whereas
the VAX uses a vAX floating-point format. In each active processor, this function converts
a floating-point field in standard 1EEE format to a field in vAX format.

The value of len specifies the precision of vaz-dest. If len is specified as 32, then vax ‘F’
format is used. If len is specified as 64, then vax ‘D’ format is used.

vAX and IEEE floating-point formats are incompatible, so there are a number of potential
inaccuracies in the translation. In general, if the conversion is accurate then the overflow
flag is cleared; if inaccurate, then the overflow flag is set. See the flags description above.

This instruction is useful for rapidly converting floating-point data to vax format, even if a
vAX front end is not being used. For example, if data is to be transferred from a file in the
CM file system to a VAX, CM:f-ieee-to-vax-1L should be called before writing the data file.

All Paris CM to front end data transfer functions automatically convert the data to the
appropriate front-end format so it is not necessary to call CM:ieee-to-vax hefore calling, for
instance, one of the read-from-news-array instructions.

To convert data back to IEEE floating-point format, see the definition of CM:f-vax-to-ieee-
1L.

263

INIT

INIT

For the C/Paris and Fortran/Paris interfaces only. Makes various machine parameters
available and performs a warm boot operation.

Formats CM:init

Context This operation is unconditional. It does not depend on the context-flag.

The facility for initializing Connection Machine hardware is provided in different ways in
the Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces
(on the other hand).

In the Lisp/Paris interface, there is no CM:init operation. Part of the work done by CM:init
is performed by CM:cold-boot, and the remainder by CM:warm-boot.

In the C/Paris and Fortran/Paris interfaces, CM:init makes available to the user program
various machine parameters that are initialized by the cmattach and cmcoldboot shell com-
mands. It also performs all the functions of CM:warm-boot.

Every C or Fortran program that uses Paris should call CM:init before invoking any other
Paris operations.

264

INITIALIZE-RANDOM-GENERATOR

INITIALIZE-RANDOM-GENERATOR

Formats CM:initialize-random-generator seed

Operands seed An unsigned integer immediate operand to be used as the seed
value for initializing the pseudo-random number generator.

Context This operation is unconditional. It does not depend on the context-flag.

Explicitly initializes the pseudo-random generator of numbers used by the Paris random
number generator operations CM:f-random-1L and cm:u-random-1L. The seed (a front-end
integer, which must be non-zero) determines the initial state.

If it has not been explicitly initialized by a call to this operation, the Paris random number
generator is automaticaly initialized the first time it is called. Automatic initialization uses
a seed based on the date and time.

In the Lisp/Paris interface, the seed argument is optional; if it is omitted, then a value
based on the date and time of day is used.

Note: Less simple but more flexible random number generation routines are provided as
part of the CM Scientific Subroutines Library (cMmssL). For instance, the cMssL random
number generators may be checkpointed to guard against accidental interuptions.

265

INTEGER-LENGTH

S-INTEGER-LENGTH

The minimum number of bits, minus one, needed to represent a signed integer value is
placed in the destination field.

Formats CM:s-integer-length-2-2L dest, source, dlen, slen

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the signed integer source field.

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length=.

slen The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximume-integer-length*.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context ~ This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if source(k] > 0 then dest[k] — [log,(source[k] + 1)]
else dest[k] — [logy(—source[k])]
if (overflow occurred in processor k) then overflow-flagk] « 1
else overflow-flaglk] — 0

The dest field receives, as an unsigned integer, the result of the computation

log,(s+1)] ifs>0
[log,(—s)] ifs<0

where s is the source value. This quantity is one less than the minimum number of bits
required to represent s as a signed number, and will therefore be strictly less than slen.

266

INTEGER-LENGTH

U-INTEGER-LENGTH

The minimum number of bits needed to represent an unsigned integer value is placed in the
destination field.

Formats CM:u-integer-length-2-2L dest, source, dlen, slen

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

slen The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-length.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] «— [log,(sourcelk] + 1)|
if (overflow occurred in processor k) then overflow-flaglk] «— 1
else overflow-flaglk] — 0

The dest field receives, as an unsigned integer, the value [log,(s+1)], where s is the source
value. This quantity is the minimum number of bits required to represent s as an unsigned
number, and will therefore be no greater than slen.

267

INTERN-DETAILED-GEOMETRY

INTERN-DETAILED-GEOMETRY

Returns an interned geometry given detailed information about how the grid is laid out.

Formats result « CM:intern-detailed-geometry azis-descriptor-array, [rank]

Operands azis-descriptor-array A front-end vector of descriptors for the grid axes. In
the C interface, the elements of the azis-descriptor-array must
be of type CM_axis_descriptor_t, that is, they must be pointers to
structures of type CM_axis_descriptor.

In the Lisp interface, the azis-descriptor-array may be either a list
of descriptors or an array of descriptors.

rank An unsigned integer, the rank (number of dimensions) of the
azis-descriptor-array. This must be in between 1 and CM:*max-
geometry-rank#*, inclusive. This argument is not provided when
calling Paris from Lisp.

Result A geometry ID, identifying the existing or newly created interned geometry.

Context This operation is unconditional. It does not depend on the contezt-flag.

By using interned geometries, modules that require identical geometries can use identical
geometries — without having to keep track of the geometryID’s.

CM:intern-detailed-geometry takes an array of descriptors. Each descriptor describes one
NEWS axis in some detail. Most of the components are unsigned integers, but the value of
the ordering component must be either :news-order or :send-order. The CM:create-detailed-
geometry dictionary entry defines the type of the ordering component and of the descriptor
for each language interface.

CM:intern-detailed-geometry is identical to CM:create-detailed-geometry with this exception:
it returns an interned geometryID. A list of interned geometries is maintained and whenever
CM:intern-detailed-geometry or intern-geometry is called, a previously interned geometry is
returned if one exists that matches the specifications of the call, otherwise a new geometry
is created and added to the list.

An interned geometryID is a geometryID returned by CM:intern-detailed-geometry or by
CM:intern-geometry; a geometryID returned by CM:create-detailed-geometry or by CM:create-
geometry may not be interned.

CM:create-detailed-geometry returns a unique, uninterned geometryiD each time it is called.
In contrast, CM:intern-detailed-geometry returns an existing interned geometryIp if it can.
If there is an interned geometry with an axis descriptor array that matches the supplied

268

INTERN-DETAILED-GEOMETRY

azis-descriptor-array, it is returned. Otherwise, CM:intern-detailed-geometry returns a new
interned geometryip. The returned geometryID may be used to create a VP set or to respecify
the geometry of an existing vp set.

Once the interned geometry has been created, the user may destroy the array created to
provide the dimension information. All necessary information is copied from this array
when the geometry is created.

269

INTERN-GEOMETRY

INTERN-GEOMETRY

Returns an interned geometry given grid axis lengths.

Formats result « CM:intern-geometry dimension-array; [rank]

Operands dimension-array A front-end vector of unsigned integer lengths of the
grid axes. In the Lisp interface, this may be a list of dimension
lengths instead of an array of dimension lengths, at the user’s
option.

rank An unsigned integer, the rank (number of dimensions) of the
dimension-array., This must be in between 1 and CM:*max-
geometry-rank*, inclusive. This argument is not provided when
calling Paris from Lisp.

Result A geometry ID, identifying the existing or newly created interned geometry.

Context ~ This operation is unconditional. It does not depend on the contezt-flag.

By using interned geometries, codes that require identical geometries can use identical
geometries — without having to keep track of the geometryin’s.

CM:intern-geometry is identical to CM:create-geometry with this exception: it returns an
interned geometryld. An interned geometryiD is a geometryID returned by CM:intern-
geometry or by CM:intern-detailed-geometry; a geometryID returned by CM:create-geometry
or by CM:create-detailed-geometry may not be interned.

CM:create-geometry returns a unique, uninterned geometryIp each time it is called. In
contrast, CM:intern-geometry returns an existing interned geometryIp if it can. If there is
a geometry, created by CM:intern-geometry and with dimensions that match those specified
in dimension-array, it is returned. Otherwise, CM:intern-geometry returns a new interned
geometryID. The returned geometryid may be used to create a VP set or to respecify the
geometry of an existing VP set.

The dimension-array must be a one-dimensional array of nonnegative integers; each must
be a power of two. The product of all these integers must be a multiple of the number of
physical processors attached for use by this process.

The geometry is laid out so as to optimize performance under the assumption that the axes
are used equally frequently for NEWS communication. The operations CM:create-detailed-
geometry or CM:intern-detailed-geometry may be used instead to more precisely control layout
for performance tuning.

270

INTERN-GEOMETRY

Once the interned geometry has been created, the user may destroy the array used to
provide the dimension information. All necessary information is copied out of this array
when the geometry is created.

271

INTERN-IDENTICAL-VP-SET

INTERN-IDENTICAL-VP-SET

Returns an interned vP set, within which fields may be allocated.

Formats result « CM:intern-identical-vp-set geometry-id
Operands geometry-id A geometry ID.
Result A VP set ID, identifying the existing or newly allocated interned vp set.

Context This operation is unconditional. It does not depend on the contexzt-flag.

This operation returns a VP set 1D for an interned VP set. An interned VP set is a VP set
referenced by a VP set ID returned by CM:intern-identical-vp-set. VP set interning allows
different modules to reference identical VP sets and reduces VP set memory management
overhead.

CM:intern-identical-vp-set returns an existing, interned VP set ID if there is an existing,
interned VP set whose geometry is identical to the geometry specified by geometry-id. Oth-
erwise, CM:intern-identical-vp-set returns a new, interned VP set ID.

Once a vP set has been created as interned, it may never be uninterned. Similarly, an
uninterned VP set (created for instance with CM: create-vp-set) may never become interned.

An interned VP set may be used in the same ways as an uninterned VP set. For instance, it
may be given to other Paris operations in order to create memory fields in which data may
be stored. It may also be deallocated with CM:deallocate-vp-set.

272

INVERT-CONTEXT

INVERT-CONTEXT

Unconditionally makes all active processors inactive and vice versa.

Formats CM:invert-context

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
context-flaglk] — —context-flag[k]

Within each processor, the context bit for that processor is unconditionally inverted.

273

INVERT-FLAG

INVERT-flag

Inverts a specified flag bit.

Formats CM:invert-test
CM:invert-test-always
CM:invert-overflow
CM:invert-overflow-always

Context The non-always operations are conditional.

The always operations are unconditional.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
flag[k] — ~flag[k]

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, the indicated flag for that processor is inverted.

274

IS-FIELD-AN-ALIAS

IS-FIELD-AN-ALIAS

Returns true if the specified field 1D is an alias field ID, false otherwise.

Formats result « CM:is-field-an-alias field-id
Operands field-id A field ID.
Result True if field-id is an alias field 1D, and false otherwise.

Context This operation is unconditional. It does not depend on the conteat-flag.

This operation tests whether the provided field ID is an alias field 1D created with CM:make-
field-alias, as opposed to a regular field ID created with a field allocation instruction such as
CM:allocate-stack-field.

275

IS-FIELD-IN-HEAP

IS-FIELD-IN-HEAP

Returns true if the specified field is a heap field, false otherwise.

Formats result « CM:is-field-in-heap field-id
Operands fleld-id A field ID.
Result True if the fieldiD indicates a field allocated in the heap, and false otherwise.

Context This operation is unconditional. It does not depend on the context-flag.

This instruction allows a program to test whether a given field has been allocated in the
heap (as opposed to the stack).

276

IS-FIELD-IN-STACK

IS-FIELD-IN-STACK

Returns true if the specified field is a stack field, false otherwise.

Formats result « CM:is-field-in-stack field-id
Operands field-id A field ID.
Result True if the fieldiD indicates a field allocated on the stack, and false otherwise.

Context This operation is unconditional. It does not depend on the contezi-flag.

This instruction allows a program to test whether a given field has been allocated on the
stack (as opposed to the heap).

277

IS-FIELD-VALID

IS-FIELD-VALID

Returns true if the specified field 1D corresponds to a currently allocated CM field 1D, false
otherwise.

Formats result «— CM:is-field-valid field-id
Operands field 1D A field ID.
Result True if field-id is a valid field ID, and false otherwise.

Context This operation is unconditional. It does not depend on the contezt-flag.

This instruction allows a program to test whether the provided field 1D is valid. Valid field
ID’s are assigned and returned by operations such as CM:allocate-stack- field, CM:allocate-
heap-field, CM:add-offset-to-field-id, and CM: make-field-aljas.

278

IS-STACK-FIELD-NEWER

IS-STACK-FIELD-NEWER

Formats result « CM:is-stack-field-newer stack-query-field, stack-base-field

Operands stack-query-field A field ID. The field must be in the stack.
stack-base-field A field ID. The field must be in the stack.

Result True if the stack-query-field has been allocated more recently than the
stack-base-field, and false otherwise.

Context This operation is unconditional. It does not depend on the contezt-flag.

This operation compares two stack fields and returns true if the second has been allocated
more recently than the first.

279

IS-VP-SET-VALID

IS-VP-SET-VALID

Returns true if the specified vP set 1D corresponds to a currently allocated VP set, false
otherwise.

Formats result «— CM:is-vp-set-valid wp-set
Operands field 1D A VP set ID.
Result True if vp-set-id is a valid vP set 1D, and false otherwise.

Context This operation is unconditional. It does not depend on the conteat-flag.

This instruction allows a program to test whether the provided vp set 1D is valid. Valid vp
set ID’s are assigned and returned by CM:allocate-vp-set.

280

ISQRT

S-ISQRT

The integer square root of a signed integer source field is placed in the destination field.
This is the largest integer not larger than the true mathematical square root.

Formats CM:s-isqrt-1-1L dest/source, len
CM:s-isqrt-2-1L dest, source, len
CM:s-isqrt-2-2L dest, source, dlen, slen

Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.
len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-lengthx.
dlen The length of the dest field. This must be no smaller than 2 but

no greater than CM:*maximum-integer-length*.

slen The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Flags test-flag is set if the source value is negative; otherwise it is cleared.

overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared. This can occur only for CM:s-isqrt-2-2L.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if source[k] > 0 then
dest[k] — |\/source]
test-flaglk] «— 0
else
dest[k] «— (unpredictable)
test-flaglk] « 1
if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] — 0
as appropriate.

281

If the source value is non-negative, then the integer square root of that value (the largest
integer not greater than the mathematical square root) is placed in the destination, and

lest-flag is cleared. Otherwise the test-flag is set and an unpredictable value is placed in the
dest field.

282

ISQRT

U-ISQRT

The integer square root of an unsigned integer source field is placed in the destination field.
This is the largest integer not larger than the true mathematical square root.

Formats CM:u-isqrt-1-1L dest/source, len
CM:u-isqrt-2-1L dest, source, len
CM:u-isqrt-2-2L dest, source, dlen, slen

Operands dest The field ID of the unsigned integer destination field.

source The field ID of the unsigned integer source field.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length.

dlen The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

slen The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared. This can occur only for CM:u-isqrt-2-2L.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then

dest[k] «— |+/source|

if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] « 0
as appropriate.

The integer square root of the source value (the largest integer not greater than the math-
ematical square root) is placed in the destination.

283

LATCH-LEDS

LATCH-LEDS

Uses a one-bit field to turn the front-panel lights on or off.

Formats CM:latch-leds source
CM:latch-leds-always source

Operands source The field ID of the source bit (a one-bit field).

Context The non-always operations are conditional.

The always operations are unconditional.

Definition Let g = geometry(current-vp-set)
Let » = geometry-total-vp-ratio(g) x 16
Let n = geometry-total-processors/r
For all m such that 0 < m < n do
if always then
turn on led m if and only if

r—1
(V source[m x n + j]) =0
i=0

else
turn on led m if and only if

=1
(V (sourcelm x n + j] A context-flaglm x n + j])) =0
j=0

The specified 1-bit field is read from every selected processor (or every processor, for the
always version) and used to determine which LEDs should be illuminated. There is one
LED associated with each group of 16 physical processors; each physical processor has some
number of virtual processors. Two virtual processors belong to the same group if their
virtual processor numbers agree in their log, n most significant bits, where n is the total
number of LEDs. A LED is illuminated if every selected virtual processor in the group has
a 0 in the selected source field (that is, the fields are combined for each group by a logical
NOR operation).

Note that the pattern will actually persist in the lights only if CM:set-system-leds-mode
has been called with the argument nil (in the Lisp /Paris interface) or 0 (in the C/Paris or
Fortran/Paris interface); otherwise the Connection Machine system software will present
other patterns in the lights.

285

LE

F-LE

Compares two floating-point source values. The test-flag is set if the first is less than or
equal to the second, and otherwise is cleared.

Formats CM:f-le-1L sourcel, source?, s, e
CM:f-le-constant-1L sourcel, source2-value, s, e
CM:f-le-zero-1L sourcel, s, e

Operands sourcel The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-le-zero-1L, this implicitly has the value zero.

s € The significand and exponent lengths for the source! and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields source! and source2 may overlap in any manner.
Flags test-flag is set if sourcel is less than or equal to source?; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if sourcel (k] < source2(k]
test-flaglk] — 1
else
test-flaglk]) — 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is less than or equal to the second operand, and is cleared otherwise. Note that comparisons
ignore the sign of zero; +0 and —0 are considered to be equal.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

286

LE

S-LE

Compares two signed integer source values. The test-flag is set if the first is less than or
equal to the second, and otherwise is cleared.

Formats

Operands

Overlap
Flags

Context

CM:s-le-1L sourcel, source2, len

CM:s-le-2L sourcel, source2, slenl, slen2
CM:s-le-constant-1L sourcel, source2-value, len

CM:s-le-zero-1L sourcel, len

sourcel The field ID of the signed integer first source field.
source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source. For CM:s-le-zero-1L, this implicitly has the value zero.

len The length of the sourcel and source2 fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length#,

sleni The length of the sourcel field. This must be no smaller than 2
but no greater than CM:*maximum-integer-lengthx*.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

The fields sourcel and source2 may overlap in any manner.
test-flagis set if sourcel is less than or equal to source2; otherwise it is cleared.

This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if sourcel[k] < source2[k] then
test-flaglk] — 1
else
test-flaglk] — 0

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source? is a memory field or an immediate value. The fest-flag is set if the first
operand is less than or equal to the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly

287

LE

required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

288

LE

U-LE

Compares two unsigned integer source values. The test-flag is set if the first is less than or
equal to the second, and otherwise is cleared.

Formats CM:u-le-1L sourcel, source?, len
CM:u-le-2L sourcel, source2, slenl, slen2
CM:u-le-constant-1L sourcel, source2-value, len
CM:u-le-zero-1L sourcel, len
Operands sourcel The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.
sourceZ-value An unsigned integer immediate operand to be used as the
second source. For CM:u-le-zero-1L, this implicitly has the value
ZEero.
len The length of the sourcel and source2 fields. This must be non-
negative and no greater than CM:*maximum-integer-length*.
slenl The length of the sourcel field. This must be non-negative and no
greater than CM:*maximum-integer-length*.
slen2 The length of the source2 field. This must be non-negative and no
greater than CM:*maximum-integer-length*.
Overlap The fields sourcel and source2 may overlap in any manner.
Flags test-flag is set if sourcel is less than or equal to source?; otherwise it is cleared.
Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
if sourcel[k] < source2[k| then
test-flaglk] « 1
else
test-flaglk] «— 0

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source?2 is a memory field or an immediate value. The test-flag is set if the
first operand is less than or equal to the second operand, and is cleared otherwise.

289

LE

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
-not strictly required. Regardless of the length of the constant, however, the operation is

performed using exactly the number of bits specified by len.

290

LN

C-LN
The natural logarithm of the complex source field values is placed in the complex destination
field.
Formats CM:c-In-1-1L dest/source, s, €
CM:c-In-2-1L dest, source, s, €
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
S € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e 4+ 1).
Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.
Flags test-flag is set if the source is zero; otherwise it is cleared.
Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if conteat-flaglk] = 1 then
dest[k] «— In source[k]

The value In s is stored into the dest field, where s is the value of the source field. This is
the natural logarithm to the base e ~ 2.718281828....

291

LN

F-LN

The natural logarithm of the floating-point source field values are placed in the floating-
point destination field.

Formats CM:f-In-1-1L dest/source, s, e
CM:f-In-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.

source The field ID of the floating-point source field.

s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is non-positive; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] «+ In source[k]
if source[k] < 0 then
test[k] « 1
else test[k] — 0

Call the value of the source field s. The value In s is stored into the dest field: this is the
natural logarithm to the base e ~ 2.718281828...

292

LOAD-CONTEXT

LOAD-CONTEXT

Unconditionally reads a bit from memory and loads it into the context bit.

Formats CM:load-context source
Operands source The field ID of the source bit (a one-bit field).

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
context-flaglk] «— source[k]

Within each processor, a bit is read from memory and unconditionally loaded into the
context bit for that processor.

293

LOAD-FLAG

LOAD-flag

Reads a bit from memory and loads it into a flag.

Formats CM:load-test source
CM:load-test-always source
CM:load-overflow source

CM:load-overflow-always source
Operands source The field ID of the source bit (a one-bit field).

Context The non-always operations are conditional.

The always operations are unconditional.

Definition For every virtual processor k in the current-up-set do
if (always or contezt-flaglk] = 1) then
flag(k] «— source[k]

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, a bit is read from memory and loaded into the indicated flag for
that processor.

294

LOG

F-LOG2

The base two logarithm of the floating-point source field is placed in the floating-point
destination field.

Formats CM:f-log2-1-1L dest/source, s, e
CM:f-log2-2-1L dest, source, s, e
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e 4 1.

Overlap The source field must be either disjoint from or identical to the desi field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then
dest[k] — log, source[k]

The value log, s is stored into the dest field, where s is the value of the source field. This
is the logarithm to the base two of the floating-point source field.

295

LOG

F-LOG10

The base ten logarithm of the floating-point source field is placed in the floating-point
destination field.

Formats CM:f-logl0-1-1L dest/source, s, e
CM:f-logl0-2-1L dest, source, s, e
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags test-flag is set if the source is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-up-set do
if context-flaglk] = 1 then
dest[k] — log,o source[k]

The value log, s is stored into the dest field, where s is the value of the source field. This
is the logarithm to the base ten of the floating-point source field.

296

LOGAND

LOGAND

Combines two source values using a bitwise logical AND operation, and places the result in
the destination field.

Formats CM:logand-2-1L dest/sourcel, source2, len
CM:logand-always-2-1L dest/sourcel, source2, len
CM:logand-constant-2-1L dest/sourcel, source2-value, len
CM:logand-const-always-2-1L dest/sourcel, source2-value, len
CM:logand-3-1L dest, sourcel, source2, len
CM:logand-always-3-1L dest, sourcel, source2, len
CM:logand-constant-3-1L dest, sourcel, source2-value, len

CM:logand-const-always-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the destination field.
sourcel The field ID of the first source field.
source2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source?2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flagis 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] «— sourcel[k] A source2[k]

Each bit of the dest field is set if both of the corresponding bits of the source! and source2

fields are 1, and is cleared if either of the corresponding bits of the source! and source2
fields is 0.

297

LOGAND-CONTEXT

LOGAND-CONTEXT

Reads a bit from memory; if it is zero, the context bit is cleared, unconditionally.

Formats CM:logand-context source
Operands source The field ID of the source bit (a one-bit field).

Context This operation is unconditional.

Definition For every virtual processor k in the current-up-set do
context-flaglk| — context-flaglk] A source[k]

Within each processor, a bit is read from memory and is “anded” into the context bit for
that processor.

298

LOGAND-CONTEXT-WITH-TEST

LOGAND-CONTEXT-WITH-TEST

If the test flag is zero, the context bit is cleared.

Formats CM:logand-context-with-test

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
contezt-flaglk] — context-flaglk] A test-flag(k]

Within each processor, the test flag is “anded” into the context bit for that processor.

299

LOGAND-FLAG

LOGAND-flag

Reads a bit from memory; if it is zero, a specified flag is cleared.

Formats CM:logand-test source
CM:logand-test-always source
CM:logand-overflow source

CM:logand-overflow-always source
Operands source The field ID of the source bit (a one-bit field).

Context The non-always operations are conditional.

The always operations are unconditional.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flaglk] = 1) then
flag|k) — flag[k] A source[k]

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, a bit is read from memory and is “anded” into the indicated flag
for that processor,

300

LOGANDC1

LOGANDC1

Combines the second source and the bitwise logical NOT of the first source using a bitwise
logical AND operation. Places the result in the destination field.

Formats CM:logandc1-2-1L dest/sourcel, source2, len
CM:logandcl-always-2-1L dest/sourcel, source2, len
CM:logandcl-constant-2-1L dest/sourcel, source2-value, len
CM:logandcl-const-always-2-1L dest/sourcel, source2-value, len
CM:logandcl-3-1L dest, sourcel, source2, len
CM:logandcl-always-3-1L dest, sourcel, source2, len
CM:logandcl-constant-3-1L dest, sourcel, source2-value, len

CM:logandcl-const-always-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the destination field.
sourcel The field ID of the first source field.
source2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source? fields. This must be
non-negative and no greater than CM:*maximum-integer-lengthx.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flagis 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flaglk] = 1) then
dest[k] — (~sourcel[k]) A source2[k]

Each bit of the dest field is set if the corresponding bit of the sourcef field is 0 and the
corresponding bit of the source2 field is 1; otherwise it is cleared.

301

LOGANDC2

LOGANDC2

Combines the first source and the bitwise logical NOT of the second source using a bitwise
logical AND operation. Places the result in the destination field.

Formats CM:logandc2-2-1L dest/sourcel, source2, len
CM:logandc2-always-2-1L dest/sourcel, source2, len
CM:logandc2-constant-2-1L dest/sourcel, source2-value, len
CM:logandc2-const-always-2-1L dest/sourcel, source2-value, len
CM:logande2-3-1L dest, sourcel, source2, len
CM:logandc2-always-3-1L dest, sourcel, source2, len
CM:logandc2-constant-3-1L dest, sourcel, source2-value, len

CM:logandc2-const-always-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the destination field.
sourcel The field ID of the first source field.
source2 The field ID of the second source field.

sourceZ-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the contezi-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] «— sourcel[k] A (-source2[k])

Each bit of the dest field is set if the corresponding bit of the sourcel field is 1 and the
corresponding bit of the source? field is 0; otherwise it is cleared.

302

LOGCOUNT

S-LOGCOUNT

The destination field receives a count of the number of bits that differ from the sign bit in
a two’s-complement binary representation of a signed integer source value. For nonnegative
values, this is a count of 1 bits.

Formats CM:s-logeount-2-2L dest, source, dlen, slen

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the signed integer source field.

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

slen The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if source[k] > 0 then dest[k] — count-of-one-bits(source[k])
else dest[k] « count-of-one-bits(—~source(k])
if (overflow occurred in processor k) then overflow-flaglk] — 1
else overflow-flaglk] — 0

The dest field receives, as an unsigned integer, a count of the number of bits/in the two’s-
complement representation of the signed source value that are different from the sign bit of
that value.

303

LOGCOUNT

U-LOGCOUNT

The destination field receives a count of the number of 1 bits in the binary represenation of
an unsigned integer source value.

Formats CM:u-logeount-2-2L dest, source, dlen, slen

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.

dlen The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

slen The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] — count-of-one-bits(source[k))
if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] — 0

The dest field receives, as an unsigned integer, a count of the number of bits in the binary
representation of the unsigned source value.

304

LOGEQV

LOGEQV

Combines two source values using a bitwise logical EQUIVALENCE operation, and places the
result in the destination field.

Formats

Operands

Overlap

Context

CM:logeqv-2-1L dest/sourcel, source2, len
CM:logeqv-always-2-1L dest/sourcel, source2, len
CM:logeqv-constant-2-1L dest/sourcel, source2-value, len
CM:logeqv-const-always-2-1L dest/sourcel, source2-value, len
CM:logeqv-3-1L dest, sourcel, source, len
CM:logeqv-always-3-1L dest, sourcel, source2, len
CM:logeqv-constant-3-1L dest, sourcel, source2-value, len
CM:logeqv-const-always-3-1L dest, sourcel, source2-value, len

dest The field ID of the destination field.
sourcel The field ID of the first source field.
source2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source? fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

The fields sourcel and source? may overlap in any manner. Bach of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition

For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k]) — —(sourcel[k] ® source2[k])

Each bit of the dest field is set where corresponding bits of the sourcel and source2 fields
are alike, and is cleared where corresponding bits of the sourcel and source2 fields differ.

305

LOGIOR

LOGIOR

Combines two source values using a bitwise logical inclusive OR operation, and places the
result in the destination field.

Formats CM:logior-2-1L dest/sourcel, source2, len
CM:logior-always-2-1L dest/sourcel, source2, len
CM:logior-constant-2-1L dest/sourcel, source2-value, len
CM:logior-const-always-2-1L dest/sourcel, source2-value, len
CM:logior-3-1L dest, sourcel, source2, len
CM:logior-always-3-1L dest, sourcel, source?2, len
CM:logior-constant-3-1L dest, sourcel, source2-value, len

CM:logior-const-always-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the destination field.
sourcel The field ID of the first source field.
source2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] — sourcel[k] V source2|k]

Each bit of the dest field is set if either of the corresponding bits of the source! and source?

fields is 1, and is cleared if both of the corresponding bits of the sourcel and source? fields
are 0.

306

LOGIOR-CONTEXT

LOGIOR-CONTEXT

Reads a bit from memory; if it is one, the context bit is set, unconditionally.

Formats CM:logior-context source
Operands source The field ID of the source bit (a one-bit field).

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
context-flaglk] « context-flag(k] vV source|k]

Within each processor, a bit is read from memory and is “ored” into the context bit for
that processor.

307

LOGIOR-FLAG

LOGIOR-flag

Reads a bit from memory; if it is 1, a specified flag is set.

Formats CM:logior-test source
CM:logior-test-always source
CM:logior-overflow source

CM:logior-overflow-always source
Operands source The field ID of the source bit (a one-bit field).

Context The non-always operations are conditional.

The always operations are unconditional.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
flaglk] — flag[k] V source[k]

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, a bit is read from memory and is “ored” into the indicated flag for
that processor.

308

LOGNAND

LOGNAND

Combines two source values with a bitwise logical NAND operation, and places the result in
the destination field.

Formats CM:lognand-2-1L dest/sourcel, source2, len
CM:lognand-always-2-1L dest [sourcel, source2, len
CM:lognand-constant-2-1L dest/sourcel, source2-value, len
CM:lognand-const-always-2-1L dest/sourcel, source2-value, len
CM:lognand-3-1L dest, sourcel, source2, len
CM:lognand-always-3-1L dest, sourcel, source2, len
CM:lognand-constant-3-1L dest, sourcel, source2-value, len

CM:lognand-const-always-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the destination field.
sourcel The field ID of the first source field.
source?2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flagis 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] — —(sourcel[k] A source2[k])

Each bit of the dest field is set if either of the corresponding bits of the sourcel and source2
fields is 0, and is cleared if both of the corresponding bits of the sourcel and source? fields
are 1.

309

LOGNOR

LOGNOR

Combines two source values with a bitwise logical NOR operation, and places the result in
the destination field.

Formats

Operands

Overlap

Context

CM:lognor-2-1L dest/sourcel, source2, len
CM:lognor-always-2-1L dest/sourcel, source2, len
CM:lognor-constant-2-1L dest/sourcel, source2-value, len
CM:lognor-const-always-2-1L dest/sourcel, source2-value, len
CM:lognor-3-1L dest, sourcel, source2, len
CM:lognor-always-3-1L dest, sourcel, source, len
CM:lognor-constant-3-1L dest, sourcel, source2-value, len
CM:lognor-const-always-3-1L dest, sourcel, source2-value, len

dest The field ID of the destination field.
sourcel The field ID of the first source field.
source2 The field ID of the second source field,

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM: *maximum-integer-length*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition

For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] « —(sourcel (k] V source2[k])

Each bit of the dest field is set if both of the corresponding bits of the source! and source?
fields are 0, and is cleared if either of the corresponding bits of the source! and source?

fields is 1.

310

LOGNOT

LOGNOT

Copies a source field, inverts all the bits, and places them in the destination field.

Formats CM:lognot-1-1L dest/source, len
CM:lognot-always-1-1L dest/source, len
CM:lognot-always-2-1L dest, source, len
CM:lognot-2-1L dest, source, len

Operands dest The field ID of the destination field.
source The field ID of the source field.
len The length of the dest and source fields. This must be non-negative

and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the contezi-flag.

Definition For every virtual processor k in the current-up-set do
if (always or context-flaglk] = 1) then
dest[k] « —source|k]

Each bit of the dest field is set to the inverse of the corresponding bit of the source field.

311

LOGORC1

LOGORC1

Combines the second source and the bitwise logical NOT of the first source using a bitwise
logical inclusive OR operation. Places the result in the destination field.

Formats CM:logorcl-2-1L dest/sourcel, source2, len
CM:logorcl-always-2-1L dest/sourcel, source2, len
CM:logorcl-constant-2-1L dest/sourcel, source2-value, len
CM:logorcl-const-always-2-1L dest/sourcel, source2-value, len
CM:logorel-3-1L dest, sourcel, source2, len
CM:logorcl-always-3-1L dest, sourcel, source2, len
CM:logorcl-constant-3-1L dest, sourcel, source2-value, len

CM:logorcl-const-always-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the destination field.
sourcel The field ID of the first source field.
source2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-lengthx,

Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezi-flaglk] = 1) then
dest[k] «— (-sourcel[k]) V source2 (k]

Each bit of the dest field is cleared if the corresponding bit of the sourcel field is 1 and if
the corresponding bit of the source2 field is 0; otherwise it is set.

312

LOGORC2

LOGORC2

Combines the first source and the bitwise logical NOT of the second source using a bitwise
logical inclusive OR operation. Places the result in the destination field.

Formats CM:logorc2-2-1L dest/sourcel, source2, len
CM:logorc2-always-2-1L dest/sourcel, source2, len
CM:logorc2-constant-2-1L dest/sourcel, source2-value, len
CM:logorc2-const-always-2-1L dest/sourcel, source2- value, len
CM:logorc2-3-1L dest, sourcel, source2, len
CM:logorc2-always-3-1L dest, sourcel, source2, len
CM:logore2-constant-3-1L dest, sourcel, source2-value, len

CM:logorc2-const-always-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the destination field.
sourcel The field ID of the first source field.
souree? The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source? fields. This must be
non-negative and no greater than CM:*maximum-integer-lengthx*.

Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] — sourcel[k] V (~source2(k])

Each bit of the dest field is cleared if the corresponding bit of the sourcel field is 0 and if
the corresponding bit of the source2 field is 1; otherwise it is set.

313

LOGXOR

LOGXOR

Combines two source values using a bitwise logical exclusive OR operation, and places the
result in the destination field.

Formats CM:logxor-2-1L dest/sourcel, source2, len
CM: logxor-always-2-1L dest/sourcel, source2, len
CM: logxor-constant-2-1L dest/sourcel, source2-value, len
CM:logxor-const-always-2-1L dest/sourcel, source2-value, len
CM:logxor-3-1L dest, sourcel, source2, len
CM:logxor-always-3-1L dest, sourcel, source2, len
CM:logxor-constant-3-1L dest, sourcel, source2-value, len

CM:logxor-const-always-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the destination field.
sourcel The field ID of the first source field.
source2 The field ID of the second source field.

source2-value An unsigned integer immediate operand to be regarded as a
vector of bits and used as the second source.

len The length of the dest, sourcel, and source? fields. This must be
non-negative and no greater than CM:*maximum-integer-length=.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two bit
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Context ~ The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flag[k] = 1) then
dest[k] «— sourcel[k] ® source2[k]

Each bit of the dest field is set where corresponding bits of the sourcel and source? fields
differ, and is cleared where corresponding bits of the source! and source? fields are alike.

314

LT

F-LT

Compares two floating-point source values. The test-flag is set if the first is strictly less
than the second, and otherwise is cleared.

Formats CM:f-It-1L sourcel, source2, s, €
CM:f-It-constant-1L sourcel, source2-value, s, €
CM:f-lt-zero-1L sourcel, s, e

Operands sourcel The field ID of the floating-point first source field.
source? The field ID of the floating-point second source field.

sourceZ-value A floating-point immediate operand to be used as the second
source. For CM:f-lt-zero-1L, this implicitly has the value zero.

8 € The significand and exponent lengths for the sourcel and source?
fields. The total length of an operand in this format is s + e + 8

Overlap The fields sourcel and source2 may overlap in any manner.
Flags test-flag is set if sourcel is less than source2: otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if sourcel[k] < source2|k]
test-flaglk] — 1
else
test-flaglk] « 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is less than the second operand, and is cleared otherwise. Note that comparisons ignore the
sign of zero; —0 is not less than +0.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

315

S-LT

Compares two signed integer source values. The test-flag is set if the first is strictly less
than the second, and otherwise is cleared.

Formats CM:s-lt-1L sourcel, sourced, len
CM:s-It-2L sourcel, source?, slenl, slen2
CM:s-lt-constant-1L sourcel, source2-value, len
CM:s-lIt-zero-1L sourcel, len

Operands sourcel The field ID of the signed integer first source field.
source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source. For CM:s-It-zero-1L, this implicitly has the value zero.

len The length of the sourcel and source? fields. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*,

sleni The length of the sourcei field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-lengths.

Overlap The fields source! and source2 may overlap in any manner.
Flags test-flag is set if sourcel is less than sourceZ; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if sourcel[k] < source2[k] then
test-flaglk] — 1
else
test-flaglk] — 0

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an immediate value. The fest- flag is set if the first
operand is less than the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly

316

required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

317

U-LT

Compares two unsigned integer source values. The test-flag is set if the first is strictly less
than the second, and otherwise is cleared.

Formats CM:u-lt-1L sourcel, source?, len
CM:u-lt-2L sourcel, source2, slenl, slen2
CM:u-lt-constant-1L sourcel, source2-value, len
CM:u-lt-zero-1L sourcel, len

Operands sourcel The field ID of the unsigned integer first source field.
source?2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source. For CM:u-lt-zero-1L, this implicitly has the value
zero.

len The length of the sourcel and source2 fields. This must be non-
negative and no greater than CM:*maximum-integer-length*.

slent The length of the source1 field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

slen? The length of the source2 field. This must be non-negative and no
greater than CM: *maximum-integer-length=.

Overlap The fields source! and source2 may overlap in any manner.
Flags test-flag is set if sourcel is less than source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezi-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if sourcel[k] < source2[k] then

test-flaglk] « 1
else

test-flaglk] « 0

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source2 is a memory field or an immediate value. The test-flag is set if the
first operand is less than the second operand, and is cleared otherwise.

318

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

319

MAKE-FIELD-ALIAS

MAKE-FIELD-ALIAS

Creates a new field 1D that points to an existing field.

Formats result « CM:make-field-alias field-id

Operands field-id A field ID. This must be a field 1D returned by CM:allocate-stack-
field or CM:allocate-heap-field; it may not be an offset into a field.
The field need not be in the current vp set.

Result A field ID, identifying the alias field ip. This ID initially resides in the current
VP set.

Context This operation is unconditional. It does not depend on the context-flag.

The return value is a field alias. It is a new field 1D that identifies the same area of memory
as does field-id.

The field identified by field-id can be in a VP set other than the current vP set. The returned
alias field D initially resides in the current VP set. The alias field 1D can be used in all the
same ways as a regular field 1D can, with the following exceptions:

¢ It cannot be passed to CM:deallocate-heap-field.

e It cannot be passed to CM:deallocate-stack-through.

Associated with a field alias is a physical length: the number of bits that the field occupies
in each physical processor. Also associated with a field alias is a fleld length: the number
of bits the field occupies in each virtual processor. The physical length is equal to the field
length multiplied by the VP ratio of the current VP set. It is an error if the physical leugth
is not exactly divisible by the vp ratio of the current VP set.

It is possible for the field length of an alias field to be different from the field length of the
original field. This is the case when make-field-alias is called on a field in a VP set that has a
vP ratio different from the vP ratio of the current ve set. Suppose, for example, the current
VP ratio is 32. If we make an alias for a 32-bit field that resides in a vP set with a VP ratio
of 1, the resulting alias field is a 1 bit field (in a vP ratio of 32).

321

MAKE-NEWS-COORDINATE

MAKE-NEWS-COORDINATE

Determine the send-address of a processor with the specified NEWs coordinate.

Formats CM:make-news-coordinate-1L geometry, dest, azis, news-coordinate, slen
Operands geometry A geometry ID. This determines the NEWs dimensions to be used.
dest The field ID of the unsigned integer destination, to receive the
send address of the processor whose coordinate along the specified
axis is news-coordinate and whose coordinate along all other axes
is a zero field.
axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.
news-coordinate The field ID of the unsigned integer NEWs coordinate along
the specified axis field.
slen The length of the news-coordinate field. This must be non-negative
and no greater than CM: *maximum-integer-length=*.
Context ~ This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
dest[k] «— make-news-coordinate(azis, news-coordinate)

where make-news-coordinate is as defined on page 40.

This function calculates, within each selected processor, the send-address of a processor
that has a specified coordinate along a specified NEWS axis, with all other coordinates zero.

322

MAKE-NEWS-COORDINATE

FE-MAKE-NEWS-COORDINATE

Calculates, entirely on the front end, the send-address of the processor with the specified
coordinate along the specified NEWSs axis and with all other coordinates zero.

Formats result « CM:fe-make-news-coordinate geometry, azis, news-coordinate

Operands geometry A geometry ID. This determines the NEws dimensions to be used.

azris An unsigned integer immediate operand to be used as the number
of a NEWS axis.

news-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along the specified axis.

Result An unsigned integer, the send address of the processor whose coordinate along
the specified axis is news-coordinate and whose coordinate along all other axes
is zero.

Context This operation is performed on the front end. It does not depend on the CM
context-flag.

Definition Return make-news-coordinate(azis, news-coordinate)

where make-news-coordinate is as defined on page 40.

This function calculates, entirely on the front end, the send-address of a processor that has
a specified coordinate along a specified NEWs axis, with all other coordinates zero.

323

MATRIX-MULTIPLY

C-MATRIX-MULTIPLY

Computes matrix multiplication using three single-precision complex operands and stores
the result in the last.

Note: For historical reasons, this operation uses the prefix CMSSL: in place of the standard
CM: Parisinstruction prefix. It also uses the prefix c- to signify that single-precision complex
operands are used. A more efficient version of this operation is included in the cM Scientific
Subroutines Library.

Formats CMSSL: c-matrix-multiply sourcel, source2, dest/sourced

Operands dest The field ID of the complex destination field.
sourcel The field ID of the complex first source field.
source2 The field ID of the complex second source field.
source3 The field ID of the complex third source field.

Overlap ~ The fields sourcel, source2, and dest/sourced must not overlap in any manner.

Context ~ This operation is unconditional. It does not depend on the context-flag.

The calculation dest « sourced + sourcel X source2 is performed on three conforming
matrices, represented as cMm fields.

The operands sourcel, source2, and dest/source3 must be fields of 64-bit single-precision
complex values whose real and imaginary parts are 32-bit floating-point values.

All three operands may helong to separate VP sets if the geometries of those VP sets obey
the following rule:

o The sourcel dimensions are n X m
e The source2 dimensions are m X p

¢ The dest/sourced dimensions are n X p

where n, m, and p are each powers of two. Otherwise, all three operands must belong to
the same square VP set.

The matrix multiply is performed using Cannon’s systolic algorithm, which can be summa-
rized in three steps:

324

MATRIX-MULTIPLY

1. The sourcel and source2 matrices are aligned so the elements in each processor have
conforming indices for matrix multiplication. In terms of data motion, this implies
aligning the diagonal entries of the source! matrix to the first column and aligning
the diagonal entries of the source2 matrix to the first row.

2. The systolic part of the algorithm involves local multiplication of sourcel and source?2
elements followed by nearest neighbor data moves that simulate the inner product.

3. The sourcel and source2 matrices are aligned back to the original form supplied by
the calling program.

In order to exploit the full potential of the floating-point hardware, a block version of the
algorithm is implemented. See the Thinking Machines technical report entitled “Matrix
Multiplication on the Connection Machine” for details.

The ¢M matrix multiplication operation performs best for square matrices and at high VP
ratios.

C/Paris code that calls the Paris matrix multiplication routine must include the line
#include <cm/cmtypes.h>

at the top of the main program file. This declares all C/Paris functions and symbolic
constants, including those for the Paris matrix multiplication routine.

Fortran /Paris code should include the line

INCLUDE */usr/include/cm/cmssl-paris-fort.h’

at the top of any program unit that calls the Paris matrix multiplication routine.

325

MATRIX-MULTIPLY

S-MATRIX-MULTIPLY

Computes matrix multiplication using three single-precision floating-point operands and
stores the result in the last.

Note: For historical reasons, this operation uses the prefix CMSSL: in place of the standard
CM: Paris instruction prefix. It also uses the prefix s- to signify that single-precision floating-
point operands are used. A more efficient version of this operation is included in the cM
Scientific Subroutines Library.

Formats CMSSL:s-matrix-multiply sourcel, source2, dest/sourced

Operands dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source field.
sourced The field ID of the floating-point third source field.

Overlap The fields sourcel, source2, and dest/sourced must not overlap in any manner.

Context ~ This operation is unconditional. It does not depend on the contezt- flag.

The calculation dest « sourced + sourcel x source2 is performed on three conforming
matrices, represented as cM fields.

The operands sourcel, source2, and dest/sourced must be fields of 32-bit single-precision
floating-point values.

All three operands may belong to separate VP sets if the geometries of those VP sets obey
the following rule:

e The sourcel dimensions are n X m
o The source2 dimensions are m X p

o The dest/sourced dimensions are n x p

where n, m, and p are each powers of two. Otherwise, all three operands must belong to
the same square VP set.

The matrix multiply is performed using Cannon’s systolic algorithm, which can be summa-
rized in three steps:

326

MATRIX-MULTIPLY

1. The sourcel and source2 matrices are aligned so the elements in each processor have
conforming indices for matrix multiplication. In terms of data motion, this implies
aligning the diagonal entries of the sourcel matrix to the first column and aligning
the diagonal entries of the source2 matrix to the first row.

2. The systolic part of the algorithm involves local multiplication of sourcel and source2
elements, followed by nearest neighbor data moves that simulate the inner product.

3. The sourcel and source? matrices are aligned back to the original form supplied by

the calling program.

In order to exploit the full potential of the floating-point hardware, a block version of the
algorithm is implemented. See the Thinking Machines technical report entitled “Matrix
Multiplication on the Connection Machine” for details.

The ¢M matrix multiplication routine performs best for square matrices and at high VP
ratios.

C/Paris code that calls the Paris matrix multiplication routine must include the line

#include <cm/cmtypes.h>

at the top of the main program file. This declares all C/Paris functions and symbolic
constants, including those for the Paris matrix multiplication routine.

Fortran/Paris code should include the line

INCLUDE ’/usr/include/cm/cmssl-paris-fort.h’

at the top of any program unit that calls the Paris matrix multiplication routine.

327

MAX

F-MAX

Two floating-point values are compared. The larger is placed in the destination field.

Formats

Operands

Overlap

Flags

Context

CM:f-max-2-1L dest/sourcel, source2, s, e
CM:f-max-3-1L dest, sourcel, source2, s, e
CM:f-max-constant-2-1L dest/sourcel, source2-value, s, e
CM:f-max-constant-3-1L dest, sourcel, source2-value, s, e

dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source.

s, € The significand and exponent lengths for the dest, sourcel, and
source? fields. The total length of an operand in this format is
s+e+1.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

test-flag is set if the value placed in the dest field is not equal to sourcel:
otherwise it is cleared.

This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then

if sourcei1[k] > source2[k] then
dest[k] — sourcel[k|
test-flagk] — 0

else
dest[k] — source2[k]
test-flaglk] — 1

Two operands are compared as floating-point numbers. Operand sourcel is always a mem-
ory field; operand source2 is a memory field or an immediate value. The larger of the two

328

MAX

A L G A

values is copied to the dest field. The test-flag is set or cleared to indicate which operand
was copied; if the two source operands are equal, then the fesi-flag is cleared.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

329

MAX

S-MAX

Two signed integer values are compared. The larger (the one closer to +00) is placed in the
destination field.

Formats

Operands

Overlap

Flags

Context

CM:s-max-3-3L dest, sourcel, source?, dlen, slenl, slen2
CM:s-max-2-1L dest/sourcel, source?, len
CM:s-max-3-1L dest, sourcel, source2, len

CM:s-max-constant-2-1L dest/sourcel, source2-value, len
CM:s-max-constant-3-1L dest, sourcel, source2-value, len

dest The field ID of the signed integer destination field.
sourcel The field ID of the signed integer first source field.
sourceZ2 The field ID of the signed integer second source field.

sourceZ-value A signed integer immediate operand to be used as the second

source.
len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.
dlen For CM:s-max-3-3L, the length of the dest field. This must be no

smaller than 2 but no greater than CM: *maximum-integer-length*.

slenl For CM:s-max-3-3L, the length of the source? field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

slen2 For CM:s-max-3-3L, the length of the source2field. This must be no
smaller than 2 but no greater than CM:*maximum-integer-lengths.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

test-flag is set if the value placed in the dest field is not equal to sourcel;
otherwise it is cleared.

This operation is conditional. The destination and flag may be altered only
in processors whose contezi-flag is 1.

330

MAX

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then

if sourcel[k] > source2[k] then
dest[k] « sourcel[k]
test-flaglk] — 0

else
dest[k] « source2[k]
test-flaglk] — 1

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an immediate value. The larger of the two values is
copied to the dest field. The test-flagis set or cleared to indicate which operand was copied;
if the two source operands are equal, then the test-flag is cleared.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

331

MAX

U-MAX

Two unsigned integer values are compared. The larger is placed in the destination field.

Formats

Operands

Overlap

Flags

Context

CM:u-max-3-3L dest, sourcel, source2, dlen, sleni, slen2
CM:u-max-2-1L dest/sourcel, source2, len
CM:u-max-3-1L dest, sourcel, source2, len

CM:u-max-constant-2-1L dest/sourcel, source2-value, len
CM:u-max-constant-3-1L dest, sourcel, source2-value, len

dest The field ID of the unsigned integer destination field.
sourcel The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

dlen For CM:u-max-3-3L, the length of the dest field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

slent For CM:u-max-3-3L, the length of the sourcel field. This must be
non-negative and no greater than CM:*maximum-integer-lengthx*.

slen2 For CM:u-max-3-3L, the length of the source2 field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

test-flag is set if the value placed in the dest field is not equal to sourcel;
otherwise it is cleared.

This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

332

MAX

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then

if sourcel[k] > source2[k| then
dest[k] — sourcel k]
test-flaglk] « 0

else
dest[k] «— source2[k]
test-flaglk] — 1

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source? is a memory field or an immediate value. The larger of the two
values is copied to the dest field. The test-flag is set or cleared to indicate which operand
was copied; if the two source operands are equal, then the test-flag is cleared.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

333

MIN

F-MIN

Two floating-point values are compared. The smaller is placed in the destination field.

Formats CM:f-min-2-1L dest/sourcel, sourcel, s, e
CM:f-min-3-1L dest, sourcel, source, s, e
CM:f-min-constant-2-1L dest/sourcel, source2-value, s, e
CM:f-min-constant-3-1L dest, sourcel, source2-value, s, e

Operands dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second

source.

s, € The significand and exponent lengths for the dest, sourcel, and
source? fields. The total length of an operand in this format is
s+e+ 1.

Overlap The fields source and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags test-flag is set if the value placed in the dest field is not equal to sourcel;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then

if sourcel (k] < source2[k| then
dest[k] «— sourcel[k]
test-flaglk] — 0

else
dest[k] — source2[k]
test-flaglk] « 1

Two operands are compared as floating-point numbers. Operand sourcel is always a mem-
ory field; operand source2 is a memory field or an immediate value. The smaller of the two

334

MIN

values is copied to the dest field. The test-flag is set or cleared to indicate which operand
was copied; if the two source operands are equal, then the test-flag is cleared.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

335

MIN

S-MIN

Two signed integer values are compared. The smaller (the one closer to —00) is placed in
the destination field.

Formats

Operands

Overlap

Flags

Context

CM:s-min-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-min-2-1L dest/sourcel, source2, len
CM:s-min-3-1L dest, sourcel, source2, len

CM:s-min-constant-2-1L dest/sourcel, source2-value, len
CM:s-min-constant-3-1L dest, sourcel, source2-value, len

dest The field ID of the signed integer destination field.
sourcel The field ID of the signed integer first source field.
source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second

source.

len The length of the dest, sourcel, and source? fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
lengthx.

dlen For CM:s-min-3-3L, the length of the dest field. This must be no

smaller than 2 but no greater than CM: *maximum-integer-length+.

slent For CM:s-min-3-3L, the length of the sourcel field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-lengthx.

slen2 For CM:s-min-3-3L, the length of the source2 field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-length*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

test-flag is set if the value placed in the dest field is not equal to sourcel:
otherwise it is cleared.

This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

336

MIN

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then

if sourcel[k] < source2(k] then
dest[k] « sourcel [k]
test-flaglk] — 0

else
dest[k] « source2[k]
test-flaglk] — 1

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an immediate value. The smaller of the two values is
copied to the dest field. The test-flag is set or cleared to indicate which operand was copied;
if the two source operands are equal, then the test-flag is cleared.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

337

MIN

U-MIN

Two unsigned integer values are compared. The smaller is placed in the destination field.

Formats CM:u-min-3-3L dest, sourcel, source?, dlen, sleni, slen2
CM:u-min-2-1L dest/sourcel, source2, len
CM:u-min-3-1L dest, sourcel, source2, len

CM:u-min-constant-2-1L dest/sourcel, source2-value, len
CM:u-min-constant-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the unsigned integer destination field.
sourcel ~ The field ID of the unsigned integer first source field.
source? The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

dlen For CM:u-min-3-3L, the length of the dest field. This must be non-
negative and no greater than CM: *maximum-integer-length*.

slent For CM:u-min-3-3L, the length of the sources field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

slen2 For CM:u-min-3-3L, the length of the source2 field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags test-flag is set if the value placed in the dest field is not equal to sourcel;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if source1[k] < source2[k] then
dest[k] — sourcel[k]

338

MIN

test-flaglk] « 0

else
dest(k] — source2[k]
test-flaglk] « 1

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source2 is a memory field or an immediate value. The smaller of the two
values is copied to the dest field. The test-flag is set or cleared to indicate which operand
was copied; if the two source operands are equal, then the test-flag is cleared.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

339

MOD

F-MOD

One floating-point source field is divided by another and the residue is placed in the desti-
nation field. Overflow is also computed.

This operation’s name is derived from the term modulus; the destination field receives the
the residue of taking one source field modulus another source field.

Formats CM:f-mod-2-1L dest/sourcel, source2, s, e
CM:f-mod-3-1L dest, sourcel, source?, s, e
CM:f-mod-constant-2-1L dest/sourcel, source2-value, s, e
CM:f-mod-constant-3-1L dest, sourcel, source2-value, s, e

Operands dest The field ID of the floating-point destination field. This is the

quotient.

sourcel The field ID of the floating-point first source field. This is the
dividend.

source2 The field ID of the floating-point second source field. This is the
divisor.

source2-value A floating-point immediate operand to be used as the second
source,

s, e The significand and exponent lengths for the dest, sourcel, and
source? fields. The total length of an operand in this format is
s+e+ 1.

Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags test-flag is set if division by zero occurs; otherwise it is cleared.
overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
if source2[k] = 0 then
dest[k] «— (unpredictable)

340

MOD

test-flaglk] « 1
else

sou‘rcel‘kl
des,‘t [k] — sourcel [kl - SOEfCE.?[k] X lsourceg k J

test-flaglk] — 0
if (overflow occurred in processor k) then overflow-flaglk] — 1

The residue resulting from the reduction of the floating-point sourcel operand divided by
the source2 operand is stored in the dest field. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

341

MOD

S-MOD

One signed integer source field is divided by another and the residue is placed in the desti-
nation field. Overflow is also computed.

This operation’s name is derived from the term mo dulus; the destination field receives the
the residue of taking one source field modulus another source field.

Formats CM:s-mod-2-1L dest/sourcel, source2, len
CM:s-mod-3-1L dest, sourcel, source2, len
CM:s-mod-constant-2-1L dest/source1, source2-value, len
CM:s-mod-constant-3-1L dest, sourcel, source2-value, len
Operands dest The field ID of the signed integer residue field.
sourcel The field ID of the signed integer dividend field.
source2 The field ID of the signed integer modulus (divisor) field.
source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source? fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags test-flag is set if the modulus (divisor) is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
if source2[k] = 0 then
dest[k] «— (unpredictable)

else
dest[k] « sourcel[k] — source2[k] x sourcel[k]
source2 k]

if (divisor was zero in processor k) thentest- flaglk] «— 1
else test-flaglk] « 0

342

MOD

The residue resulting from the reduction of the signed integer sourcel modulo the signed
integer source2 operand is stored into the dest field. The result always has the same sign
as the source2 operand. The various operand formats allow operands to be either memory
fields or constants; in some cases the destination field initially contains one source operand.

If the divisor is zero occurs, then the test-flag is set and the value of the destination is
unpredictable

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

343

MOD

U-MOD

One unsigned integer source field is divided by another and the residue is placed in the
destination field. Overflow is also computed.

This operation’s name is derived from the term modulus; the destination field receives the
the residue of taking one source field modulus another source field.

Formats CM:u-mod-2-1L dest/sourcel, source2, len
CM:u-mod-3-1L dest, sourcel, source2, len
CM:u-mod-constant-2-1L dest/sourcel, source2-value, len
CM:u-mod-constant-3-1L dest, sourcel, source2-value, len
Operands dest The field ID of the unsigned integer residue field.
sourcel The field ID of the unsigned integer dividend field.
source2 The field ID of the unsigned integer modulus (divisor) field.
source2-value An unsigned integer immediate operand to be used as the
second source.
len The length of the dest, sourcel, and source? fields. This must be
non-negative and no greater than CM:*maximum-integer-lengthx.
Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.
Flags test-flag is set if the modulus (divisor) is zero; otherwise it is cleared.
Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
if source2(k] = 0 then
dest[k] « (unpredictable)

else
dest[k] «— sourcel[k] — source2[k] x sourcel[k]
source2[k|

if (divisor was zero in processor k) thentest-flaglk] — 1
else test-flaglk] «— 0

344

The residue resulting from the reduction of the unsigned integer sourcel modulo the un-
signed integer source2 operand is stored into the dest field. The various operand formats
allow operands to be either memory fields or constants; in some cases the destination field
initially contains one source operand.

If the divisor is zero occurs, then the test-flag is set and the value of the destination is
unpredictable

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

345

MOVE

C-MOVE

Copies a complex source value into the destination field.

Formats CM:c-move-2L dest, source, ds, de, ss, se
CM:c-move-1L dest, source, s, e
CM:c-move-always-1L dest, source, s, €
CM:c-move-constant-1L dest, source-value, s, e
CM:c-move-const-always-1L dest, source-value, s, e
CM:c-move-zero-1L dest, s, e

CM:c-move-zero-always-1L dest, s, e

Operands dest The field ID of the complex destination field.

source The field ID of the complex source field.

source-value The field ID of the complex source field. For CM:c-move-
zero-1L and CM:c-move-zero-always-1L, this implicitly has the value
zero.

s e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

ds, de For CM:c-move-2L, the significand and exponent lengths for the
dest field. The total length of an operand in this format is 2(ds +
de +1).

ss, se For CM:c-move-2L, the significand and exponent lengths for the

source field. The total length of an operand in this format is
2(ss+ se+1).

Overlap The fields dest and source may overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared. This can occur only for CM:c-move-2L.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose contezt-flagis 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the contest-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flaglk] = 1) then
dest[k] — source[k]
if {overflow occurred in processor k) then overflow-flaglk] — 1

346

MOVE

else overflow-flaglk] «— 0
as appropriate.

The source field or value is copied into the dest field.

However, overlapping fields are not handled carefully and should be avoided.

347

MOVE

F-MOVE

Copies a floating-point source value into the destination field.

Formats

Operands

Overlap

Flags

Context

CM:f-move-2L dest, source, ds, de, ss, se
CM:f-move-1L dest, source, s, e
CM:f-move-always-1L dest, source, s, e
CM:f-move-constant-1L dest, source-value, s, e
CM:f-move-const-always-1L dest, source-value, s, e
CM:f-move-zero-1L dest, s, e
CM:f-move-zero-always-1L dest, s, e

dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.

source-value A floating-point immediate operand to be used as the source.
This should be of type double-float in Lisp /Paris and will be co-
erced if necessary. For CM:f-move-zero-1L and CM:f-move-zero-
always-1L, this implicitly has the value zero.

8 € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s 4+ e + 1.

ds, de For CM:f-move-2L, the significand and exponent lengths for the dest
field. The total length of an operand in this format is ds + de + 1.

ss, se For CM:f-move-2L, the significand and exponent lengths for the
source field. The total length of an operand in this format is
38+ se + 1.

The fields dest and source may overlap in any manner.

overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared. This can occur only for CM:f-move-2L.

The non-always operations are conditional. The destination and flag may be
altered only in processors whose contezt-flagis 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition

For every virtual processor k in the current-vp-set do
if (always or context-flagk] = 1) then
dest[k] — source[k]
if {overflow occurred in processor k) then overflow-flaglk] « 1

348

MOVE

else overflow-flaglk] « 0

as appropriate.

The source field or value is copied into the dest field.

Overlapping fields are handled carefully. The operation behaves as if the entire source field
were first copied to a temporary buffer not overlapping either the source or dest field, and
then the temporary buffer copied to the dest field.

349

S-MOVE

Copies a signed integer source value into the destination field.

Formats CM:s-move-2L dest, source, dlen, slen
CM:s-move-1L dest, source, len
CM:s-move-always-1L dest, source, len
CM:s-move-constant-1L dest, source-value, len
CM:s-move-const-always-1L dest, source-value, len
CM:s-move-zero-1L dest, len
CM:s-move-zero-always-1L dest, len
Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.
source-value A signed integer immediate operand to be used as the source.
For CM:s-move-zero-1L and CM:s-move-zero-always-1L, this implic-
itly has the value zero.
len The length of the dest and source fields. This must be no smaller
than 2 but no greater than the maximum Paris field length.
dlen For CM:s-move-1L, the length of the dest field. This must be no
smaller than 2 but no greater than the maximum Paris field length.
slen For CM:s-move-1L, the length of the source field. This must be no
smaller than 2 but no greater than the maximum Paris field length.
Overlap The fields dest and source may overlap in any manner.
Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared. This can occur only for CM:s-move-2L.
Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose contezt-flag is 1.
The always operations are unconditional. The destination and flag may be
altered regardless of the value of the contezt-flag.
Definition For every virtual processor k in the current-vp-set do

if (always or contezt-flaglk] = 1) then
dest[k] — source[k]
if (overflow occurred in processor k) then overflow-flagk] « 1

else overflow-flaglk] « 0

350

R

The source field or value is copied into the dest field. For CM:s-move-2L, if slen is less than
dlen then the source value, regarded as a bit field, is padded at the most significent end
with copies of the most significant source bit (sign extension), and if slen is greater than
dlen then truncation occurs and overflow may be detected.

Overlapping fields are handled carefully. The operation behaves as if the entire source field
were first copied to a temporary buffer not overlapping either the source or dest field, and
then the temporary buffer copied to the dest field.

351

U-MOVE

Copies an unsigned integer source value into the destination field.

Formats CM:u-move-2L dest, source, dlen, slen
CM:u-move-1L dest, source, len
CM:u-move-always-1L dest, source, len
CM:u-move-constant-1L dest, source-value, len
CM:u-move-const-always-1L dest, source-value, len
CM:u-move-zero-1L dest, len
CM:u-move-zero-always-1L dest, len
Operands dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.
source-value An unsigned integer immediate operand to be used as the
source. For CM:u-move-zero-1L and CM: u-move-zero-always-1L, this
implicitly has the value zero.
len The length of the dest and source fields. This must be no smaller
than 2 but no greater than the maximum Paris field length.
dlen For CM:u-move-1L, the length of the dest field. This must be no
smaller than 2 but no greater than the maximum Paris field length.
slen For CM:u-move-1L, the length of the source field. This must be no
smaller than 2 but no greater than the maximum Paris field length.
Overlap ~ The fields dest and source may overlap in any manner.
Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared. This can occur only for CM:u-move-2L.
Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.
The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.
Definition For every virtual processor k in the current-vp-set do

if (always or contezt-flaglk] = 1) then
dest[k] «— source[k]
if {(overflow occurred in processor k) then overflow- flaglk] — 1
else overflow-flaglk] — 0

352

MOVE

The source field or value is copied into the dest field. For CM:u-move-2L, if slen is less than
dlen then the source value, regarded as a bit field, is padded at the most significent end
with zero bits, and if slen is greater than dlen then truncation occurs and overflow may be
detected.

Overlapping fields are handled carefully. The operation behaves as if the entire source field
were first copied to a temporary buffer not overlapping either the source or dest field, and
then the temporary buffer copied to the dest field.

353

MOVE-DECODED-CONSTAN

F-MOVE-DECODED-CONSTANT

Copies a decoded immediate floating-point source value into the destination field.

Formats CM:f-move-decoded-constant-1L dest, low-s-value, high-s-value,
e-value, sign-value, s, e
Operands dest The field ID of the floating-point destination field.

low-s-value An unsigned integer immediate operand to be used as the
low 32 bits of the integer significand.

high-s-value An unsigned integer immediate operand to be used as the
high bits of the integer significand.

e-value A signed integer immediate operand to be used as the integer
exponent.

sign-value A signed integer immediate operand to be used as the integer sign.
This must be either 1 or -1.

s, € The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

Overlap There are no constraints, because overlap is not possible.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] « sign-value X (low-s-value + 232 X high-s-value) x 2°-vele

The three quantities low-s-value + 232 X high-s-value, e-value, and sign-value are three
integers that together describe a floating-point value. (This is the same decoded form that
is used by such Common Lisp operations as integer-decode-float.) This floating-point value
is copied into the dest field.

In the Lisp interface one may use a “bignum” as the low-s-value and always pass zero for
the high-s-value. In the C interface, however, it is not possible to pass an integer of more
than 32 bits. The high-s-value operand provides a way around this difficulty that works
compatibly in either language.

354

MOVE-REVERSED

MOVE-REVERSED

Copies the source values into the destination field, reversing the order of the bits.

Formats CM:move-reversed-1L dest, source, len
CM:move-reversed-always-1L dest, source, len
Operands dest The field ID of the destination field.
source The field ID of the source field.
len The length of the dest and source fields. This must be non-negative

and no greater than CM:*maximum-integer-length#.

Overlap The source field must be either disjoint from or identical to the destfield. Two
bit fields are identical if they have the same address and the same length.

Context The non-always operation is conditional. The destination may be altered only
in processors whose context-flag is 1.

The always operation is unconditional. The destination may be altered re-
gardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
for j from 0 to len — 1 do
dest[k](j) « source[k](len — j — 1)

The source field or value is copied into the dest field, with the order of the bits reversed;
that is, the least significant bit of the source field is copied into the most significant bit of
the dest field, and so on.

355

MULT-ADD

F-MULT-ADD

Calculates a value za + b and places it in the destination.

Formats CM:f-mult-add-1L dest, sourcel, source?, sourced, s, e
CM:f-mult-add-always-1L dest, sourcel, source2, sourced, s, e
CM:f-mult-const-add-1L dest, sourcel, source2-value, source$, s, e
CM:f-mult-const-add-always-1L dest, sourcel, source2-value, sourced, s, e
CM: f-mult-add-const-1L dest, sourcel, source2, source3-value, s, e

CM:f-mult-add-const-always-1L dest, sourcel, source2, source3-value, s, e
CM:f-mult-const-add-const-1L dest, sourcel, source®-value, source3-value, s, e
CM:f-mult-const-add-const-a-1L dest, sourcel, source2-value, source3-value, s, e

Operands dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source (multiplier) field.

source2-value A floating-point immediate operand to be used as the second
source (multiplier).

source3 The field ID of the floating-point third source (augend) field.

source3-value A floating-point immediate operand to be used as the third
source (augend).

s, € The significand and exponent lengths for the dest, sourcel, source2,
and sourced fields. The total length of an operand in this format
iss+e+1.

Overlap ~ The fields sourcel, source2, and sourced may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context ~ The non-always operations are conditional. The destination and flag may be
altered only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] — (sourcel[k] x source2[k]) + source3[k]
if (overflow occurred in processor k) then overflow- flaglk] — 1

356

MULT-ADD

Two operands, sourcel and source2, are multiplied as floating-point numbers and then a
third operand, sourced, is added to the product. The result is stored in the destination
field. The various operand formats allow the second and third source operands to be either
memory fields or constants.

The constant operands source2-value and source3-value should be double-precision front-
end values (in Lisp, automatic coercion is performed if necessary). The constants are then
converted, in effect, to the format specified by s and e before the operation is performed.

A call to CM:f-mult-add-1L is equivalent to the sequence

CM:f-multiply-3-1L temp, sourcel, source2, s, e
CM:f-add-3-1L dest, temp, sourced, s, e

but may be faster.

357

MULT-SUB

F-MULT-SUB

Calculates a value za — b and places it in the destination.

Formats CM:f-mult-sub-1L dest, sourcel, source2, sourced, s, e
CM: f-mult-sub-always-1L dest, sourcel, source2, source3, s, e
CM:f-mult-const-sub-1L - dest, sourcel, source2-value, sources, s, e
CM:f-mult-const-sub-always-1L dest, sourcel, source2-value, source3, s, e
CM:f-mult-sub-const-1L dest, sourcel, source2, source3-value, s, e

CM:f-mult-sub-const-always-1L dest, sourcel, source2, source3-value, s, e
CM:f-mult-const-sub-const-1L dest, sourcel, source2-value, source3-value, s, e
CM:f-mult-const-sub-const-a-1L dest, sourcel, source2-value, source3-value, s, e

Operands dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source (multiplier) field.

source2-value A floating-point immediate operand to be used as the second
source (multiplier).

source3 The field ID of the floating-point third source (subtrahend) field.

source3-value A floating-point immediate operand to be used as the third
source (subtrahend).

s, e The significand and exponent lengths for the dest, sourcel, source2,
and source3 fields. The total length of an operand in this format
iss+e+1.

Overlap The fields sourcel, source2, and sourced may overlap in any manner. Bach
of them, however, must he either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flagis 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-up-set do
if (always or contezt-flaglk] = 1) then
dest[k] — (sourcel[k] x source2[k]) — source3[k]
if (overflow occurred in processor k) then overflow-flagk] « 1

358

MULT-SUB

Two operands, sourcel and source2, are multiplied as floating-point numbers and then
a third operand, source?, is subtracted from the product. The result is stored in the
destination field. The various operand formats allow the second and third source operands
to be either memory fields or constants.

The constant operands source2-value and source3-value should be double-precision front-
end values (in Lisp, automatic coercion is performed if necessary). The constants are then
converted, in effect, to the format specified by s and e before the operation is performed.

A call to CM:f-mult-sub-1L is equivalent to the sequence

CM:f-multiply-3-1L temp, sourcel, source2, s, e
CM:f-subtract-3-1L dest, temp, sourced, s, e

but may be faster.

359

MULT-SUBF

F-MULT-SUBF

Calculates a value b — za and places it in the destination.

Formats

Operands

Overlap

Flags

Context

CM:f-mult-subf-1L dest, sourcel, source2, source$, s, e

CM: f-mult-subf-always-1L dest, sourcel, source2, source, s, e
CM:f-mult-const-subf-1L dest, sourcel, source2-value, sources, s, e
CM:f-mult-const-subf-always-1L dest, sourcel, source2-value, source3, s, e
CM:f-mult-subf-const-1L dest, sourcel, source2, source3-value, s, e
CM:f-mult-subf-const-always-1L dest, sourcel, source2, source3-value, s, e
CM:f-mult-const-subf-const-1L dest, sourcel, source2-value, source3-value, s, e
CM:f-mult-const-subf-const-a-1L dest, sourcel, source2-value, source3-value, s, e

dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source (multiplier) field.

source2-value A floating-point immediate operand to be used as the second
source (multiplier).

source3 The field ID of the floating-point third source (minuend) field.

sourced-value A floating-point immediate operand to be used as the third
source (minuend).

s, € The significand and exponent lengths for the dest, sourcel, source2,
and sourced fields. The total length of an operand in this format
iss+e+1.

The fields sourcel, source2, and sourced may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

The non-always operations are conditional. The destination and flag may be
altered only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the contezi-flag.

Definition

For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] « source3[k] — (sourcel[k] x source2[k])
if (overflow occurred in processor k) then overflow-flaglk] « 1

360

MULT-SUBF

Two operands sourcel and source2 are multiplied as floating-point numbers and the product
is subtracted from a third operand, sourced. The result is stored in the destination field. The
various operand formats allow the second and third source operands to be either memory
fields or constants.

The constant operands source2-value and source3-value should be double-precision front-
end values (in Lisp, automatic coercion is performed if necessary). The constants are then
converted, in effect, to the format specified by s and e before the operation is performed.

A call to CM:f-mult-subf-1L is equivalent to the sequence

CM:f-multiply-3-1L temp, sourcel, source2, s, €
CM:f-subtract-3-1L dest, sourced, temp, s, e

but may be faster.

361

MULTIPLY

C-MULTIPLY

The product of two complex source values is placed in the destination field.

Formats CM: c-multiply-2-1L dest/sourcel, source?, s, e
CM:c-multiply-always-2-1L dest/sourcel, source2, s, e
CM:c-multiply-3-1L dest, sourcel, source?, s, e
CM:c-multiply-always-3-1L dest, sourcel, source, s, e
CM:c-multiply-constant-2-1L dest/sourcel, source2-value, s, e
CM:c-multiply-const-always-2-1L dest/sourcel, source2-value, s, e
CM:c-multiply-constant-3-1L dest, sourcel, source2-value, s, e

CM:c-multiply-const-always-3-1L dest, sourcel, source2-value, s, e

Operands dest The field ID of the complex destination field.
sourcel The field ID of the complex first source field.
source?2 The field ID of the complex second source field.

source2-value A complex immediate operand to be used as the second

source.

s, e The significand and exponent lengths for the dest, sourcei, and
source? fields. The total length of an operand in this format is
2(s+e+1).

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
complex fields are identical if they have the same address and the same format.
It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezi-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] « sourcel[k] X source2[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1

Two operands, sourcel and source2, are multiplied as complex numbers. The result is stored
into memory. The various operand formats allow operands to be either memory fields or
constants; in some cases the destination field initially contains one source operand.

362

MULTIPLY

The constant operand source2-value should be a double-precision complex front-end value
(in Lisp, automatic coercion is performed if necessary). Before the operation is performed,
the constant is converted, in effect, to the format specified by s and e.

363

MULTIPLY

F-MULTIPLY

The product of two floating-point source values is placed in the destination field.

Formats

Operands

Overlap

Flags

Context

CM:f-multiply-2-1L dest/sourcel, source?, s, e
CM:f-multiply-always-2-1L dest/sourcel, source?, s, e
CM:f-multiply-3-1L dest, sourcel, source2, s, e
CM:f-multiply-always-3-1L dest, sourcel, source2, s, e
CM:f-multiply-constant-2-1L dest/sourcel, source2-value, s, e
CM:f-multiply-const-always-2-1L dest/sourcel, source2-value, s, e
CM:f-multiply-constant-3-1L dest, sourcel, source2-value, s, e
CM:f-multiply-const-always-3-1L dest, sourcel, source2-value, s, e

dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, source!, and
source2 fields. The total length of an operand in this format is
s+e+ 1.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

The non-always operations are conditional. The destination and flag may be
altered only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the context-flag.

Definition

For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] « sourcel[k] x source2[k]
if {(overflow occurred in processor k) then overflow-flaglk] « 1

364

MULTIPLY

Two operands, sourcel and source2, are multiplied as floating-point numbers. The result
is stored into memory. The various operand formats allow operands to be either memory
fields or constants; in some cases the destination field initially contains one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

365

MULTIPLY

S-MULTIPLY

The product of two signed integer source values is placed in the destination field. Overflow
is also computed.

Formats

Operands

Overlap

Flags

Context

CM:s-multiply-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-multiply-2-1L dest/sourcel, source2, len
CM:s-multiply-3-1L dest, sourcel, source2, len

CM:s-multiply-constant-2-1L dest/sourcel, source2-value, len
CM:s-multiply-constant-3-1L dest, sourcel, source2-value, len

dest

sourcel

source2

The field ID of the signed integer destination field.
The field ID of the signed integer first source field.
The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second

len

dlen

slent

slen2

source.

The length of the dest, sourcel, and source? fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length=.

For CM:s-multiply-3-3L, the length of the dest field. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
lengthx*,

For CM:s-multiply-3-3L, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM: #*maximum-integer-
length*.

For CM:s-multiply-3-3L, the length of the source? field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the product cannot be represented in the destination
field; otherwise it is cleared.

This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

366

MULTIPLY

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — sourcel[k] x source2[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1
else overflow-flaglk] — 0

Two operands, source! and source2, are multiplied as signed integers. The result is stored
into the memory field dest. The various operand formats allow operands to be either memory
fields are constants; in some cases the destination field initially contains one source operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti-
nation field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

367

MULTIPLY

U-MULTIPLY

The product of two unsigned integer source values is placed in the destination field. Overflow
is also computed.

Formats CM:u-multiply-3-3L dest, sourcel, source2, dlen, sleni, slen2
CM:u-multiply-2-1L dest/sourcel, source2, len
CM:u-multiply-3-1L dest, sourcel, source2, len

CM:u-multiply-constant-2-1L dest/sourcel, source2-value, len
CM:u-multiply-constant-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the unsigned integer destination field.
sourcel The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source? fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

dlen For CM:u-multiply-3-3L, the length of the dest field. This must be
non-negative and no greater than CM: *maximum-integer-length*.

slent For CM:u-multiply-3-3L, the length of the sourcei field. This
must be non-negative and no greater than CM: *maximum-integer-
lengthx,

slen2 For CM:u-multiply-3-3L, the length of the source2 field. This
must be non-negative and no greater than CM: *maximum-integer-
lengthx.

Overlap ~ The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the sum cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do

368

MULTIPLY

if conteat-flaglk] = 1 then
dest[k] — sourcel[k] x source2[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] « 0

Two operands, sourcel and source2, are multiplied as unsigned integers. The result is
stored into the memory field dest. The various operand formats allow operands to be either
memory fields or constants; in some cases the destination field initially contains one source
operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti-
nation field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

369

MULTISPREAD-ADD

MULTISPREAD-C-ADD

The destination field in every selected processor receives the sum of the complex floating-
point source fields from all processors in the same hyperplane through the NEWs grid.

Formats CM:multispread-c-add-1L dest, source, azis-mask, s, e
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
azis-mask An unsigned integer, the mask indicating a set of NEWS axes.
s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).
Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.
Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let r = rank(g)
let azis-set = {m |0 < m < r A (azis-mask(m) = 1)}
let Cy, = {m | m € hyperplane(g, k, azis-set) A contezt-flagim] = 1}
destk] — | 3 source[m)]
meCy
where hyperplane is as defined on 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-c-add operation combines source fields by performing complex floating-point

addition.

A call to CM: multispread-c-add-1L is equivalent to the sequence

for all integers 7, 0 < j < rank(geometry(current-vp-set)), in any sequential order, do
if azis-mask(j) = 1 then
CM:spread-with-c-add-1L dest, source, j, s, e

but may be faster.

370

MULTISPREAD-ADD

MULTISPREAD-F-ADD

The destination field in every selected processor receives the sum of the floating-point source
fields from all processors in the same hyperplane through the NEWs grid.

Formats CM:multispread-f-add-1L dest, source, azis-mask, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
azis-mask An unsigned integer, the mask indicating a set of NEWS axes.
s, € The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + € + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let » = rank(g)
let azis-set = {m |0 < m < r A (azis-mask(m) = 1) }
let Ci = {m | m € hyperplane(g, k, azis-set) A contezt-flaglm] =1}
dest[k] — | Y source[m]
meCy
where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-f-add operation combines source fields by performing floating-point addi-
tion.

A call to CM: multispread-f-add-1L is equivalent to the sequence
CM:f-move-zero-always-1L temp, s, e
CM:f-move-1L temp, source, s, €

CM:store-context ctemp
CM:set-context

371

MULTISPREAD-ADD

for all integers j, 0 < j < rank(geometry(current-vp-set)), in any sequential order, do
if azis-mask(j) =1 then
CM:spread-with-f-add-1L temp, temp, j, s, e
CM:load-context ctemp
CM:f-move-1L dest, temp, s, e

but may be faster.

372

MULTISPREAD-ADD

MULTISPREAD-S-ADD

The destination field in every selected processor receives the sum of the signed integer source
fields from all processors in the same hyperplane through the NEWs grid.

Formats CM:multispread-s-add-1L dest, source, azis-mask, len

Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.
azis-mask An unsigned integer, the mask indicating a set of NEWS axes.
len The length of the dest and source fields. This must be no smaller

than 2 but no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same

length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
let » = rank(g)
let azis-set = {m |0 < m < r A (azis-mask(m) = 1) }
let Cj = {m | m € hyperplane(g, k, azis-set) A context-flaglm] =1}
dest[k] — (b3 sou'rce[m])
meCy
where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-s-add operation combines source fields by performing signed integer addi-

tion.

373

MULTISPREAD-ADD

MULTISPREAD-U-ADD

The destination field in every selected processor receives the sum of the unsigned integer
source fields from all processors in the same hyperplane through the NEWs grid.

Formats CM:multispread-u-add-1L dest, source, azis-mask, len

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.
azis-mask An unsigned integer, the mask indicating a set of NEWS axes.
len The length of the dest and source fields. This must be non-negative

and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let » = rank(g)
let azis-set = {m |0 < m < r A (azis-mask(m) = 1)}
let Cp, = {m | m € hyperplane(g, k, awzis-set) A context-flaglm] = 1}
dest[k] (3 sourr:e[m])
meC,
where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-u-add operation combines source fields by performing unsigned integer ad-

dition.

374

MULTISPREAD-COPY

MULTISPREAD-COPY

The destination field in every selected processor receives a copy of the source value from a
particular value within its scan subclass.

Formats

Operands

Overlap

Context

CM:multispread-copy-1L dest, source, azis-mask, len, multi-coordinate

dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.
azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

maulti-coordinate An unsigned integer, the multi-coordinate indicating
which element of each hyperplane is to be replicated throughout
that hyperplane.

The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition

For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let r = rank(g)
let azis-set = {m |0 < m < r A (azis-mask(m) = 1) }
let ¢ = deposit-multi-coordinate(g, k, azis-set, multi-coordinate)
dest[k] « source[c]

where deposit-maulti-coordinate is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations.

To construct a multi-coordinate, construct a send-address and provide it as an argument to
CM:fe-extract-multi-coordinate.

375

MULTISPREAD-LOGAND

MULTISPREAD-LOGAND

The destination field in every selected processor receives the bitwise logical AND of the
source fields from all processors in the same hyperplane through the NEWs grid.

Formats CM:multispread-logand-1L dest, source, azis-mask, len

Operands dest The field ID of the destination field.
source The field ID of the source field.
azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let r = rank(g)
let azis-set = {m |0 < m < r A (azis-mask(m) = 1)}
let C, = {m | m € hyperplane(g, k, azis-set) A contezt-flaglm] = 1}
dest[k] — | A source[m]
meCy
where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-logand operation combines source fields by performing bitwise logical AND
operations.

376

MULTISPREAD-LOGIOR

MULTISPREAD-LOGIOR

The destination field in every selected processor receives the bitwise logical inclusive OR of
the source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-logior-1L dest, source, azis-mask, len
Operands dest The field ID of the destination field.
source The field ID of the source field.
azis-mask An unsigned integer, the mask indicating a set of NEWS axes.
len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.
Overlap The source field must be either disjoint from or identical to the destfield. Two
bit fields are identical if they have the same address and the same length.
Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.
Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
let ¢ = geometry(current-vp-set)
let r = rank(g)
let azis-set = {m |0 < m < r A (azis-mask(m) =1)}
let Ci = {m | m € hyperplane(g, k, azis-set) A context-flaglm] =1}
dest[k] « (\V source[m]
meEC
where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-logior operation combines source fields by performing bitwise logical inclu-
sive OR operations.

377

MULTISPREAD-LOGXOR

MULTISPREAD-LOGXOR

The destination field in every selected processor receives the bitwise logical exclusive OR of
the source fields from all processors in the same hyperplane through the NEws grid.

Formats CM:multispread-logxor-1L dest, source, azis-mask, len

Operands dest The field ID of the destination field.
source The field ID of the source field.
aris-mask An unsigned integer, the mask indicating a set of NEWS axes.
len The length of the dest and source fields. This must be non-negative

and no greater than CM:*maximum-integer-length=.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
let » = rank(g)
let azis-set = {m |0 < m < r A (azis-mask(m) = 1)}
let Ci = {m | m € hyperplane(g, k, azis-set) A context-flagim] = 1 }
dest[k] « (& source[m])
meC),
where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-logxor operation combines source fields by performing bitwise logical ex-
clusive OR operations.

378

MULTISPREAD-MAX

MULTISPREAD-F-MAX

The destination field in every selected processor receives the largest of the floating-point
source fields from all processors in the same hyperplane through the NEWs grid.

Formats CM:multispread-f-max-1L dest, source, azis-mask, s, €
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
azis-mask An unsigned integer, the mask indicating a set of NEWS axes.
s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.
Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.
Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let r = rank(g)
let azis-set = {m |0 < m < r A (azis-mask(m) = 1) }
let Cy, = {m | m € hyperplane(g, k, azis-set) A contezt-flaglm] =1}

dest(k] (ma.x source[m]
mECy

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-f-max operation combines source fields by performing a floating-point max-
imum operation.

379

MULTISPREA

D-MAX

MULTISPREAD-S-MAX

The destination field in every selected processor receives the largest of the signed integer
source fields from all processors in the same hyperplane through the NEWs grid.

Formats CM:multispread-s-max-1L dest, source, azis-mask, len
Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.
azis-mask An unsigned integer, the mask indicating a set of NEWS axes.
len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length.
Overlap ~ The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.
Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let r = rank(g)
let azis-set = {m | 0 < m < r A (azis-mask(m) = 1)}
let Ci. = {m | m € hyperplane(g, k, azis-set) A context-flagim) = 1}

dest[k] — | max source[m])
mEC.‘,,

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-s-max operation combines source fields by performing a signed integer max-
imum operation.

380

MULTISPREAD-MAX

MULTISPREAD-U-MAX

The destination field in every selected processor receives the largest of the unsigned integer
source fields from all processors in the same hyperplane through the NEWs grid.

Formats CM:multispread-u-max-1L dest, source, azis-mask, len

Operands dest - The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.
aris-mask An unsigned integer, the mask indicating a set of NEWs axes.
len The length of the dest and source fields. This must be non-negative

and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do

if conteat-flaglk] = 1 then
let g = geometry(current-vp-set)
let » = rank(g)
let azis-set = {m |0 < m < r A (azis-mask(m) = 1)}
let C = {m | m € hyperplane(g, k, azis-set) A context-flagim] =1}

dest[k] « (max source[m|
mGC;‘

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-u-max operation combines source fields by performing an unsigned integer
maximum operation.

381

MULTISPREAD-MIN

MULTISPREAD-F-MIN

The destination field in every selected processor receives the smallest of the floating-point
source fields from all processors in the same hyperplane through the NEws grid.

Formats

Operands

Overlap

Context

CM:multispread-f-min-1L dest, source, azis-mask, s, e

dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let r = rank(g)
let azis-set = {m |0 < m < r A (azis-mask(m) = 1)}
let C, = {m | m € hyperplane(g, k, azis-set) A contezt-flagim] = 1 }

dest[k] «— (min source[m]
mEG.

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-f-min operation combines source fields by performing a floating-point mini-
muin operation.

382

MULTISPREAD-MIN

T

MULTISPREAD-S-MIN

The destination field in every selected processor receives the smallest of the signed integer
source fields from all processors in the same hyperplane through the NEWs grid.

Formats CM:multispread-s-min-1L dest, source, azis-mask, len
Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.
azis-mask An unsigned integer, the mask indicating a set of NEWS axes.
len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM: *maximum-integer-length«.
Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.
Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let ¢ = geometry(current-up-set)
let » = rank(g)
let azis-set = {m | 0 < m < r A (azis-mask(m) = 1)}
let Ci = {m | m € hyperplane(g, k, azis-set) A context-flaglm] =1}

dest[k] — (m.in source[m)|
meEC)

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-s-min operation combines source fields by performing a signed integer min-
imum operation.

383

MULTISPREAD-MIN

MULTISPREAD-U-MIN

The destination field in every selected processor receives the smallest of the unsigned integer
source fields from all processors in the same hyperplane through the NEWs grid.

Formats CM:multispread-u-min-1L dest, source, azis-mask, len

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.
azis-mask An unsigned integer, the mask indicating a set of NEWSs axes.
len The length of the dest and source fields. This must be non-negative

and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length. :

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let r = rank(g)
let azis-set = {m |0 < m < r A (azis-mask(m) = 1)}
let Cy = {m | m € hyperplane(g, k, azis-set) A contezt-flaglm] = 1}

dest[k] «— (m.in source[m]|
mEG.

where hyperplane is as defined on page 44.

See section 5.20 on page 42 for a general description of multispread operations. The
CM:multispread-u-min operation combines source fields by performing an unsigned integer
minimum operation.

384

MY-NEWS-COORDINATE

MY-NEWS-COORDINATE

Stores the NEWS coordinate of each selected processor along a specified NEWS axis into‘a
destination field within that processor.

Formats CM:my-news-coordinate-1L dest, axis, dlen

Operands dest The field ID of the unsigned integer destination field.

axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

dlen The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length=.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contert-flagis 1.

Definition For every virtual processor k in the current-uvp-set do
if context-flaglk] = 1 then
let g = geometry(current-vp-set)
dest[k] « extract-news-coordinate(g, azis, k)

where eztract-news-coordinate is as defined on page 40.

This function calculates, within each selected processor, the NEWS coordinate of that pro-
cessor along a specified NEWS axis.

385

MY-SEND-ADDRESS

MY-SEND-ADDRESS

Stores the send-address of each selected processor into a destination field in that processor.

Formats CM:my-send-address dest

Operands dest The field ID of the unsigned integer destination field. This must
be no less than the value returned by CM:geometry-send-address-
length.

Context ~ This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — k

This function stores into the dest field, within each selected processor, the send-address of
that processor.

386

NE

C-NE

Compares two complex source values. The test-flag is set if they are not equal; otherwise it
is cleared.

Formats CM:c-ne-1L sourcel, source?, s, e
CM:c-ne-constant-1L sourcel, source2-value, s, €
CM:c-ne-zero-1L sourcel, s, €

Operands sourcel The field ID of the complex first source field.
source? The field ID of the complex second source field.

source2-value A complex immediate operand to be used as the second
source. For CM:c-ne-zero-1L, this implicitly has the value zero.

s, € The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is 2(s+e+1).

Overlap The fields sourcel and source2 may overlap in any manner.
Flags test-flag is set if sourcel is not equal to source?; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contert-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if sourcel[k] # source2[k]
test-flaglk] — 1
else
test-flaglk] «— 0

Two operands are compared as complex numbers. The first operand is a memory field; the
second is a memory field or an immediate value. The fest-flag is set if the first operand is
not equal to the second operand, and is cleared otherwise. Note that comparisons ignore
the sign of zero; +0 and —0 are considered to be equal.

The constant operand source2-value should be a double-precision complex front-end value
(in Lisp, automatic coercion is performed if necessary). Before the operation is performed,
the constant is converted, in effect, to the format specified by s and e.

387

F-NE

Compares two floating-point source values. The test-flag is set if they are not equal, and
otherwise is cleared.

Formats CM:f-ne-1L sourcel, source2, s, e
CM:f-ne-constant-1L sourcel, source2-value, s, e
CM:f-ne-zero-1L sourcel, s, e

Operands sourcel The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source. For CM:f-ne-zero-1L, this implicitly has the value zero.

s, € The significand and exponent lengths for the sourcel and source?
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields source! and source2 may overlap in any manner.
Flags test-flag is set if sourcel is not equal to source?; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if sourcel (k] # source2[k]
test-flaglk] «— 1
else
test-flaglk] < 0

Two operands are compared as floating-point numbers. The first operand is a memory field;
the second is a memory field or an immediate value. The test-flag is set if the first operand
is not equal to the second operand, and is cleared otherwise. Note that comparisons ignore
the sign of zero; +0 and —0 are considered to be equal.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

388

NE

S-NE

Compares two signed integer source values. The tesi-flag is set if they are not equal, and
otherwise is cleared.

Formats CM:s-ne-1L sourcel, source2, len
CM:s-ne-2L sourcel, source2, slenl, slen2
CM:s-ne-constant-1L sourcel, source2-value, len
CM:s-ne-zero-1L sourcel, len

Operands sourcel The field ID of the signed integer first source field.
source2 The field ID of the signed integer second source field.

source2-value A signed integer immediate operand to be used as the second
source. For CM:s-ne-zero-1L, this implicitly has the value zero.

len The length of the sourcel and source? fields. This must be no
smaller than 2 but no greater than CM: *maximume-integer-length*.

slenl The length of the sourcel field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length.

slen2 The length of the source2 field. This must be no smaller than 2

but no greater than CM:*maximum-integer-length*.
Overlap The fields sourcel and source2 may overlap in any manner.
Flags test-flag is set if sourcel is not equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if source1[k] # source2[k] then
test-flaglk] « 1
else
test-flaglk] «— 0

Two operands are compared as signed integers. Operand sourcel is always a memory field;
operand source2 is a memory field or an immediate value. The test-flag is set if the first
operand is not equal to the second operand, and is cleared otherwise.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

389

U-NE

Compares two unsigned integer source values. The test-flag is set if they are not equal, and
otherwise is cleared.

Formats CM:u-ne-1L sourcel, source?, len
CM:u-ne-2L sourcel, source2, slenl, slen2
CM:u-ne-constant-1L sourcel, source2-value, len
CM:u-ne-zero-1L sourcel, len

Operands sourcel The field ID of the unsigned integer first source field.
source2 The field ID of the unsigned integer second source field.

source2-value An unsigned integer immediate operand to be used as the
second source. For CM:u-ne-zero-1L, this implicitly has the value
zero.

len The length of the source! and source2 fields. This must be non-
negative and no greater than CM:*maximum-integer-length#.

slent The length of the sourcei field. This must be non-negative and no
greater than CM:*maximum-integer-lengthx.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM:*maximum-integer-lengths.

Overlap The fields sourcel and source2 may overlap in any manner.
Flags test-flag is set if source! is not equal to source2; otherwise it is cleared.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if sourcel[k] # source2[k] then
test-flaglk] «— 1
else

test-flaglk] — 0

Two operands are compared as unsigned integers. Operand sourcel is always a memory
field; operand source? is a memory field or an immediate value. The test-flag is set if the
first operand is not equal to the second operand, and is cleared otherwise.

390

NE

R

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

391

NEGATE

C-NEGATE

Copies a complex number with both signs inverted.

Formats CM:c-negate-1-1L dest/source, s, e
CM:c-negate-2-1L dest, source, s, €
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap ~ The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Context ~ This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k].real — —source[k].real
dest[k].imag « —source|k].imag

A copy of the source operand, with both sign bits inverted, is placed in the dest operand.

392

NEGATE

F-NEGATE

Copies a floating-point number with its sign inverted.

Formats CM:f-negate-1-1L dest/source, s, e
CM:f-negate-2-1L dest, source, s, e
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e 4 1.
Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.
Context ~ This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
dest[k] — —source[k]

A copy of the source operand, with its sign bit inverted, is placed in the dest operand. This
is done even if the operand is a NaN, whether a signalling NaN or a quiet NaN.

This operation therefore differs from the operation of subtracting a floating-point number
from the constant zero when the operand is +0 or a NaN.

393

NEGATE

S-NEGATE

Computes the negative (that is, the additive inverse) of a signed integer source field and
places it in the destination field.

Formats CM:s-negate-1-1L dest/source, len
CM:s-negate-2-1L dest, source, len
CM:s-negate-2-2L dest, source, dlen, slen

Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.
len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.
dlen The length of the dest field. This must be no smaller than 2 but

no greater than CM:*maximum-integer-lengthx.

slen The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Overlap ~ The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contert-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] — —source[k]
if {overflow occurred in processor k) then overflow-flaglk] — 1
else overflow-flaglk] — 0

The negative of the source operand is placed in the dest operand. If overflow occurs, then
the overflow-flag is set. (If the length of the dest field equals the length n of the source
field, overflow can occur only if the source field contains —2". If the length of the dest field
is greater than the length of the source field, then overflow cannot occur.)

394

NEGATE

U-NEGATE

The “negative” (that is, the unsigned additive inverse) of an unsigned integer source field is
placed in the destination field. This is an unsigned value that, when added to the original
source field, will produce zero (possibly with overflow).

Formats CM:u-negate-1-1L dest/source, len
CM:u-negate-2-1L dest, source, len
CM:u-negate-2-2L dest, source, dlen, slen
Operands dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*,

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

slen The length of the source field. This must be non-negative and no

greater than CM: *maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same

length.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared. Overflow occurs whenever the source value is non-
zero.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] — —source[k]
if {overflow occurred in processor k) then overflow-flaglk] — 1
else overflow-flaglk] « 0

The negative of the source operand is placed in the dest operand. If overflow occurs, then
the dest field will contain a value equal to 2lem _ source. This operation matches the
functionality of the unary “-” operator on unsigned integers in the C language.

395

NEWS-ADD

F-NEWS-ADD

The sum of two floating-point source values (one from a NEWs neighbor) is placed in the
destination field.

Formats

Operands

Overlap

Flags

Context

CM:f-news-add-2-1L dest, source, azis, direction, s, e
CM:f-news-add-always-2-1L dest, source, axis, direction, s, e
CM:f-news-add-3-1L dest, sourcel, source2, azis, direction, s, e

CM:f-news-add-always-3-1L dest, sourcel, source2, azis, direction, s, e
CM:f-news-add-const-3-1L dest, sourcel, source2-value, azis, direction, s, e
CM:f-news-add-const-a-3-1L dest, sourcel, source2-value, azis, direction, s, e

dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
sourcel The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source.

azris An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either :upward or :downward.

s, e The significand and exponent lengths for the dest, sourcel, and
sourceZ fields. The total length of an operand in this format is
s+e+ 1.

The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.
The non-always operations are conditional. The destination and flag may be

altered only in processors whose contezt-flagis 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the contezt-flag.

Note that in the conditional cases the storing of data depends only on the
contezt-flag of the processor receiving the data.

396

NEWS-ADD

Definition For every virtual processor k in the current-vp-set do
if contexzt-flaglk] = 1 then
let g = geometry(current-vp-set)
dest[k] «— sourcel[k] + source2[news-neighbor(g,k, azis, direction)]
if (overflow occurred in processor k) then overflow-flag(k] — 1

where news-neighbor is is defined in the NEWS Communication section of the
Instruction Set Overview Chapter.

Two source operands are added as floating-point numbers and the result is stored in dest.
The various operand formats allow source operands to be either memory fields or constants.
Each instruction takes one source field from a NEWS neighbor; the default is source2.

The instructions with two operands take source from a NEWS neighbor, sum it with dest
and store the result back in dest.

For the instructions CM:f-news-add-3-1L and CM:f-news-add-always-3-1L, source2is taken
from a NEWs neighbor.

The instructions CM:f-news-add-const-3-1L and CM:f-news-add-const-a-3-1L take sourcel
is from a NEWS neighbor. Note that the ain CM:f-news-add-const-a-3-1L stands for “always.”

If direction is :upward then each processor retrieves data from the neighbor whose NEWS co-
ordinate is one greater along azis, with the processor whose coordinate is greatest retrieving
data from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWS
coordinate is one less along azis, with the processor whose coordinate is zero retrieving data
from the processor whose coordinate is greatest.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

A call to CM:f-news-add-1L is equivalent to the sequence

CM:get-from-news-1L temp, source2, azis, direction, (s + e + 1)
CM:f-add-3-1L dest, sourcel, temp, s, e

but is faster at high VP ratios and requires little temporary memory.

397

NEWS-ADD-MULT

F-NEWS-ADD-MULT

Calculates the value (a + z)b, where one of the operands is taken from a NEWS neighbor,
and places the result in the destination.

Formats CM:f-news-add-mult-4-1L dest, sourcel, source2, source$, azis, direction, s, e
CM:f-news-add-const-mult-4-1L dest, sourcel, source2-value, sources, awzis, direction, s, e

Operands dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point first source field.
source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source.

source3 A floating-point immediate operand to be used as the third source.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either :upward or :downward.

s, e The significand and exponent lengths for the dest, sourcel, and
source? fields. The total length of an operand in this format is
s+e+ 1.

Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context ~ This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1. Note that in the conditional cases the
storing of data depends only on the contezt-flag of the processor receiving the
data.

Definition For every virtual processor k in the current-up-set do
if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
dest[k] « (sourcel + source2[news-neighbor(g, k, azis, direction)]) x source3|[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

398

NEWS-ADD-MULT

The sum of two source operands is multiplied by the value of a third source operand. The
result is stored in dest. The various operand formats allow operands to be either memory
fields or constants; in some cases the destination field initially contains one source operand.
Each instruction takes one source field from a NEWs neighbor; the default is sourceZ2.

The CM:f-news-add-mult-4-1L instruction takes source2 from a NEWS neighbor. For the
CM:f-news-add-const-mult-4-1L instruction, source?2 is a constant and source? is taken from
a NEWS neighbor.

If direction is :upward then each processor retrieves data from the neighbor whose NEWS co-
ordinate is one greater along azis, with the processor whose coordinate is greatest retrieving
data from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWS
coordinate is one less along azis, with the processor whose coordinate is zero retrieving data
from the processor whose coordinate is greatest.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

A call to CM:f-news-add-mult is equivalent to the sequence

CM:get-from-news-1L temp, source2, azis, direction, (s + e+ 1)
CM:f-add-mult-1L soucel, temp, source3, s, €

but is faster at high vP ratios and requires little temporary memory.

399

NEWS-MULT

F-NEWS-MULT

The product of two floating-point source values (one from a NEWS neighbor) is placed in
the destination field.

Formats

Operands

Overlap

Flags

Context

CM:f-news-mult-2-1L dest, source, azis, direction, s, e
CM:f-news-mult-always-2-1L dest, source, azis, direction, s, e
CM:f-news-mult-3-1L dest, sourcel, source2, axis, direction, s, e
CM:f-news-mult-always-3-1L dest, sourcel, source2, azis, direction, s, e
CM:f-news-mult-const-3-1L dest, sourcel, source2-value, azis, direction, s, e
CM:f-news-mult-const-a-3-1L dest, sourcel, source2-value, azis, direction, s, e

dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point first source field.

source2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either :upward or :downward.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+ 1.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flagis 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the contezi-flag. Note that in the conditional
cases the storing of data depends only on the contezt-flag of the processor
receiving the data.

Definition

For every virtual processor k in the current-vp-set do

400

NEWS-MULT

if contezt-flag[k] = 1 then
let g = geometry(current-vp-set)
dest|k] — sourcel[k] x source2[news-neighbor(g, k, azis, direction))
if (overflow occurred in processor k) then overflow-flaglk] « 1

Two source operands are multiplied as floating-point numbers. The result is stored in dest.
The various operand formats allow operands to be either memory fields or constants; in
some cases the destination field initially contains one source operand. Each instruction
takes one source field from a NEWs neighbor; the default is source2.

The instructions with two operands take source from a NEWs neighbor, multiply it with
dest, and store the result back in dest.

For the instructions CM: f-news-mult-3-1L and CM:f-news-mult-always-3-1L, source2 is taken
from a NEWS neighbor.

For the instructions CM:f-news-mult-const-3-1L and CM:f-news-mult-const-a-3-1L, sourcel
is taken from a NEWS neighbor. Note that the a in CM:f-news-mul-const-always-3-1L stands
for “always.” This is necessary to meet the 31 character limit on instruction names.

If direction is :upward then each processor retrieves data from the neighbor whose NEWS co-
ordinate is one greater along azis, with the processor whose coordinate is greatest retrieving
data from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWS
coordinate is one less along azis, with the processor whose coordinate is zero retrieving data
from the processor whose coordinate is greatest.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

A call to CM:f-news-mult-3-1L is equivalent to the sequence

CM:get-from-news-1L temp, source2, axis, direction, (s +e+ 1)
CM:f-multiply-3-1L dest, sourcel, lemp, s, €

but is faster at high VP ratios and requires little temporary memory.

401

NEWS-MULT-AD

F-NEWS-MULT-ADD

The product of two floating-point source values (one from a NEWS neighbor) is added to
yet another floating-point source value; the result is placed in the destination field.

Formats CM:f-news-mult-add-4-1L dest, sourcel, source2, source3,
azis, direction, s, e
CM:f-news-mult-const-add-4-1L dest, sourcel, source2-value, sources,
azis, direction, s, e
Operands dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point multiplicand field.
source2 The field ID of the floating-point multiplier field. These values
may be taken from a NEWs neighbor.
source2-value A floating-point immediate operand to be used as the mul-
tiplier.
sourced The field ID of the floating-point addend field. These values may
be taken from a NEWS neighbor.
awis An unsigned integer immediate operand to be used as the number
of a NEWs axis.
direction Either :upward or :downward.
s, € The significand and exponent lengths for the dest, sourcel, and
source? fields. The total length of an operand in this format is
st+e+ 1.
Overlap The fields sourcel, source, and sourced may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.
Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.
Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.
Note that in the conditional cases the storing of data depends only on the
contezt-flag of the processor receiving the data.
Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then

402

NEWS-MULT-ADD

let g = geometry(current-vp-set)
dest[k] — sourcel[k] x source2[news-neighbor(g, k, azis, direction)] + source3[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

Two operands are multiplied as floating-point numbers; to the product is added a third
operand. The result is stored into memory. The various operand formats allow operands to
be either memory fields or constants; in some cases the destination field initially contains
one source operand. Each instruction takes one source field from a NEWs neighbor; the
default is sourceZ.

For CM:f-news-mult-add-4-1L, source2 is taken from a NEWS neighbor.

For CM:f-news-mult-const-add-4-1L, source2 is a constant and sourced is taken from a
NEWSs neighbor.

If direction is :upward then each processor retrieves data from the neighbor whose NEWS co-
ordinate is one greater along azis, with the processor whose coordinate is greatest retrieving
data from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWS
coordinate is one less along azis, with the processor whose coordinate is zero retrieving data
from the processor whose coordinate is greatest.

The constant operand source2-value or source3-value should be a double-precision front-
end value (in Lisp, automatic coercion is performed if necessary). Before the operation is
performed, the constant is converted, in effect, to the format specified by s and e.

A call to CM:f-news-mult-add-4-1L is equivalent to the sequence

CM:get-from-news-1L temp, source2, axis, direction, (s + e+ 1)
CM:f-multiply-3-1L temp, sourcel, temp, s, €
CM:f-add-3-1L dest, temp, sourced, s, e

but is faster at high VP ratios and requires little temporary memory.

403

NEWS-MULT-SUB

F-NEWS-MULT-SUB

From the product of two floating-point source values (one from a NEWS neighbor) is sub-
tracted yet another floating-point source value; the result is placed in the destination field.

Formats CM:f-news-mult-sub-4-1L dest, sourcel, source?, sourced, azis, directi m, s, €
CM:f-news-mult-const-sub-4-1L dest, sourcel, source2-value, sourced,
axs, direction, s, e
Operands dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point multiplicand field.
source2 The field ID of the floating-point multiplier field.
source2-value A floating-p >int immediate operand to be used as the mul-
tiplier.
source3 The field ID of the floating-point subtrahend field.
source3-value A floating-point immediate operand to be used as the sub-
trahend.
azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.
direction Either :upward or :downward.
s, € The significand and exponent lengths for the dest, sourcel, and
source? fields. The total length of an operand in this format is
s§+e+ 1.
Overlap The fields sourcel, source2, and sourced may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.
Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.
Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.
Note that in the conditional cases the storing of data depends only on the
contezt-flag of the processor receiving the data.
Definition For every virtual processor k in the current-vp-set do

if context-flagk] = 1 then
let g = geometry(current-vp-set)

dest[k] — source[k] x source2[news-neighbor(g, k, azis, direction)] — source3[k]

if (overflow occurred in processor k) then overflow-flagk] — 1

404

NEWS-MULT-SUB

Two operands, sourcel and source2, are multiplied as floating-point numbers; from the
product is subtracted a third operand, sourced. The result is stored into memory. The
various operand formats allow operands to be either memory fields or constants; in some
cases the destination field initially contains one source operand. Each instruction takes one
source field from a NEWS neighbor; the default is source2.

For CM:f-news-mult-sub-4-1L, source2 is taken from a NEWS neighbor.

For and CM:f-news-mult-const-sub-4-1L, source2 is a constant and sourced is taken from a
NEWS neighbor.

If direction is :upward then each processor retrieves data from the neighbor whose NEWS co-
ordinate is one greater along azis, with the processor whose coordinate is greatest retrieving
data from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWS
coordinate is one less along azis, with the processor whose coordinate is zero retrieving data
from the processor whose coordinate is greatest.

The constant operand source2-value or source3-value should be a double-precision front-
end value (in Lisp, automatic coercion is performed if necessary). Before the operation is
performed, the constant is converted, in effect, to the format specified by s and e.

A call to CM:f-news-mult-sub-4-1L is equivalent to the sequence

CM:get-from-news-1L temp, source2, agcis, direction, (s + e + 1)
CM:f-multiply-3-1L temp, sourcel, temp, s, e
CM:f-subtract-3-1L dest, temp, sourced, s, e

but is faster at high VP ratios and requires little temporary memory.

405

NEWS-SuUB

F-NEWS-SUB

The difference of two floating-point source values (one from a NEWS neighbor) is placed in
the destination field.

Formats

Operands

Overlap

Flags

Context

CM:f-news-sub-2-1L dest, source, azis, direction, s, e
CM:f-news-sub-always-2-1L dest, source, azis, direction, s, e
CM:f-news-sub-3-1L dest, sourcel, source2, azis, direction, s, e

CM:f-news-sub-always-3-1L dest, sourcel, source2, azis, direction, s, €
CM:f-news-sub-const-3-1L dest, sourcel, source2-value, azis, direction, s, e
CM:f-news-sub-const-a-3-1L dest, source1, source2-value, azis, direction, s, e

dest The field ID of the floating-point destination field. This is the
difference, the result of the subtraction operation.

sourcel The field ID of the floating-point first source field) field. This is
the minuend.

source2 The field ID of the floating-point second source field. This is the

subtrahend.

source2-value A floating-point immediate operand to be used as the second
source.

azis An unsigned integer immediate operand to be used as the number

of a NEWS axis,

direction Either :upward or :downward.

s, e The significand and exponent lengths for the dest, sourcel, and
source?2 fields. The total length of an operand in this format is
s+e+ 1.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.
The non-always operations are conditional. The destination and flag may be

altered only in processors whose context- flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the contezt-flag.

Note that in the conditional cases the storing of data depends only on the
contezt-flag of the processor receiving the data.

406

NEWS-SUB

Definition For every virtual processor k in the current-vp-set do
if contezi-flaglk] = 1 then
let g = geometry(current-vp-set)
dest[k] — sourcel[k] — source2[news-neighbor(g, k, azis, direction)]
if (overflow occurred in processor k) then overflow-flaglk] — 1

The operands are treated as as floating-point numbers and one is subtracted from another.
The result is stored into the memory field dest. The various operand formats allow op erands
to be either memory fields are constants; in some cases the destination field initially contains
one source operand. Each instruction takes one source field from a NEWS neighbor; the
default is source2.

The instructions with two operands take source from a NEWS neighbor, subtract it from
dest, and store the result stored back in dest.

For the instructions CM:f-news-sub-3-1L and CM:f-news-sub-always-3-1L, source2 is ob-
tained from a NEWSs neighbor.

For the instructions CM:f-news-sub-const-3-1L and CM:f-news-sub-const-a-3-1L, source2 is
a constant and sourcel is obtained from a NEWS neighbor. Note that the a in CM:f-news-
sub-const-a-3-1L stands for “always.”

If direction is :upward then each processor retrieves data from the neighbor whose NEWS co-
ordinate is one greater along azis, with the processor whose coordinate is greatest retrieving
data from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWS
coordinate is one less along azis, with the processor whose coordinate is zero retrieving data
from the processor whose coordinate is greatest.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

A call to CM:f-news-sub-3-1L is equivalent to the sequence

CM:get-from-news-1L temp, source2, azis, direction, (s + e +1)
CM:f-subtract-3-1L dest, sourcel, temp, s, €

but is faster at high vP ratios and requires little temporary memory.

407

NEWS-SUB-MULT

F-NEWS-SUB-MULT

Calculates the value (a — 2)b, when one of the operands is taken from a NEWs neighbor,
and places the result in the destination.

Formats CM:f-news-sub-mult-4-1L dest, sourcel, source2, source$, azis, direction, s, e
CM:f-news-sub-const-mult-4-1L dest, sourcel, source2-value, sourced, axis, direction, s, e

Operands dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point first source field.
sourceZ2 The field ID of the floating-point second source field.

source2-value A floating-point immediate operand to be used as the second
source.

source3 The field ID of the floating-point third source field.

azxis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either :upward or :downward.

s, e The significand and exponent lengths for the dest, sourcel, and
source? fields. The total length of an operand in this format is
s+ e+ 1.

Overlap The fields source! and source? may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Note that in the conditional cases the storing of data depends only on the
contezt-flag of the processor receiving the data.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
dest[k] — (sourcel — source2[news-neighbor(g, k, azis, direction)]) X source3|[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

408

NEWS-SUB-MULT

The difference of two operands is multiplied by the value of a third operand. The result
is stored into memory. The various operand formats allow operands to be either memory
fields or constants; in some cases the destination field initially contains one source operand.
Each instruction takes one source field from a NEWS neighbor; the default is source2.

The CM:f-news-sub-mult-4-1L instruction takes source2 from a NEWS neighbor. For the
CM:f-news-sub-const-mult-4-1L instruction, source2 is a constant and source? is taken from
a NEWS neighbor.

If direction is : upward then each processor retrieves data from the neighbor whose NEWS co-
ordinate is one greater along azis, with the processor whose coordinate is greatest retrieving
data from the processor whose coordinate is zero.

If direction is :downward then each processor retrieves data from the neighbor whose NEWS
coordinate is one less along azis, with the processor whose coordinate is zero retrieving data
from the processor whose coordinate is greatest.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

A call to CM:f-news-sub-mult-4-1L is equivalent to the sequence

CM:get-from-news-1L temp, source2, azis, direction, (s+e+1)
CM:f-sub-mult-1L dest, sourcel, temp sourced, s, €

but is faster at high vP ratios and requires little temporary memory.

409

NEXT-STACK-FIELD-ID

NEXT-STACK-FIELD-ID

Determines the next stack field id that would be returned by a call to CM:allocate-stack-
field.

Formats result «— CM:next-stack-field-id

Operands None.

Result An unsigned integer, the field 1D that will be returned by the next invocation
of CM:allocate-stack-field.

Context This operation is unconditional. It does not depend on the context-flag.

This function returns the next stack field id to be allocated.

410

PACKED-ARRAY-FORMAT

FE-PACKED-ARRAY-FORMAT

This front-end instruction returns an array format descriptor for a packed front-end array
format. A format descriptor may be used as the format argument to any array transfer
instruction, although this is not required.

See also CM:fe-array-format and CM:fe-structure-array-format.

Formats result « CM:fe-packed-array-format cm-element-size, [array-element-size]

Operands cm-element-size A signed integer immediate operand to be used as the
number of bits each Connection Machine element occupies in the
front-end array. This must be a power of two between 1 and 128.

array-element-size A signed integer immediate operand to be used as the
number of bits in each front-end array element. This must be a
power of two between 1 and 128.
In Lisp/Paris, this argument is optional. If not specified, it de-
faults to the actual front-end element size or, if the front-end array
elements are general (i.e., of type t), array-element-size defaults
to the value of cm-element-size.

Result The array format descriptor specified.

Context This is a front-end operation. It does not depend on the value of the contezt-

flag.

The return value is a format descriptor for packed arrays; it can be passed to any array
transfer instruction. In this format, multiple Connection Machine array elements are packed
into each front-end array element during array transfers in either direction between the
Connection Machine and the front-end computer.

By using this instruction, it is also possible to specify an extended-element front-end array
format. In an extended-element format, each CM element is stored in multiple front-end
array elements.

The value of cm-element-size defines the unit of measure for the fe-offset-vector argument
to the CM:read-from-news-array and CM:write-to-news-array instructions.

The value of array-element-size defines the unit of measure for the argument
fe-dimension-vector to the CM:read-from-news-array and CM:write-to-news-array instruc-
tions.

The number of Connection Machine elements packed into each front-end array element
is the ratio of array-element-size to cm-element-size. If array-element-size is larger than

411

PACKED-ARRAY-FORMAT

cm-element-size, multiple Connection Machine elements are packed into each front-end
array element. Alternatively, if array-element-size is smaller than cm-element-siz_e, each
CM element is stored in more than one front-end array element.

The ordering of the packing defaults to the standard ordering for the front end. For example,
on a VAX the Connection Machine element with the smallest coordinates is put into the least
significant bits of the front-end array element. On a Sun, the Connection Machine element
with the largest coordinates is put into the least significant bits of the front-end array
element.

412

PHASE

F-C-PHASE

Calculates the phase of the complex source field and puts the result in the floating-point
destination field.

Formats CM:f-c-phase-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the complex source field.

s, € The significand and exponent lengths for the dest and source fields.
The total length of the dest field in this format is s + e + 1. The
total length of the source field in this format is 2(s + e + 1).

Overlap The dest field must be either identical to source, identical to (source+s+e+1),
or disjoint from source.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] — atan2(source[k].imag, source[k].real)
if (overflow occurred in processor k) then overflow-flaglk] « 1

The phase of a number is the angle part of its polar representation as a complex number.

413

PHYSICAL-VP-SET

PHYSICAL-VP-SET

Returns a vP set that has one virtual processor for each physical processor.

Formats result « CM:physical-vp-set

Operands None.
Result A VP set ID, identifying the VP set whose VP ratio is 1.

Context This operation is unconditional. It does not depend on the context-flag.

414

C-C-POWER

Raises a complex number to a complex power.

Formats

Operands

Overlap

Flags

Context

CM:c-c-power-2-1L dest/sourcel, source2, s, e
CM:c-c-power-3-1L dest, sourcel, source, s, e
CM:c-c-power-constant-2-1L dest/sourcel, source2-value, s, e
CM:c-c-power-constant-3-1L dest, sourcel, source2-value, s, e

dest The field ID of the complex destination field.
sourcel The field ID of the complex first source field.
source2 The field ID of the complex second source field.

source2-value A complex immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, sourcel, and
source? fields. The total length of an operand in this format is
2(s +e+1).

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
complex fields are identical if they have the same address and the same format.
It is permissible for all the fields to be identical.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.
test-flag is set if zero is raised to a non-positive power; otherwise it is cleared.

This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if conteat-flaglk] = 1 then
dest[k] «— sourcel) et
if sourcel[k] = 0.0 and source2(k].real < 0.0
and source2(k].imag = 0.0 then
test-flaglk] « 1
else test-flaglk] «— 0
if (overflow occurred in processor k) then overflow-flaglk] — 1

The sourcel field (the base) is raised to the power source2 (the exponent), using exp and

In operations.

415

The result is stored into the memory field dest. The various operand formats allow operands

to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The constant operand source2-value should be a double-precision complex front-end value
(in Lisp, automatic coercion is performed if necessary). Before the operation is performed,
the constant is converted, in effect, to the format specified by s and e.

416

POWER

C-F-POWER

Raises a complex number to a floating-point power.

Formats CM: c-f-power-2-1L dest/sourcel, source2, s, e

CM: c-f-power-3-1L dest, sourcel, source, s, e

CM:c-f-power-constant-2-1L dest/sourcel, source2-value, s, e

CM:c-f-power-constant-3-1L dest, sourcel, source2-value, s, e

Operands dest The field ID of the complex destination field.
sourcel The field ID of the complex first source field.
source2 The field ID of the floating-point second source field.
source2-value A floating-point immediate operand to be used as the second

source.

S, € The significand and exponent lengths for the dest and sourcel and
source2 fields. The total length of the dest and sourcel field in
this format is 2(s + e + 1). The total length of the source2 field in
this format is s + e + 1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
complex fields are identical if they have the same address and the same format.
It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.
test-flag is set if zero is raised to a non-positive power; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-up-set do

if context-flaglk] = 1 then
dest[k] — sourcel [k]*ouree2lk]
if sourcel(k] = 0.0 and source2(k].real < 0.0
and source2(k].imag = 0.0 then
test-flaglk] «— 1
else test-flaglk] «— 0
if (overflow occurred in processor k) then overflow-flaglk] « 1

The sourcel field (the base) is raised to the power source2 (the exponent), using exp and

In operations.

417

The result is stored into the memory field dest. The various operand formats allow operands

to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,

automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

418

POWER

C-S-POWER

Raises a complex number to a signed integer power.

Formats CM:c-s-power-3-2L dest, sourcel, source2, slen2, s, e
CM:c-s-power-2-2L dest/sourcel, source2, slen?, s, e
CM:c-s-power-constant-2-1L dest/sourcel, source2-value, s, €
CM:c-s-power-constant-3-1L dest, sourcel, source2-value, s, e

Operands dest The field ID of the complex destination field.
sourcel The field ID of the complex base field.
source? The field ID of the signed integer exponent field.
source2-value A signed integer immediate operand to be used as the second

source.
s, € The significand and exponent lengths for the dest and sourcel
fields. The total length of an operand in this format is 2(s +e+1).
slen2 The length of the source? field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. However, the
source? field must not overlap the dest field, and the field sourcel must be
either disjoint from or identical to the dest field. Two complex fields are
identical if they have the same address and the same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.
test-flag is set if zero is raised to a negative power; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-fluglk] = 1 then
dest[k] — sourcel [k]*°uree2l¥]
if source1[k] = 0.0 and source2[k] < 0 then
test-flaglk] — 1
else test-flaglk] < 0
if (overflow occurred in processor k) then overflow-flaglk] « 1

The sourcel field (the base) is raised to the power source2 (the exponent), using repeated
multiplications.

419

POWER

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains

one source operand.

420

POWER

C-U-POWER

Raises a complex number to an unsigned integer power.

Formats

Operands

Overlap

Flags

Context

CM:c-u-power-3-2L dest, sourcel, source2, slen2, s, e
CM:c-u-power-2-2L dest/sourcel, source2, slen2, s, e
CM: c-u-power-constant-2-1L dest/sourcel, source2-value, s, e
CM:c-u-power-constant-3-1L dest, sourcel, source2-value, s, €

dest The field ID of the complex destination field.
sourcel The field ID of the complex base field.
source?2 The field ID of the unsigned integer exponent field.

sourceZ-value An unsigned integer immediate operand to be used as the
second source.

s, € The significand and exponent lengths for the dest and sourcel
fields. The total length of an operand in this format is 2(s+e+1).

slen2 The length of the source2 field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

The fields sourcel and source2 may overlap in any manner. However, the
source? field must not overlap the dest field, and the field sourcel must be
either disjoint from or identical to the dest field. Two complex fields are
identical if they have the same address and the same format.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
desk[k] — source.f[k}”“’“g[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

The sourcel field (the base) is raised to the power source2 (the exponent), using repeated
multiplications.

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

421

F-F-POWER

Raises a floating-point number to a floating-point power.

Formats CM:f-f-power-2-1L dest/sourcel, source2, s, e
CM:f-f-power-3-1L dest, sourcel, source?, s, e
CM:f-f-power-constant-2-1L dest/sourcel, source2-value, s, e
CM:f-f-power-constant-3-1L dest, sourcel, source2-value, s, e

Operands dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point base field.
source2 The field ID of the floating-point exponent field.

sourceZ-value A floating-point immediate operand to be used as the expo-

nent.

s e The significand and exponent lengths for the dest, sourcef, and
source? fields. The total length of an operand in this format is
s+e+1.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags test-flag is set if the base is negative and the exponent is non-zero, or if the
base is zero and the exponent is non-positive; otherwise it is cleared.

overflow-flag s set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if sourcel[k] = 0 then
if source2[k] < 0 then
dest[k] — 0
test-flaglk] « 1
else
dest[k] — 0
test-flaglk] « 0
else if source1[k] < 0 then

422

POWER

if source2[k] = 0 then
dest[k] «— 1.0
test[k] < 0
else
dest[k] «— (undefined)
test-flaglk] « 1
else
dest[k] «— exp(source2[k] X In source1[k])
test-flag(k] « 0

if (overflow occurred in processor k) then overflow-flaglk] « 1

The sourcel field (the base) is raised to the power source2 (the exponent).

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

423

POWER

F-S-POWER

Raises a floating-point number to a signed integer power.

Formats

Operands

Overlap

Flags

Context

CM:f-s-power-3-2L dest, sourcel, source?, slen, s, e
CM:f-s-power-2-2L dest/sourcel, source?, slen2, s, e
CM:f-s-power-constant-2-1L dest/sourcel, source2-value, s, e
CM:f-s-power-constant-3-1L dest, sourcel, source2-value, s, e

dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point base field.
sourceZ2 The field ID of the signed integer exponent field.

source2-value A signed integer immediate operand to be used as the second
source.

s, € The significand and exponent lengths for the dest and sourcel
fields. The total length of an operand in this format is s + e + 1.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

The fields sourcel and source2 may overlap in any manner. However, the
source? field must not overlap the dest field, and the field source! must be
either disjoint from or identical to the dest field. Two floating-point fields are
identical if they have the same address and the same format.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if contert-flaglk] = 1 then
if source2[k] < 0 then
let temp1; = 1.0/ sourcel [k]
let temp2) = —source2[k]
else
let temp1), = sourcel (k]
let temp2;, = source2[k]
if temp2;(0) = 0 then
dest[k] — 1.0
else

424

POWER

dest[k] «— temp1},

for j from 1 to slen2 — 1 do
if temp2, (7 : slen2 — 1) # 0 then let temply = temply X temply
if temp2,(j) then dest[k] — dest[k] X templ}

if (overflow occurred in processor k) then overflow-flaglk] « 1

The sourcel field (the base) is raised to the power source2 (the exponent).

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains

one source operand.

425

POWER

F-U-POWER

Raises a floating-point number to an unsigned integer power.

Formats., CM:f-u-power-3-2L dest, sourcel, source, slen2, s, e
CM:f-u-power-2-2L dest/sourcel, source2, slen2, s, e
CM:f-u-power-constant-2-1L dest/sourcel, source2-value, s, e
CM:f-u-power-constant-3-1L dest, sourcel, source2-value, s, e

Operands dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point base field.
source2 The field ID of the unsigned integer exponent field.

source2-value An unsigned integer immediate operand to be used as the
second source.

g & The significand and exponent lengths for the dest and sourcel
fields. The total length of an operand in this format is s + e + 1.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM:*maximum-integer-length,

Overlap The fields sourcel and source? may overlap in any manner. However, the
source2 field must not overlap the dest field, and the field source! must be
either disjoint from or identical to the dest field. Two floating-point fields are
identical if they have the same address and the same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
let tempy = sourcel[k)]
if (slen2 = 0) V (source2[k](0) = 0) then
dest[k] — 1.0
else
dest[k] — temp,
for j from 1 to slen2 — 1 do
if source2[k](j : slen2 — 1) # 0 then let temp;, = temp, X temp,
if source2(k](j) then dest[k] «— dest[k] x tempy
if (overflow occurred in processor k) then overflow-flaglk] — 1

426

POWER

The sourcel field (the base) is raised to the power source2 (the exponent).

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains

one source operand.

427

S-S-POWER

Raises a signed integer to a signed integer power.

Formats

Operands

Overlap

Flags

CM:s-s-power-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-s-power-2-1L dest/sourcel, source2, len
CM:s-s-power-3-1L dest, sourcel, source2, len

CM:s-s-power-constant-2-1L dest/sourcel, source2-value, len
CM:s-s-power-constant-3-1L dest, sourcel, source2-value, len
CM:s-s-power-constant-3-2L dest, sourcel, source2-value, dlen, slen

dest

sourcel

source?

The field ID of the signed integer destination field.
The field ID of the signed integer base field.
The field ID of the signed integer exponent field.

source2-value A signed integer immediate operand to be used as the second

len

dlen

slen

sleni

slen2

source.

The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
lengthx,

For CM:s-s-power-3-3L and CM:s-s-power-constant-3-2L, the length
of the dest field. This must be no smaller than 2 but no greater
than CM:*maximum-integer-length*.

For CM:s-s-power-constant-3-2L, the length of the sourcel field.
This must be no smaller than 2 but no greater than CM: *maximum-
integer-length#.

For CM:s-s-power-3-3L, the length of the sourcef field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*,

For CM:s-s-power-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

test-flag is set if zero is raised to a negative power; otherwise it is unaffected.

428

POWER

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if source2[k] < 0 then
if sourcel[k] = 1 then dest[k] — 1
else dest[k] — 0
else if source2(k] = 0 then
dest[k] « 1
else
dest[k] — (source1[k])*ovree?lH]
if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] « 0

The sourcel field (the base) is raised to the power source2 (the exponent). If the exponent
is negative, the result is always 0; if the exponent is zero, the result is always 1.

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The overflow-flag may be altered by these operations. If overflow occurs, then the destina-
tion field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

429

S-U-POWER

Raises a signed integer to a unsigned integer power.

Formats CM:s-u-power-3-3L dest, sourcel, source, dlen, sleni, slen?
CM:s-u-power-constant-2-1L dest/sourcel, source2-value, len
CM:s-u-power-constant-3-1L dest, sourcel, source2-value, len
CM:s-u-power-constant-3-2L dest, sourcel, source2-value, dlen, sleni
Operands dest The field ID of the signed integer destination field.
sourcel The field ID of the signed integer base field.
sourceZ The field ID of the unsigned integer exponent field.
source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source? fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

dlen For CM:s-u-power-3-3L and CM:s-u-power-constant-3-2L, the length
of the dest field. This must be no smaller than 2 but no greater
than CM:*maximum-integer-length*.

sleni For CM:s-u-power-3-3L and CM:s-u-power-constant-3-2L, the length
of the source field. This must be no smaller than 2 but no greater
than CM:*maximum-integer-length*.

slen2 For CM:s-u-power-3-3L, the length of the source2 field. This
must be non-negative and no greater than CM: *maximum-integer-
lengthx*.

Overlap The fields source! and source2 may overlap in any manner. However, sourcel
must be either disjoint from or identical to the dest field while source? must
be disjoint from the dest field. Two integer fields are identical if they have
the same address and the same length.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

430

POWER

if contezt-flaglk] = 1 then
if source2(k] = 0 then
dest[k] — 1
else
dest[k] — (source1[k])*°uree2l]
if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flag(k] « 0

The sourcel field (the base) is raised to the power source2 (the exponent). If the exponent
is zero, the result is always 1.

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The overflow-flag may be altered by these operations. If overflow occurs, then the destina-
tion field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

431

U-S-POWER

Raises a unsigned integer to a signed integer power.

Formats

Operands

Overlap

Flags

Context

CM:u-s-power-3-3L dest, sourcel, source2, dlen, sleni, slen2
CM:u-s-power-constant-2-1L dest/sourcel, source2-value, len
CM:u-s-power-constant-3-1L dest, sourcel, source2-value, len
CM:u-s-power-constant-3-2L dest, sourcel, source2-value, dlen, slent

dest The field ID of the unsigned integer destination field.
sourcel The field ID of the unsigned integer base field.
source2 The field ID of the signed integer exponent field.

source2-value A signed integer immediate operand to be used as the second

source.
len The length of the dest, sourcel, and source? fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.
dlen For CM:u-s-power-3-3L and CM:u-s-power-constant-3-2L, the length

of the dest field. This must be non-negative and no greater than
CM: *maximum-integer-length.

slen1 For CM:u-s-power-3-3L and CM:u-s-power-constant-3-2L, the length
of the source! field. This must be non-negative and no greater
than CM:*maximum-integer-length*.

slen2 For CM:u-s-power-3-3L, the length of the source? field. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

The fields source! and source2 may overlap in any manner. However, sourcel
must be either disjoint from or identical to the dest field while source2 must
be disjoint from the dest field. Two integer fields are identical if they have
the same address and the same length.

overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.
tesi-flag is set if zero is raised to a negative power; otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

432

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
test-flaglk] — 0
if sourcel[k] = 0 then
test-flaglk] — 1
if source2(k] < 0 then
dest[k] — I_l + sourcel [k]"”“”“z["’”J
else if source2[k] = 0 then
dest[k] — 1
else
dest[k] « (soufcel[k]}“’“"‘z["]
if (overflow occurred in processor k) then overflow-flaglk] — 1
else overflow-flaglk] < 0

The sourcel field (the base) is raised to the power source? (the exponent). If the exponent
is negative, the result is the truncation of the reciprocal of sourcel raised to the absolute
value of source2. If the exponent is zero, the result is always 1.

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The overflow-flag and test-flag may be altered by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.
If, in any particular processor, an attempt is made to raise zero to a negative power, the
test flag in that processor is set.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

433

POWER

U-U-POWER

Raises an unsigned integer to an unsigned integer power.

Formats

Operands

Overlap

Flags

Context

CM:u-u-power-3-3L dest, sourcel, source?, dlen, slenl, slen2
CM:u-u-power-2-1L dest/sourcel, source2, len
CM:u-u-power-3-1L dest, sourcel, source2, len

CM:u-u-power-constant-2-1L dest/sourcel, sourceZ-value, len
CM:u-u-power-constant-3-1L dest, sourcel, source2-value, len
CM:u-u-power-constant-3-2L dest, sourcel, source2-value, dlen, sleni

dest

sourcel

source?

The field ID of the unsigned integer destination field.
The field ID of the unsigned integer base field. .
The field ID of the unsigned integer exponent field.

source2-value An unsigned integer immediate operand to be used as the

len

dlen

slenl

slen2

second source.

The length of the dest, sourcel, and source? fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

For CM: u-u-power-3-3L and CM: u-u-power-constant-3-2L, the length
of the dest field. This must be non-negative and no greater than
CM:*maximum-integer-length=.

For CM: u-u-power-3-3L and CM: u-u-power-constant-3-2L, the length
of the source! field. This must be non-negative and no greater than
CM:*maximum-integer-length*.

For CM:u-u-power-3-3L, the length of the source? field. This
must be non-negative and no greater than CM: *maximum-integer-
length*,

The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

434

POWER

Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then

if source2[k] = 0 then
dest[k] « 1

else
dest[k] « (sourcel [k])*ouree2lk]
if (overflow occurred in processor k) then overflow-flaglk] — 1
else overflow-flaglk] — 0

The sourcel field (the base) is raised to the power source2 (the exponent). If the exponent
is zero, the result is always 1.

The result is stored into the memory field dest. The various operand formats allow op erands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The overflow-flag may be altered by these operations. If overflow occurs, then the destina-
tion field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

435

POWER-UP

POWER-UP

This operation resets the Nexus, causing all front-end computers to become logically de-
tached from the Connection Machine system.

Formats CM:power-up

Context This operation is unconditional. It does not depend on the contezt-flag.

This function resets the state of the Nexus, causing all front-end computers to become
logically detached from the Connection Machine system. When a Connection Machine
system is first powered up or is to be completely reset for other reasons, this is the first
operation to perform. Any of the front-end computers may be used to do it.

If users on other front-end computers are actively using the Connection Machine system,
their computations will be disrupted. Normally all the front-end computers are connected
" not only through the Connection Machine Nexus but also through some sort of commu-
nications network; a front end that executes CM:power-up will attempt to send messages
through this network to the other front-end computers on the same Nexus indicating that
a CM:power-up operation is being performed.

436

RANDOM

F-RANDOM

Stores a pseudo-randomly generated floating-point number into the destination field.

Formats CM:f-random-1L dest, s, e
Operands dest The field ID of the floating-point destination field.
s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.
Context This operation is conditional. The destination may be altered only in proces-
sors whose contect-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if conteatflagfk] = 1 then
destl] o (pseudo-random choice of some j, +0 < j < 2°")

2Ien.
where len is the length of the destination field.

Into the destination field of each selected processor is stored a floating-point number pseudo-
randomly chosen from a uniform distribution between zero (inclusive) and one (exclusive).

The seed for the Paris random number generator is automaticaly initialized the first time
the random number generator is called. A value derived from the system clock is used.
It is nonetheless possible to explicitly initialize the random number generator by call
CM:initialize-random-generator.

Note: Less simple but more flexible random number generation routines are provided as
part of the CM Scientific Subroutines Library (cmssL). For instance, the cMssL random
number generators may be checkpointed to guard against accidental interuptions.

437

RANDOM

U-RANDOM

Stores a pseudo-randomly generated unsigned integer into the destination field.

Formats CM:u-random-1L dest, len, limit

Operands dest The field ID of the unsigned integer destination field.

len The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

limit An unsigned integer immediate operand to be used as the exclusive

upper bound on values to be generated.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] — (pseudo-random choice of some j, 0 < j < limat)

The dest field in each selected processor receives a pseudo-randomly chosen from a uniform
distribution ranging from zero (inclusive) to the specified limit (exclusive).

438

F-RANK

The destination field in every selected processor receives the rank of that processor’s key
among all keys in the scan set for that processor.

Formats CM:f-rank-2L dest, source, axis, dlen, s, e,
direction, smode, sbit
Operands dest The field ID of the unsigned integer destination field.
source The field ID of the floating-point source field. This is the sort key.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

dlen The length of the dest field. This must be non-negative and
no greater than CM:*maximum-integer-length*. This must be no
larger than the value returned by CM: geometry-coordinate-length.

5 € The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

direction Either :upward or :downward.
smode Either :none, :start-bit, or :segment-bit.
sbit The field ID of the segment bit or start bit (a one-bit field). If

smode is :none then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the source
and sbit fields must not overlap the dest field.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezi-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
let S; = scan-set(g,k, azis, direction, smode, sbit)
case direction of
rupward:
let L = {m | m € Sk A ((source[m] < source[k]) V (source[m] = source[k] Am «
:downward:
let Ly = {m | m € Sk A ((source[m] > source[k]) V (source[m] = source[k] Am :
dest[k] «— |Ly|

where scan-set is as defined on page 44.

439

RANK

See section 5.20 on page 42 for a general description of scan sets and the effect of the awis,
direction, smode, and sbit operands.

This operation determines the ordering necessary to sort the source fields within each scan
set. It does not not actually move the data so as to sort it, but merely indicates where
the data should be moved so as to sort it. A stable ranking is guaranteed. That is, two
identical keys will be ranked in the order in which they occur in the source field.

In more detail: The dest field in each selected processor receives, as an unsigned integer, the
rank of that processor’s key within the set of keys in the scan set for that processor. This
rank may be used to calculate a send address a CM:send operation may then be used to
put the data into sorted order. (An advantage of decoupling the rank determination from
the reordering process is that the data to be moved may be much larger than the key that
determines the ordering, and indeed it may be desirable to reorder the other data but not
the key itself. In this way ranking and reordering each need operate only on the relevant
data.)

The way in which the rank operation uses scan sets has one unusual twist: A rank that
is partitioned into scan sets restarts the rank ordering within each scan set (or segment).
However, the rank indices assigned are not restarted within each scan set.

Specifically, along the entire azis specified, only one processor receives a rank index of 0.
Rank indices in the first scan set (segment) begin at 0 and run through n — 1, where n
is the number of active processors in the scan set; ranks in the second segment begin at
n; and so forth. Thus, the smallest key in the first scan set has rank 0, the next smallest
has rank 1; the smallest key in the second scan set has rank n, the next smallest has rank
n+ 1, and so on. Within each scan set the ranking index assigned to any given processor
determines the rank of that processor’s key value relative to the keys of all other active
processors within that scan set. The non-repeating indices produce correctly sorted values
when used by a send operation either along the entire axis (the scan subclass) or within
one or more segments (the scan sets).

This operation was originally documented to result in a set of indexes that restart at 0 for
each segment. To obtain that effect use the following strategy:

1) Use the rank function.

)
2) Set the context bit on for processors with segment bits and then call CM: my-news-address.
3) Use a segmented copy-scan operation to copy the NEWS address within each segment.

)

4) Subtract the results of the segmented copy scan from the results of the rank ordering.

440

RANK

S-RANK

The destination field in every selected processor receives the rank of that processor’s key
among all keys in the scan set for that processor.

Formats CM:s-rank-2L dest, source, azis, dlen, slen,
direction, smode, sbit
Operands dest The field ID of the unsigned integer destination field.
source The field ID of the signed integer source field. This is the sort key.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

dlen The length of the dest field. This must be non-negative and
no greater than CM:*maximum-integer-length*. This must be no
larger than the value returned by CM: geometry-coordinate-length.

slen " The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

direction Either :upward or :downward.
smode Either :none, :start-bit, or :segment-bit.
sbit The field ID of the segment bit or start bit (a one-bit field). If

smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the source
and sbit fields must not overlap the dest field.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let S, = scan-set(g, k, azis, direction, smode, sbit)
case direction of

tupward:

let Ly = {m | m € Sk A ((source[m] < source[k]) V (source[m] = source[k] Am «
:downward:

let Ly = {m | m € Sk A ((source[m] > source[k]) V (source[m] = source[k] A m >
dest[k] «— |Lk|

where scan-set is as defined on page 44.

441

RANK

See section 5.20 on page 42 for a general description of scan sets and the effect of the azis,
direction, smode, and sbit operands.

This operation determines the ordering necessary to sort the source fields within each scan
set. It does not not actually move the data so as to sort it, but merely indicates where
the data should be moved so as to sort it. A stable ranking is guaranteed. That is, two
identical keys will be ranked in the order in which they occur in the source field.

In more detail: The dest field in each selected processor receives, as an unsigned integer, the
rank of that processor’s key within the set of keys in the scan set for that processor. This
rank may be used to calculate a send address a CM:send operation may then be used to
put the data into sorted order. (An advantage of decoupling the rank determination from
the reordering process is that the data to be moved may be much larger than the key that
determines the ordering, and indeed it may be desirable to reorder the other data but not
the key itself. In this way ranking and reordering each need operate only on the relevant
data.)

The way in which the rank operation uses scan sets has one unusual twist: A rank that
is partitioned into scan sets restarts the rank ordering within each scan set (or segment).
However, the rank indices assigned are not restarted within each scan set.

Specifically, along the entire azis specified, only one processor receives a rank index of 0.
Rank indices in the first scan set (segment) begin at 0 and run through n — 1, where n
is the number of active processors in the scan set; ranks in the second segment begin at
n; and so forth. Thus, the smallest key in the first scan set has rank 0, the next smallest
has rank 1; the smallest key in the second scan set has rank n, the next smallest has rank
n + 1, and so on. Within each scan set the ranking index assigned to any given processor
determines the rank of that processor’s key value relative to the keys of all other active
processors within that scan set. The non-repeating indices produce correctly sorted values
when used by a send operation either along the entire axis (the scan subclass) or within
one or more segments (the scan sets).

442

RANK

U-RANK

The destination field in every selected processor receives the rank of that processor’s key
among all keys in the scan set for that processor.

Formats CM:u-rank-2L dest, source, azis, dlen, slen,
direction, smode, sbit
Operands dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field. This is the sort
key.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

dlen The length of the dest field. This must be non-negative and
no greater than CM:*maximum-integer-length*. This must be no
larger than the value returned by CM:geometry-coordinate-length.

slen The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

direction Either :upward or :downward.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
let Si = scan-set(g,k, azis, direction, smode, sbit)
case direction of
:upward:
let L = {m | m € Sk A ((source[m] < source[k]) V (source[m] = source[k] Am -
:downward:

443

RANK

let Ly = {m | m € Si A ((source[m] > source[k]) V (source[m] = sourcelk] Am > k),
dest[k] « |L|

where scan-set is as defined on page 44.

See section 5.20 on page 42 for a general description of scan sets and the effect of the azis,
direction, smode, and sbit operands.

This operation determines the ordering necessary to sort the source fields within each scan
set. It does not not actually move the data so as to sort it, but merely indicates where
the data should be moved so as to sort it. A stable ranking is guaranteed. That is, two
identical keys will be ranked in the order in which they occur in the source field.

In more detail: The dest field in each selected processor receives, as an unsigned integer, the
rank of that processor’s key within the set of keys in the scan set for that processor. This
rank may be used to calculate a send address a CM:send operation may then be used to
put the data into sorted order. (An advantage of decoupling the rank determination from
the reordering process is that the data to be moved may be much larger than the key that
determines the ordering, and indeed it may be desirable to reorder the other data but not
the key itself. In this way ranking and reordering each need operate only on the relevant
data.)

The way in which the rank operation uses scan sets has one unusual twist: A rank that
is partitioned into scan sets restarts the rank ordering within each scan set (or segment).
However, the rank indices assigned are not restarted within each scan set.

Specifically, along the entire azis specified, only one processor receives a rank index of 0.
Rank indices in the first scan set (segment) begin at 0 and run through n — 1, where n
is the number of active processors in the scan set; ranks in the second segment begin at
n; and so forth. Thus, the smallest key in the first scan set has rank 0, the next smallest
has rank 1; the smallest key in the second scan set has rank n, the next smallest has rank
n + 1, and so on. Within each scan set the ranking index assigned to any given processor
determines the rank of that processor’s key value relative to the keys of all other active
processors within that scan set. The non-repeating indices produce correctly sorted values
when used by a send operation either along the entire axis (the scan subclass) or within
one or more segments (the scan sets).

444

READ-FROM-NEWS-ARRAY

C-READ-FROM-NEWS-ARRAY

Copies a field within a set of processors forming a subarray of the NEWS grid into a subarray
(of the same shape) of an array in the memory of the front end. Both the source and
destination values are treated as complex numbers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified cM field be in the current VP set.

Formats CM: c-read-from-news-array-1L front-end-array, fe-offset-vector, cm-start-vector,
cm-end-vector, cm-azis-vector, source, s, €,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of complex
data.

fe-offset-vector A front-end vector of signed integer subscript offsets for the
front-end-array.

em-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices.

cm-azis-vector A front-end vector of signed integer numbers specifying
NEWS axes.

source The field ID of the complex source field.

s, € The significand and exponent lengths for the source field. The
total length of an operand in this format is 2(s + e + 1).

fe-rank A signed integer, the rank (number of dimensions) of the
gn g
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

format The array descriptor for front-end-array. This is a keyword argu-
ment when calling Paris from Lisp.

Context This operation is unconditional. It does not depend on the contezt-flag.

445

READ-FROM-NEWS-ARRAY

This operation copies a rectangular subblock of the NEWS grid into a similarly shaped sub-
block of an array in the front end. Complex number values are copied from the Connection
Machine processors to the specified front-end-array.

The source parameter specifies the memory address within each processor of the field to be
copied.

The froni-end-array parameter specifies the front-end destination array into which one
element from each processor specified by source is copied.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to the
rank of the source field geometry. When calling Paris from Lisp, this value can be deduced
from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays of length fe-rank.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) The front-end array is filled in row major
order. That is, the last dimension varies fastest. When calling Paris from Lisp, the front-
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-offset-vector parameter contains the coordinate of the first front-end array element
to receive Connection Machine data. The length of this argument is measured in units
of cm-element-size, except during an extended array transfer — when it is measured in
units of (stride X array-element-size). Notice that cm-element-size, array-element-size, and
stride are parameters to the operations that return the format array descriptor. (See the
description of format below.)

The cm-start-vector parameter specifies the coordinate of the first cM element to copy to
the front end. The c¢m-end-vector parameter specifies the coordinate of the last cM element
to copy to the front end. Both of these are permuted by by the values in cm-azis-vector.

The cm-aais-vector parameter specifies how Connection Machine axes are mapped to front-
end array axes. For example, if cm-azis-vector[A] = B, then axis A of the Connection
Machine source field geometry is mapped to axis B of the front-end array. The length of
this vector must be equal to the rank of the source field geometry.

The format parameter is an array descriptor that specifies the format of the front-end ar-
ray. An appropriate descriptor may be obtained by a call to CM:array-format, CM: packed-
array-format, or CM:structure-array-format. Alternatively, from C or Fortran, one of the
following predefined complex format values may be used: CM_complex_float_single or
CM_complex_float_double. For complex data types in C, two front-end elements are used
for each Connection Machine element.

When calling Paris from Lisp, the format parameter is a keyword argument; for complex
transfers, only arrays of type t may be used.

446

READ-FROM-NEWS-ARRAY

rank—1

Definition For all i such that 0 < i< T[] (end; — start;) do
i=0

for all m such that 0 < m < rank do

let $¢m) = | 2 L mod (end,, — start,,)
n (endj—start;)
j=m+1
rank—1
let k; = \/ make-news-coordinate(azis;, start; + s;,;)
j=0

front-end-array, ; 015 1y00i — sourcelk;]

,rank—1)

Another formulation:

For all sg such that 0 < so < (endy — startg) do
for all 51 such that 0 < s; < (end; — start,) do
for all s such that 0 < s; < (ends — starts) do

for all $,gnk_1 such that 0 < s,ent—1 < (end,ank—1 — start gni—1) do
rank—1

let kogor,rsranty = ‘Vo make-news-coordinate(azis;, start; + s;)
J:

f'ront-end- ATTAY offset-vectory+sq,0ffset-vector; +3y,...,0ffset-vector ;o k18 ankoy

- ‘goume{kto.n -"'-"mnk—ll

447

READ-FROM-NEWS-ARRAY

F-READ-FROM-NEWS-ARRAY

Copies a field within a set of processors forming a subarray of the NEWs grid into a subarray
(of the same shape) of an array in the memory of the front end. Both the source and
destination values are treated as floating-point numbers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified cM field be in the current VP set.

Formats CM:f-read-from-news-array-1L front-end-array, fe-offset-vector, cm-start-vector,
cm-end-vector, cm-axis-vector, source, s, e,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of floating-
point data.

fe-offset-vector A front-end vector of signed integer subscript offsets for the
front-end-array.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWs indices.

cm-azis-vector A front-end vector of signed integer numbers indicating
NEWS axes.

source The field ID of the floating-point source field.

s e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

fe-rank A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

format The array descriptor for front-end-array. This is a keyword argu-
ment when calling Paris from Lisp.

Context ~ This operation is unconditional. It does not depend on the context- flag.

448

READ-FROM-NEWS-ARRAY

This operation copies a rectangular subblock of the NEWs grid into a similarly shaped
subblock of an array in the front end. Floating-point number values are transferred from
the Connection Machine processors to the specified array.

The source parameter specifies the memory address within each processor of the field to be
copied.

The froni-end-array parameter specifies the front-end destination array into which one
element from each processor specified by source is copied.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to the
rank of the source field geometry. When calling Paris from Lisp, this value can be deduced
from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays of length fe-rank.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) The front-end array is filled in row major
order. That is, the last dimension varies fastest. When calling Paris from Lisp, the front-
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-offset-vector parameter contains the coordinate of the first front-end array element
to receive Connection Machine data. The length of this argument is measured in units
of cm-element-size, except during an extended array transfer — when it is measured in
units of (stride X array-element-size). Notice that cm-element-size, array-element-size, and
siride are parameters to the operations that return the format array descriptor. (See the
description of format below.)

The cm-start-vector parameter specifies the coordinate of the first cM element to copy to
the front end. The cm-end-vector parameter specifies the coordinate of the last cM element
to copy to the front end. Both of these are permuted by by the values in cm-azis-vector.

The cm-azis-vector parameter specifies how Connection Machine axes are mapped to front-
end array axes. For example, if cm-azis-vector[A] = B, then axis A of the Connection
Machine source field geometry is mapped to axis B of the front-end array. The length of
this vector must be equal to the rank of the source field geometry.

The format parameter is an array descriptor that specifies the format of the front-end
array. An appropriate descriptor may be obtained by a call to CM:array-format, CM: packed-
array-format, or CM:structure-array-format. Alternatively, one of the predefined floatingpoint
format values may be used. These are CM_float_single or CM _float_double from C or Fortran,
and :float-single or :float-double from Lisp.

When calling Paris from Lisp, the format parameter is a keyword argument. If not specified,
it defaults based on the element type of the front-end array or, if the array is of type t,
based on the type and size of the Connection Machine field.

449

READ-FROM-NEWS-ARRAY

rank—1
Definition Forall i such that 0 <i< || (end;— start;) do
j=0
for all m such that 0 < m < rank do

1

let stim) = | o mod (end,, — start,,)
]_-[(endj—star!,')
j=m+1
rank—1))
let ki = \ make-news-coordinate(azis;, start; + s; ;)
3=0

front-end-army,(m_,(‘_M,____,“.Mﬁ_l) — source[k;]

Another formulation:
For all sg such that 0 < s < (endy — starty) do

for all s; such that 0 < s; < (end; — start;) do
for all s2 such that 0 < s < (ends — starty) do

for all s,.4nk—1 such that 0 < s,guk_1 < (endrank—1 — startpank_1) do

rank—1
let kug,o1,.rspgni_y = -Vo make-news-coordinate(azis;, start; + s;)
J:
ﬁ'ont‘end'awayoﬂaetn+ao.oﬂae!1+n....,oﬁ‘aeimnk_l +9 ank—1
— 30“7"35["":0.:1,»--.amnk_l]

450

READ-FROM-NEWS-ARRAY

S-READ-FROM-NEWS-ARRAY

Copies a field within a set of processors forming a subarray of the NEWs grid into a subarray
(of the same shape) of an array in the memory of the front end. Both the source and
destination values are treated as signed integers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified c¢M field be in the current VP set.

Formats CM:s-read-from-news-array-1L front-end-array, fe-offset-vector, em-start-vector,
cm-end-vector, cm-azis-vector, source, len,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of signed in-
teger data.

fe-offset-vector A front-end vector of signed integer subscript offsets for the
front-end-array.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices.

cm-azis-vector A front-end vector of signed integer numbers indicating
NEWS aXxes.

source The field ID of the signed integer source field.

len The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

fe-rank A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

format The array descriptor for front-end-array. This is a keyword argu-
ment when calling Paris from Lisp.

Context This operation is unconditional. It does not depend on the contezt-flag.

451

READ-FROM-NEWS-ARRAY

This operation copies a rectangular subblock of the NEWs grid into a similarly shaped
subblock of an array in the front end. Signed integer values are transferred from the
Connection Machine processors to the specified array.

The source parameter specifies the memory address within each processor of the field to be
copied.

The front-end-array parameter specifies the front-end destination array into which one
element from each processor specified by source is copied.

When calling Paris from Lisp, the array may be either a general array (of type t) containing
signed integers, or a specialized integer-element array (such as an array of type (unsigned-
byte 8)).

The fe-rank parameter specifies the rank of the front-end array and is normally equal to the
rank of the source field geometry. When calling Paris from Lisp, this value can be deduced
from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays of length fe-rank.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) The front-end array is filled in row major
order. That is, the last dimension varies fastest. When calling Paris from Lisp, the front-
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-offset-vector parameter contains the coordinate of the first front-end array element
to receive Connection Machine data. The length of this argument is measured in units
of cm-element-size, except during an extended array transfer — when it is measured in
-units of (stride x array-element-size). Notice that cm-element-size, array-element-size, and
stride are parameters to the operations that return the format array descriptor. (See the
description of format below.)

The cm-start-vector parameter specifies the coordinate of the first cM element to copy to
the front end. The cm-end-vector parameter specifies the coordinate of the last cM element
to copy to the front end. Both of these are permuted by by the values in cm-azis-vector.

The cm-azis-vector parameter specifies how Connection Machine axes are mapped to front-
end array axes. For example, if cm-azis-vector[A] = B, then axis A of the Connection
Machine source field geometry is mapped to axis B of the front-end array. The length of
this vector must be equal to the rank of the source field geometry.

The format parameter is an array descriptor that specifies the format of the front-end array.
An appropriate descriptor may be obtained by a call to CM: array-format, CM: packed-array-
format, or CM:structure-array-format. Alternatively, one of the predefined signed format
values may be used.

452

READ-FROM-NEWS-ARRAY

From C or Fortran a value of CM_8_bit, CM_16_bit, or CM_32_bit specifies an unpacked front-
end array while CM_2_bit_packed, or CM_4_bit_packed specifies a front-end array in which
several CM elements are packed into each array element. From Lisp, the predefined signed
format keywords are :8-bit, :16-bit, :32-bit, :2-bit-packed, and :4-bit-packed.

When calling Paris from Lisp, the format parameter is a keyword argument. If not specified,
it defaults based on the element type of the front-end array or, if the array is of type t,
based on the type and size of the Connection Machine field.

rank—1

Definition For all i such that 0 < i< [] (end; — start;) do
3=0
for all m such that 0 < m < rank do

i

let 3{&',!11.) = e mod (Eﬂ-dm —_ St{l?‘tm)
H (end; —start;)
j=m+1
rank—1) "
let k; = V make-news-coordinate(axis;, start; + s; ;)
j=0

fmm"‘-"‘nd'm’m%(i,u;.8(.‘.1).---,9(;,"";_1) « sourcel[k;]

Another formulation:

For all s such that 0 < so < (endo — starto) do
for all s; such that 0 < s; < (end; — start;) do
for all sz such that 0 < s3 < (endz — startz) do

for all s,.4nt—1 such that 0 < s,40t—1 < (end ank—1 — start,qni_1) do
rank—1

let Ksg,01,ispaniy = jyu make-news-coordinate(azis;, start; + s;)

ﬁont"end'armyoﬁut‘;+au offsety +av,..,0ffset p FsLoag
= source[k,,_,ll‘___,mnk_i]

453

READ-FROM-NEWS-ARRAY

U-READ-FROM-NEWS-ARRAY

Copies a field within a set of processors forming a subarray of the NEWs grid into a subarray
(of the same shape) of an array in the memory of the front end. Both the source and
destination values are treated as unsigned integers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified cMm field be in the current VP set.

Formats CM:u-read-from-news-array-1L front-end-array, fe-offset-vector, cm-start-vector,
cm-end-vector, cm-azis-vector, source, len,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of unsigned
integer data.

fe-offset-vector A front-end vector of signed integer subscript offsets for the
front-end-array.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices.

cm-azis-vector A front-end vector of signed integer numbers indicating
NEWS axes.

source The field ID of the unsigned integer source field.

len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length,

fe-rank A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

format The array descriptor for front-end-array. This is a keyword argu-
ment when calling Paris from Lisp.

Context This operation is unconditional. It does not depend on the contezxt-flag.

454

READ-FROM-NEWS-ARRAY

This operation copies a rectangular subblock of the NEWs grid into a similarly shaped
subblock of an array in the front end. Unsigned integer values are transferred from the
Connection Machine processors to the specified array.

The source parameter specifies the memory address within each processor of the field to be
copied.

The front-end-array parameter specifies the front-end destination array into which one
element from each processor specified by source is copied.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to the
rank of the source field geometry. When calling Paris from Lisp, this value can be deduced
from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays of length fe-rank.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) The front-end array is filled in row major
order. That is, the last dimension varies fastest. When calling Paris from Lisp, the front-
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-offset-vector parameter contains the coordinate of the first front-end array element
to receive Connection Machine data. The length of this argument is measured in units
of cm-element-size, except during an extended array transfer — when it is measured in
units of (stride X array-element-size). Notice that cm-element-size, array-element-size, and
stride are parameters to the operations that return the format array descriptor. (See the
description of format below.)

The cm-start-vector parameter specifies the coordinate of the first cM element to copy to
the front end. The cm-end-vector parameter specifies the coordinate of the last cM element
to copy to the front end. Both of these are permuted by by the values in em-azis-vector.

The em-azis-vector parameter specifies how Connection Machine axes are mapped to front-
end array axes. For example, if cm-azis-vector[A] = B, then axis A of the Connection
Machine source field geometry is mapped to axis B of the front-end array. The length of
this vector must be equal to the rank of the source field geometry.

The format parameter is an array descriptor that specifies the format of the front-end array.
An appropriate descriptor may be obtained by a call to CM:array-format, CM: packed-array-
format, or CM:structure-array-format. Alternatively, one of the predefined unsigned format
values may be used.

From C or Fortran a value of CM_8_bit, CM_16_bit, or CM_32_bit specifies an unpacked front-
end array while CM_1_bit_packed, CM_2_ bit_packed, or CM_4 _bit_packed specifies a front-end
array in which several cM elements are packed into each array element. From Lisp, the
predefined unsigned format keywords are :8-bit, : 16-bit, :32-bit, :1-bit-packed, :2-bit-packed,

455

READ-FROM-NEWS-ARRAY

and :4-bit-packed.

When calling Paris from Lisp, the format parameter is a keyword argument. If not specified,
it defaults based on the element type of the front-end array or, if the array is of type t,

based on the type of the cM field.

k—1
Definition For all i such that 0 < i < WI"[(end; — start;) do
j=0

for all m such that 0 < m < rank do

let s;;my = | : mod (end,, — start,,)
H (endj—start;)
j=m+41
rank—1)
let k; = \/ make-news-coordinate(azis;, start; + s; ;)

=0
front-end-array, ; o s 1y rannny — SOUTCE[k:]

Another formulation:

For all so such that 0 < s < (endg — startg) do
for all s; such that 0 < s; < (end; — start;) do
for all s, such that 0 < s, < (end; — start;) do

for all s,qnk—1 such that 0 < s,gnp_1 < (end,gni—1 — startpgnt—1) do

rank—1
=V make-news-coordinate(azis;, start; + s;)

]'et k’ul’l““l’fank_l t
J=0

f"ont-end-a?‘myoﬂr%+ao,oﬂ‘nh+31:---'Oﬂ-'"mnk_ﬁ-'rank—l
— source(kyy sy...s

456

READ-FROM-PROCESSOR

C-READ-FROM-PROCESSOR

Reads the source field of a single specified processor as a complex number and returns it to
the front end.

Formats result «— CM:c-read-from-processor-1L send-address-value, source, len

Operands send-address-value An immediate operand, the send address of a single
particular processor.

source The field ID of the complex source field.

s, € The significand and exponent lengths for the source field. The
total length of an operand in this format is 2(s + e 4 1).

Result A complex number, the contents of the source field in the specified virtual
processor.

Context This operation is unconditional. It does not depend on the contezi-flag.

Definition Return source[send-address-value] to front end

The source field of the processor whose send address is the immediate operand
send-address-value is read and returned as a floating-point number to the front end.

457

READ-FROM-PROCESSOR

F-READ-FROM-PROCESSOR

Reads the source field of a single specified processor as a floating-point number and returns
it to the front end.

Formats result « CM:f-read-from-processor-1L send-address-value, source, s, e

Operands send-address-value ~ An immediate operand, the send address of a single
particular processor.

source The field ID of the floating-point source field.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Result A floating-point number, the contents of the source field in the specified virtual
processor.

Context This operation is unconditional. It does not depend on the contezt- flag.

Definition Return source[send-address-value] to front end

The source field of the processor whose send address is the immediate operand
send-address-value is read and returned as a floating-point number to the front end.

458

READ-FROM-PROCESSOR

S-READ-FROM-PROCESSOR

Reads the source field of a single specified processor as a signed integer and returns it to
the front end.

Formats result « CM:s-read-from-processor-1L send-address-value, source, len

Operands send-address-value ~ An immediate operand, the send address of a single
particular processor.

source The field ID of the signed integer source field.

len The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.
Result A signed integer, the contents of the source field in the specified virtual pro-
Ccessor.

Context This operation is unconditional. It does not depend on the context-flag.

Definition Return source[send-address-value] to front end

The source field of the processor whose send address is the immediate operand
send-address-value is read and returned as a signed integer to the front end.

459

READ-FROM-PROCESSOR

U-READ-FROM-PROCESSOR

Reads the source field of a single specified processor as an unsigned integer and returns it
to the front end.

Formats result « CM:u-read-from-processor-1L send-address-value, source, len
Operands send-address-value ~ An immediate operand, the send address of a single
particular processor.
source The field ID of the unsigned integer source field.
len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-lengthx.
Result An unsigned integer, the contents of the source field in the specified virtual
processor.
Context ~ This operation is unconditional. It does not depend on the context-flag.
Definition Return source[send-address-value] to front end

The source field of the processor whose send address is the immediate operand
send-address-value is read and returned as an unsigned integer to the front end.

460

RECIPROCAL

C-RECIPROCAL

Calculates the reciprocal of a complex number.

Formats CM:c-reciprocal-1-1L dest/source, s, e
CM:c-reciprocal-2-1L dest, source, s, €

Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
s e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating point overflow occurs; otherwise it is unaffected.

test-flag is set if divistion by zero occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-uvp-set do
if contezt-flaglk] = 1 then
deSt[k] == Soﬂ:Cﬁ EI

A reciprocal of the complex source field is place in the complex dest field.

461

REDUCE-WITH-ADD

REDUCE-WITH-C-ADD

Within each scan class one particular processor (if it is selected) receives the sum of the
complex source fields from all the selected processors in that scan class.

Formats

Operands

Overlap

Context

CM:reduce-with-c-add-1L dest, source, azis, s, e, to-coordinate

dest The field ID of the complex destination field.
source The field ID of the complex source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along azis indicating which element of the scan
class, if any, is to receive the result.

The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition

For every virtual processor k in the current-up-set do
if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let C} = scan-subclass(g, k, azis)
if extract-news-coordinate(yg, azis, k) = to-coordinate then

dest[k] «— (ma sou-rce[m])

where scan-subclass is as defined on page 36 of the Paris Reference Manual.

See section 5.16 beginning on page 34 for a general description of reduce operations. The
CM:reduce-with-c-add operation combines source fields by performing complex addition.

The operation CM:reduce-with-c-add-1L differs from CM:spread-with-c-add-1L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

462

REDUCE-WITH-ADD

REDUCE-WITH-F-ADD

Within each scan class one particular processor (if it is selected) receives the sum of the
floating-point source fields from all the selected processors in that scan class.

Formats CM:reduce-with-f-add-1L dest, source, azis, s, €, to-coordinate

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
aris An unsigned integer immediate operand to be used as the number

of a NEWS axis.
s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s 4+ e 4 1.
to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along azis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-uvp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let C} = scan-subclass(g, k, azis)
if eztract-news-coordinate(g, azis, k) = to-coordinate then
dest[k] — (> source[m])
mec*

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM:reduce-
with-f-add operation combines source fields by performing floating-point addition.

The operation CM:reduce-with-f-add-1L differs from CM:spread-with-f-add-1L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

463

REDUCE-WITH-ADD

REDUCE-WITH-S-ADD

Within each scan class one particular processor (if it is selected) receives the sum of the
signed integer source fields from all the selected processors in that scan class.

Formats CM:reduce-with-s-add-1L dest, source, azis, len, to-coordinate

Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.
azis An unsigned integer immediate operand to be used as the number

of a NEWS axis.
len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-lengths.
to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along azis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context ~ This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let Cy, = scan-subclass(g, k, azis)
if eztract-news-coordinate(g, azis, k) = to-coordinate then
dest[k] — (X source{m])
meCy
where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM: reduce-
with-s-add operation combines source fields by performing signed integer addition.

The operation CM:reduce-with-s-add-1L differs from CM:spread-with-s-add-1L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

464

REDUCE-WITH-ADD

REDUCE-WITH-U-ADD

Within each scan class one particular processor (if it is selected) receives the sum of the
unsigned integer source fields from all the selected processors in that scan class.

Formats CM:reduce-with-u-add-1L dest, source, azis, len, to-coordinate

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along azis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let C), = scan-subclass(g, k, azis)
if eztract-news-coordinate(g, azis, k) = to-coordinate then
dest([k] «— (b source[m])
meC)
where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM:reduce-
with-u-add operation combines source fields by performing unsigned integer addition.

The operation CM:reduce-with-u-add-1L differs from CM:spread-with-u-add-1L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

465

REDUCE-WITH-COPY

REDUCE-WITH-COPY

Within each scan class one particular processor (if it is selected) receives a copy of the
source value from a particular value within its scan subclass.

Formats CM:reduce-with-copy-1L dest, source, azis, len, to-coordinate, from-coordinate
Operands dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.
azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length=.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along azis indicating which element of the scan
class, if any, is to receive the result.

from-coordinate An unsigned integer immediate operand to be used as the
NEWSs coordinate along azis indicating which element of the scan
class is to be read.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let ¢ = deposit-news-coordinate(g, k, azis, from-coordinate)
if extract-news-coordinate(g, azis, k) = to-coordinate then
dest[k] — source[c]

where deposit-news-coordinate is as defined on page 40.

See section 5.20 on page 42 for a general description of reduce operations.

466

REDUCE-WITH-LOGAND

REDUCE-WITH-LOGAND

Within each scan class one particular processor (if it is selected) receives the bitwise logical
AND of the source fields from all the selected processors in that scan class.

Formats CM:reduce-with-logand-1L dest, source, azis, len, to-coordinate

Operands dest The field ID of the destination field.
source The field ID of the source field.

azris An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along azis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
let ¢ = geometry(current-vp-set)
let Cy = scan-subclass(g, k, azis)
if extract-news-coordinate(g, azis, k) = to-coordinate then
dest[k] — (A source[m])
mEC;‘
where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM:reduce-
with-logand operation combines source fields by performing bitwise logical AND operations.

The operation CM: reduce-with-logand-1L differs from CM:spread-with-logand-1L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

467

REDUCE-WITH-LOGIOR

REDUCE-WITH-LOGIOR

Within each scan class one particular processor (if it is selected) receives the bitwise logical
inclusive oR of the source fields from all the selected processors in that scan class.

Formats CM:reduce-with-logior-1L dest, source, azis, len, to-coordinate

Operands dest The field ID of the destination field.
source The field ID of the source field.

azxis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:¥maximum-integer-length+.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along aeais indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
let Cy = scan-subclass(g, k, azis)
if eztract-news-coordinate(g, axis, k) = to-coordinate then
dest[k] «— (vV source[m])
meC),
where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM:reduce-
with-logior operation combines source fields by performing bitwise logical inclusive ok op-
erations.

The operation CM:reduce-with-logior-1L differs from CM: spread-with-logior-1L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

468

REDUCE-WITH-LOGXOR

REDUCE-WITH-LOGXOR

Within each scan class one particular processor (if it is selected) receives the bitwise logical
exclusive OR of the source fields from all the selected processors in that scan class.

Formats CM:reduce-with-logxor-1L dest, source, azis, len, to-coordinate

Operands dest The field ID of the destination field.
source The field ID of the source field.

azris An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along azis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
let C) = scan-subclass(g, k, azis)
if eztract-news-coordinate(g, azis, k) = to-coordinate then
dest[k] « (i source[m])
meEC)
where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM:reduce-
with-logxor operation combines source fields by performing bitwise logical exclusive OR op-
erations.

The operation CM:reduce-with-logxor-1L differs from CM:spread-with-logxor-1L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

469

REDUCE-WITH-MAX

REDUCE-WITH-F-MAX

Within each scan class one particular processor (if it is selected) receives the largest of the
floating-point source fields from all the selected processors in that scan class.

Formats CM:reduce-with-f-max-1L dest, source, azis, s, e, to-coordinate

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
azis An unsigned integer immediate operand to be used as the number

of a NEWS axis.
s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.
to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along azis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let Cj = scan-subclass(g, k, azis)
if eztract-news-coordinate(g, azis, k) = to-coordinate then
dest[k] — (max source[m]
meCy

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM:reduce-
with-f-max operation combines source fields by performing an floating-point maximum op-

eration.

The operation CM:reduce-with-f-max-1L differs from CM:spread-with-f-max-1L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

470

REDUCE-WITH-MAX

REDUCE-WITH-S-MAX

Within each scan class one particular processor (if it is selected) receives the largest of the
signed integer source fields from all the selected processors in that scan class.

Formats CM:reduce-with-s-max-1L dest, source, aais, len, to-coordinate

Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.
aris An unsigned integer immediate operand to be used as the number

of a NEWS axis.
len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.
to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along azis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contexi-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let C} = scan-subclass(g, k, azis)
if extract-news-coordinate(g, azis, k) = to-coordinaie then

dest[k] — (max source[m]
meC)

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM:reduce-
with-s-max operation combines source fields by performing a signed integer maximum oper-

ation.

The operation CM:reduce-with-s-max-1L differs from CM:spread-with-s-max-1L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

471

REDUCE-WITH-MAX

REDUCE-WITH-U-MAX

Within each scan class one particular processor (if it is selected) receives the largest of the
unsigned integer source fields from all the selected processors in that scan class.

Formats CM:reduce-with-u-max-1L dest, source, azis, len, to-coordinate

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along azis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
let Cy = scan-subclass(g, k, azis)
if eziract-news-coordinate(g, azvis, k) = to-coordinate then
dest[k] « (max source[m]
meCy

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM:reduce-
with-u-max operation combines source fields by performing an unsigned integer maximum
operation.

The operation CM:reduce-with-u-max-1L differs from CM:spread-with-u-max-1L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

472

REDUCE-WITH-MIN

REDUCE-WITH-F-MIN

Within each scan class one particular processor (if it is selected) receives the smallest of the
floating-point source fields from all the selected processors in that scan class.

Formats CM:reduce-with-f-min-1L dest, source, azis, s, e, to-coordinate

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.

awis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

to-coordinate An unsigned integer immediate operand to be used as the
¥EWS coordinate along azis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
let Ci = scan-subclass(g, k, azis)
if extract-news-coordinate(g, axis, k) = to-coordinate then
dest([k] «— (m.in source[m]
meCy
where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM:reduce-
with-f-min operation combines source fields by performing an floating-point minimum oper-
ation.

The operation CM:reduce-with-f-min-1L differs from CM:spread-with-f-min-1L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

473

REDUCE-WITH-MIN

REDUCE-WITH-S-MIN

Within each scan class one particular processor (if it is selected) receives the smallest of the
signed integer source fields from all the selected processors in that scan class.

Formats CM:reduce-with-s-min-1L dest, source, azis, len, to-coordinate

Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.

azxis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-lengthx.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along azis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
let C = scan-subclass(g, k, azis)
if eztract-news-coordinate(g, azis, k) = to-coordinate then
dest[k] « (min source[m)]
meCy

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM:reduce-
with-s-min operation combines source fields by performing a signed integer minimum oper-
ation,

The operation CM:reduce-with-s-min-1L differs from CM:spread-with-s-min-1L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

474

REDUCE-WITH-MIN

REDUCE-WITH-U-MIN

Within each scan class one particular processor (if it is selected) receives the smallest of the
unsigned integer source fields from all the selected processors in that scan class.

Formats CM:reduce-with-u-min-1L dest, source, azis, len, to-coordinate
Operands dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.
azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*¥maximum-integer-length*.

to-coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along azis indicating which element of the scan
class, if any, is to receive the result.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-up-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let C), = scan-subclass(g, k, azis)
if extract-news-coordinate(g, azis, k) = to-coordinate then
dest[k] — (min source[m)|
meECy

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of reduce operations. The CM:reduce-
with-u-min operation combines source fields by performing an unsigned integer minimum

operation.

The operation CM:reduce-with-u-min-1L differs from CM:spread-with-u-min-1L only in that
the result is stored in (at most) one processor of the scan class rather than in all selected
processors of the scan class.

475

REM

F-REM

The remainder from dividing one floating-point source value by another is placed in the
destination field.

CM:f-rem-2-1L dest/sourcel, source2, s, e

Formats

CM:f-rem-3-1L dest, sourcel, source?, s, €

CM:f-rem-constant-2-1L dest/sourcel, source2-value, s, e

CM:f-rem-constant-3-1L dest, sourcel, source2-value, s, e

Operands dest The field ID of the floating-point destination field. This is the

quotient.

sourcel The field ID of the floating-point first source field. This is the
dividend.

source2 The field ID of the floating-point second source field. This is the
divisor.

source2-value A floating-point immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, sourcei, and
source?2 fields. The total length of an operand in this format is
s+e+1l.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags test-flag is set if division by zero occurs; otherwise it is cleared.
overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
if source2[k] # 0 then
let v = sourcel[k]/source2[k]

ifv> |_v+%J then
let n = |v]
else if v < |0+ }| then

476

REM

let n = [v]
else if even(|v]) then
let n = |v]
else
let n = [v]
dest[k] — sourcel[k] — source2[k] x n

else
dest[k] «— (unpredictable)
test-flaglk] — 1
if (overflow occurred in processor k) then overflow-flaglk] « 1

The remainder from the sourcel operand when divided by the source2 operand is calculated
treating both as floating-point numbers. The result is stored into memory. The various
operand formats allow operands to be either memory fields or constants; in some cases the
destination field initially contains one source operand.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

477

REM

S-REM

The remainder from the truncating division of one signed integer by another is placed in
the destination field. Overflow is also computed.

Formats CM:s-rem-2-1L dest/sourcel, source2, len
CM:s-rem-3-1L dest, sourcel, source?, len
CM:s-rem-constant-2-1L dest/sourcel, source2-value, len
CM:s-rem-constant-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the signed integer remainder field.
sourcel The field ID of the signed integer dividend field.
source2 The field ID of the signed integer divisor field.

source2-value A signed integer immediate operand to be used as the second

source.

len The length of the dest, sourcel, and source? fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags test-flag is set if divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if source2(k] = 0 then
dest[k] — (unpredictable)
else
dest[k] — sign(sourcel[k]) x (]source.f[k“ — |source2[k]| x H%)
if {overflow occurred in processor k) then overflow-flaglk] « 1

else overflow-flaglk] — 0

The remainder resulting from the truncating division of the signed integer sourcel by the
signed integer source2 operand is stored into the dest field. The result always has the same

478

REM

sign as the sourcel operand. The various operand formats allow operands to be either
memory fields or constants; in some cases the destination field initially contains one source
operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti-
nation field will contain as many of the low-order bits of the true result as will fit.

The value of the destination is unpredictalbe if the divisor is zero.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

479

REM

U-REM

The remainder from the truncating division of one unsigned integer by another is placed in
the destination field. Overflow is also computed.

Formats CM:u-rem-2-1L dest/sourcel, source2, len
CM:u-rem-3-1L dest, sourcel, source2, len
CM:u-rem-constant-2-1L dest/sourcel, source2-value, len
CM:u-rem-constant-3-1L dest, sourcel, source2-value, len

Operands dest The field ID of the unsigned integer remainder field. -
sourcel The field ID of the unsigned integer dividend field.
source2 The field ID of the unsigned integer divisor field.

sourceZ-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. Tt is
permissible for all the fields to be identical.

Flags test-flag is set if divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if source2[k] = 0 then
dest[k] «— (unpredictable)

else
dest[k] « sourcel[k] — source2[k] x sourcel [k]
source2 (k]

if (overflow occurred in processor k) then overflow-flaglk] — 1
else overflow-flaglk] « 0

The remainder resulting from the truncating division of the unsigned integer sourcel by
the unsigned integer source2 operand is stored into the dest field. For unsigned integers
this is of course the same as the mod operation.

480

REM

The various operand formats allow operands to be either memory fields or constants; in
some cases the destination field initially contains one source operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti-
nation field will contain as many of the low-order bits of the true result as will fit.

The value of the destination is unpredictable if the divisor is zero.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

481

REMOVE-FIELD-ALIAS

REMOVE-FIELD-ALIAS

Removes the specified alias field 1D from the field to which it refers, leaving the field intact.

Formats CM:remove-field-alias alias-id

Operands alias-id An alias field ID. This must be an alias field 1D returned by
CM: make-field-alias.

Context ~ This operation is unconditional. It does not depend on the contezt-flag.

Removing an alias field ID does not affect the memory field to which it refers.

482

F-F-ROUND

Rounds each source field value to the nearest integer value and stores the result as a floating-
point number in the destination field.

Formats CM:f-f-round-1-1L dest/source, s, €
CM:f-f-round-2-1L dest, source, s, €
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Qverlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contert-flag is 1.

Definition For every virtual processor k in the current-up-set do
if contezt-flaglk] = 1 then
dest[k] — sign(source) x round(source(k])

The source field, treated as a floating-point number, is rounded to the nearest integer and
the result is stored in the dest field as a floating-point number.

If the source field value is exactly midway between two integers, then it is rounded to the
even integer.

483

ROUND

S-ROUND

The quotient of two signed integer source values, rounded to the nearest integer, is placed
in the destination field. Overflow is also computed.

Formats

Operands

Overlap

Flags

Context

CM:s-round-3-3L dest, sourcel, source2, dlen, sleni, slen2
CM:s-round-2-1L dest/sourcel, source2, len
CM:s-round-3-1L dest, sourcel, source2, len

CM:s-round-constant-2-1L dest/sourcel, source2-value, len
CM:s-round-constant-3-1L dest, sourcel, source2-value, len

dest The field ID of the signed integer quotient field.
sourcel The field ID of the signed integer dividend field.
source2 The field ID of the signed integer divisor field.

source2-value A signed integer immediate operand to be used as the second

source.

len The length of the dest, sourcel, and source? fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
lengthx*,

dlen The length of the dest field. This must be no smaller than 2 but

no greater than CM:*maximum-integer-length*.

slenl The length of the sourcel field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

slen2 The length of the source? field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length.

The fields sourcel and source? may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if the divisor is zero; otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

484

ROUND

Definition For every virtual processor k in the current-up-set do
if context-flaglk] = 1 then
Tt i sourcel k|
soumeE‘kJ
if v > |_v+ %J then
dest[k] — [v]
else if v < [v + % then
dest[k] — [v]
else if even(|v]) then
dest[k] — |v]
else
dest[k] — [v]
if (overflow occurred in processor k) then overflow-flaglk] «— 1

The signed integer sourcel operand is divided by the signed integer source2 operand. The
mathematical quotient, rounded to the nearest integer (or to whichever of two equally near
neighbors is even) is stored into the signed integer memory field dest.

The various operand formats allow the second source operand to be either a memory field
or a constant; in some cases the destination field initially contains one source operand.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

485

S-F-ROUND

Converts floating-point source field values to signed integer values by rounding to the nearest
integer.

Formats CM:s-f-round-2-2L dest, source, dlen, s, e

Operands dest The field ID of the signed integer destination field.
source The field ID of the floating-point source field.

len The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

s, € The significand and exponent lengths for the source field. The
total length of an operand in this format is s 4+ e + 1.

Overlap ~ The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context ~ This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
let v = sourcelk]
ifv> lv o+ %J then
dest[k] — |v]
else if v < _v + %J then
dest(k] « [v]
else if even(|v]) then
dest[k] — [v]
else
dest[k] — [v]
if (overflow occurred in processor k) then overflow-flaglk] « 1

The source field, treated as a floating-point number, is rounded to the nearest integer (to
the nearest even integer if its value is equal to an integer plus %) The result is stored into

the dest field as a signed integer.

486

ROUND

U-ROUND

The quotient of two unsigned integer source values, rounded to the nearest integer, is placed
in the destination field. Overflow is also computed.

Formats

Operands

Overlap

Flags

Context

CM:u-round-3-3L dest, sourcel, source2, dlen, sleni, slen2
CM:u-round-2-1L dest/sourcel, source2, len
CM:u-round-3-1L dest, sourcel, source2, len
CM:u-round-constant-2-1L dest/sourcel, source2-value, len
CM:u-round-constant-3-1L dest, sourcel, source2-value, len

dest The field ID of the unsigned integer quotient field.
sourcel The field ID of the unsigned integer dividend field.
source2 The field ID of the unsigned integer divisor field.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length#.

dlen The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*,

sleni The length of the sourcel field. This must be non-negative and no
greater than CM: *maximum-integer-length#.

slen?2 The length of the source2 field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if the divisor is zero; otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then

487

ROUND

S sourcel [k
sour'ce2|k

if v> |v+3] then
dest[k] «— |v]

else if v < lv + 2| then
dest[k] « [v]

else if even(|v]) then
dest[k] — |v]

else
dest[k] — [v]

if (overflow occurred in processor k) then overflow-flaglk] « 1

The unsigned integer sourcel operand is divided by the unsigned integer source2 operand.
The mathematical quotient, rounded to the nearest integer (or to whichever of two equally
near neighbors is even) is stored into the unsigned integer memory field dest.

The various operand formats allow the second source operand to be either a memory field
or a constant; in some cases the destination field initially contains one source operand.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be an unsigned integer front-end value. Gen-
erally the constant has the same length as the field operand it replaces, although this is
not strictly required. Regardless of the length of the constant, however, the operation is
performed using exactly the number of bits specified by len.

488

U-F-ROUND

Converts the floating-point source field values to unsigned integer values, which are stored
in the destination field.

Formats CM:u-f-round-2-2L dest, source, dlen, s, e

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the floating-point source field.

len The length of the dest field. This must be non-negative and no
greater than CM: *maximume-integer-length*.

s, € The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-up-set do
if contezt-flaglk] = 1 then
if dest > |source| then
dest «— |source|
else if dest < | source| then
dest « [source]
else if even(|source|) then
dest «— |source|
else
dest — [source]
if (overflow occurred in processor k) then overflow-flagk] « 1

The source field, treated as a floating-point number, is rounded to the nearest integer (to
the nearest even integer if its value is equal to an integer plus %], which is stored into the
dest field as an unsigned integer.

489

SCALE

F-S-SCALE

In each selected processor, multiplies a floating-point number by a specified power of two
and stores the result in the destination.

Formats CM:f-s-scale-2-2L dest/sourcel, source2, slen2, s, e
CM:f-s-scale-3-2L dest, sourcel, source2, slen2, s, e
CM:f-s-scale-constant-2-1L dest/sourcel, source2-value, s, €
CM:f-s-scale-constant-3-1L dest, sourcel, source2-value, s, e

Operands dest The field ID of the floating-point destination field.

sourcel The field ID of the floating-point first source field. This is the
quantity to be scaled.

source2 The field ID of the signed integer second source field. This is the
base-2 logarithm of the scale factor.

source2-value A signed integer immediate operand to be used as the second
source.

s e The significand and exponent lengths for the dest and sourcel
fields. The total length of an operand in this format is s + e + 1.

slen2 The length of the source2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields source! and source? may overlap in any manner. However, the
source? field must not overlap the dest field, and the field sourcel must be
either disjoint from or identical to the dest field. Two floating-point fields are
identical if they have the same address and the same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then

dest[k] — lsource.f[k] X 280urc¢2[k]J

if (overflow occurred in processor k) then overflow-flagk] — 1

The operand sourcel is scaled by the power of two specified by source2. (This is faster than
an equivalent multiplication by a power of two.)

491

The result is stored into the memory field dest. The various operand formats allow operands

to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

492

SCALE

F-U-SCALE

Multiplies a floating-point number by a specified power of two and stores the result into the

destination.
Formats CM:f-u-scale-2-2L dest/sourcel, source2, slen2, s, e
CM:f-u-scale-3-2L dest, sourcel, source2, slen2, s, e
CM:f-u-scale-constant-2-1L dest/sourcel, source2-value, s, e
CM:f-u-scale-constant-3-1L dest, sourcel, source2-value, s, €
Operands dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point first source field. This is the
quantity to be scaled.

source2 The field ID of the unsigned integer second source field. This is
the base-2 logarithm of the scale factor.

source2-value An unsigned integer immediate operand to be used as the
second source.

s, € The significand and exponent lengths for the dest and sourcel
fields. The total length of an operand in this format is s +e + 1.

slen2 The length of the source2 field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Overlap The fields sourcel and source2 may overlap in any manner. However, the
source? field must not overlap the dest field, and the field sourcel must be
either disjoint from or identical to the dest field. Two floating-point fields are
identical if they have the same address and the same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contert-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
dest[k] « [souraei[k] X 2"“"“2["]J
if (overflow occurred in processor k) then overflow-flaglk] « 1

The operand sourcel is scaled by the power of two specified by source2. (This is faster than
an equivalent multiplication by a power of two.)

493

The result is stored into the memory field dest. The various operand formats allow operands

to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

494

SCAN-WITH-ADD

SCAN-WITH-C-ADD

The destination field in every selected processor receives the sum of the complex source
fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-c-add-1L dest, source, azis, s, e, direction, inclusion, smode, sbit
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
let ¢ = geometry(current-vp-set)
let S, = scan-subset(g, k, azis, direction, inclusion, smode, sbit)

if |Sk| = 0 then
dest[k] — 0
else

dest[k] — (¥ source[m])
meSy

where scan-subset is as defined on page 36 of the Paris Reference Manual.

495

SCAN-WITH-ADD

See the section beginning on 34 for a general description of scan operations and the effect
of the azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-c-add operation combines source fields by performing complex addition.
If the scan subset for a selected processor is empty, then the complex value +0.0 is stored in
the dest field for that processor. Note that this can occur only when the inclusion argument
is :exclusive.

496

SCAN-WITH-ADD

SCAN-WITH-F-ADD

The destination field in every selected processor receives the sum of the floating-point source
fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-f-add-1L dest, source, axs, s, e,
direction, inclusion, smode, sbit
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
azris An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let ¢ = geometry(current-vp-set)
let S; = scan-subset(g, k, azis, direction, inclusion, smode, sbit)

if | Sk| = 0 then
dest[k] — 0
else

dest[k] « (¥ source[m})

meS*

where scan-subset is as defined on page 45.

497

SCAN-WITH-ADD

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-f-add operation combines source fields by performing floating-point ad-
dition. If the scan subset for a selected processor is empty, then the floating-point value
+0.0 is stored in the dest field for that processor. Note that this can occur only when the
inclusion argument is :exclusive.

498

SCAN-WITH-ADD

SCAN-WITH-S-ADD

The destination field in every selected processor receives the sum of the signed integer source
fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-s-add-1L dest, source, azis, len,
direction, inclusion, smode, sbit
Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.
azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
let ¢ = geometry(current-vp-set)
let S, = scan-subset(g, k, azis, direction, inclusion, smode, sbit)

if |Sk| = 0 then
dest[k] — 0
else

dest[k] — (Y. source[m])

meESy

where scan-subset is as defined on page 45.

499

SCAN-WITH-ADD

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-s-add operation combines source fields by performing signed integer addi-
tion. If the scan subset for a selected processor is empty, then the signed integer value 0 is
stored in the dest field for that processor. Note that this can occur only when the inclusion
argument is :exclusive.

500

SCAN-WITH-ADD

SCAN-WITH-U-ADD

The destination field in every selected processor receives the sum of the unsigned integer
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-u-add-1L dest, source, azis, len,
direction, inclusion, smode, sbit
Operands dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.
azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezi-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let S} = scan-subset(g, k, azis, direction, inclusion, smode, sbit)

if |Sk| = 0 then
dest[k] « 0
else

dest[k] — (3 Soufce[m])

meS,

where scan-subset is as defined on page 45.

501

SCAN-WITH-ADD

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-u-add operation combines source fields by performing unsigned integer
addition. If the scan subset for a selected processor is empty, then the unsigned integer
value 0 is stored in the dest field for that processor. Note that this can occur only when the
inclusion argument is :exclusive.

502

SCAN-WITH-COPY

SCAN-WITH-COPY

The destination field in every selected processor receives the first source field from the
processors below or above it in some ordering of the processors.

Formats CM:scan-with-copy-1L dest, source, azis, len,
direction, inclusion, smode, sbit
Operands dest The field ID of the destination field.
source The field ID of the source field.
azris An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two bit fields are identical if they have the
same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
let ¢ = geometry(current-vp-set)
let Sj = scan-subset(g, k, azis, direction, inclusion, smode, sbit)
if |Sk| = 0 then
dest[k] « 000...000

else

case direction of

:upward : let m' = min m

meS,

:downward : let m' = max m

meSk

dest[k] « source[m']

where scan-subset is as defined on page 45.

503

SCAN-WITH-COPY

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-copy operation stores into each processor k the source field value from the
first processor in the scan subset for processor k (where “first” means the processor with
lowest address for an upward scan, or with highest address for a downward scan). Generally
speaking, the net effect is to propagate a value from the first processor in a group to all the
other processors in the group, although variations on this effect are provided by the various
possibilities for the inclusion and smode arguments.

If the scan subset for a selected processor is empty, then the dest field for that processor is
set to all zero bits. Note that this can occur only when the inclusion argument is :exclusive.

504

SCAN-WITH-LOGAND

SCAN-WITH-LOGAND

The destination field in every selected processor receives the bitwise logical AND of the
source fields from processors below or above it in some ordering of the processors.

Formats

Operands

Overlap

Context

CM:scan-with-logand-1L dest, source, azis, len,

dest
source

azis

len

direction
inclusion
smode

sbit

direction, inclusion, smode, sbit

The field ID of the destination field.
The field ID of the source field.

An unsigned integer immediate operand to be used as the number
of a NEWS axis.

The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Dither :upward or :downward.
Either :exclusive or :inclusive.
Either :none, :start-bit, or :segment-bit.

The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two bit fields are identical if they have the
same address and the same length.

This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
let ¢ = geometry(current-vp-set)

let S}
if | Skl

= scan-subset(g, k, azis, direction, inclusion, smode, sbit)

= 0 then

dest[k] — 111...111

else

dest[k] « (A source[m])

meS;,

where scan-subset is as defined on page 45.

5056

SCAN-WITH-LOGAND

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-logand operation combines source fields by performing bitwise logical AND
operations. If the scan subset for a selected processor is empty, then the unsigned integer
value —2!*" — 1 (all ones) is stored in the dest field for that processor. Note that this can

occur only when the inclusion argument is :exclusive.

506

SCAN-WITH-LOGIOR

SCAN-WITH-LOGIOR

The destination field in every selected processor receives the bitwise logical inclusive OR of
the source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-logior-1L dest, source, azis, len,
direction, tnclusion, smode, sbit
Operands dest The field ID of the destination field.
source The field ID of the source field.
azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

direction FEither :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Qverlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two bit fields are identical if they have the
same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
let g = geometry(current-up-set)
let S; = scan-subset(g, k, azis, direction, inclusion, smode, sbit)
if |Sk| = 0 then
dest[k] « 000...000

else

dest[k] « (mgs saurce{m])

where scan-subset is as defined on page 45.

507

SCAN-WITH-LOGIOR

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-logior operation combines source fields by performing bitwise logical in-
clusive OR operations. If the scan subset for a selected processor is empty, then the unsigned
integer value 0 (all zero bits) is stored in the dest field for that processor. Note that this
can occur only when the inclusion argument is :exclusive.

508

SCAN-WITH-LOGXOR

SCAN-WITH-LOGXOR

The destination field in every selected processor receives the bitwise logical exclusive OR of
the source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-logxor-1L dest, source, axzis, len,
direction, inclusion, smode, sbit
Operands dest The field ID of the destination field.
source The field ID of the source field.
axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two bit fields are identical if they have the
same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flagis 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let ¢ = geometry(current-vp-set)
let S = scan-subset(g, k, azis, direction, inclusion, smode, sbit)
if |Sk| = 0 then
dest[k] « 000...000

else

dest[k] — ((&5} source[m])

mES*

where scan-subset is as defined on page 45.

509

SCAN-WITH-LOGXOR

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-logxor operation combines source fields by performing bitwise logical ex-
clusive OR operations. If the scan subset for a selected processor is empty, then the unsigned
integer value 0 (all zero bits) is stored in the dest field for that processor. Note that this
can occur only when the inclusion argument is :exclusive.

510

SCAN-WITH-MAX

SCAN-WITH-F-MAX

The destination field in every selected processor receives the largest of the floating-point
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-f-max-1L dest, source, azis, s, e,
direction, inclusion, smode, sbit
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
azts An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbii field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
let S = scan-subset(g, k, azis, direction, inclusion, smode, sbit)
if |Sk| = 0 then
dest[k] — —oo

else

dest[k] « (glgs]: soume[m])

where scan-subset is as defined on page 45.

511

SCAN-WITH-MA

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-f-max operation combines source fields by performing an floating-point
maximum operation. If the scan subset for a selected processor is empty, then the floating-
point value —oco is stored in the dest field for that processor. Note that this can occur only
when the inclusion argument is :exclusive.

512

SCAN-WITH-MAX

SCAN-WITH-S-MAX

The destination field in every selected processor receives the largest of the signed integer
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-s-max-1L dest, source, azis, len,
direction, inclusion, smode, sbit
Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.
azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flagis 1.

Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
let Sy = scan-subset(g, k, azis, direction, inclusion, smode, sbit)
if |Si| = 0 then
dest[k] — —2'1

else

dest[k] — (max saurce[m})

meS

where scan-subset is as defined on page 45.

513

SCAN-WITH-MAX

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-s-max operation combines source fields by performing a signed integer
maximum operation. If the scan subset for a selected processor is empty, then the signed
integer value —2¢"~1 is stored in the dest field for that processor. Note that this can occur
only when the inclusion argument is :exclusive,

514

SCAN-WITH-MAX

SCAN-WITH-U-MAX

The destination field in every selected processor receives the largest of the unsigned integer
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-u-max-1L dest, source, azis, len,
direction, inclusion, smode, sbit
Operands dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.
azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length«.

direction Either :upward or :downward.

inclusion FEither :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

shit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Qverlap The fields source and sbhit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezrt-flagis 1.

Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
let Sp = scan-subset(g, k, azis, direction, inclusion, smode, sbit)

if |S%| = 0 then
dest[k] — 0
else

dest[k] — (max source[m])

mE S

where scan-subset is as defined on page 45.

515

SCAN-WITH-MAX

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM: scan-with-u-max operation combines source fields by performing an unsigned integer
maximum operation. If the scan subset for a selected processor is empty, then the unsigned
integer value 0 is stored in the dest field for that processor. Note that this can occur only
when the inclusion argument is :exclusive.

016

SCAN-WITH-MIN

SCAN-WITH-F-MIN

The destination field in every selected processor receives the smallest of the floating-point
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-f-min-1L dest, source, azis, s, e,
direction, inclusion, smode, sbit
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e 4 1.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. T'wo integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if contezt-flagk] = 1 then
let g = geometry(current-vp-set)
let Sj = scan-subset(g, k, azis, direction, inclusion, smode, sbit)

if || = 0 then
dest[k] «— +oo
else

dest[k] — (min source[m])

meSy

where scan-subset is as defined on page 45.

517

SCAN-WITH-MIN

See section 5.20 on page 42 for a general description of scan operations and the effect of the
axis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-f-min operation combines source fields by performing an floating-point
minimum operation. If the scan subset for a selected processor is empty, then the floating-
point value +co is stored in the dest field for that processor. Note that this can occur only
when the inclusion argument is :exclusive.

518

SCAN-WITH-MIN

SCAN-WITH-S-MIN

The destination field in every selected processor receives the smallest of the signed integer
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-s-min-1L dest, source, axis, len,
' direction, inclusion, smode, sbit
Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.
azxis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length#.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :sta;rt-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
let Si = scan-subset(g, k, azis, direction, inclusion, smode, sbit)
if | Sk| = 0 then
dest[k] — 271 _1

else

dest[k] — (min saurce[m])

meSy

where scan-subset is as defined on page 45.

519

SCAN-WITH-MIN

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-s-min operation combines source fields by performing a signed integer
minimum operation. If the scan subset for a selected processor is empty, then the signed
integer value 2"~ — 1 is stored in the dest field for that processor. Note that this can
occur only when the inclusion argument is :exclusive.

520

SCAN-WITH-MIN

SCAN-WITH-U-MIN

The destination field in every selected processor receives the smallest of the unsigned integer
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-u-min-1L dest, source, azis, len,
direction, inclusion, smode, sbit
Operands dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.
azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flagis 1.

Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
let Si = scan-subset(g, k, azis, direction, inclusion, smode, sbit)
if | S| = 0 then
dest[k] — glen..

else

dest[k] «— (m.in source[m])
meSy

where scan-subset is as defined on page 45.

521

SCAN-WITH-MIN

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-u-min operation combines source fields by performing an unsigned integer
minimum operation. If the scan subset for a selected processor is empty, then the unsigned
integer value 2%™ — 1 is stored in the dest field for that processor. Note that this can occur
only when the inclusion argument is :exclusive.

522

SCAN-WITH-MULTIPLY

SCAN-WITH-F-MULTIPLY

The destination field in every selected processor receives the product of the floating-point
source fields from processors below or above it in some ordering of the processors.

Formats CM:scan-with-f-multiply-1L dest, source, axis, s, e,
direction, tnclusion, smode, sbit
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

direction Either :upward or :downward.

inclusion Either :exclusive or :inclusive.

smode Either :none, :start-bit, or :segment-bit.

sbit The field ID of the segment bit or start bit (a one-bit field). If
smode is :none then this may be CM: *no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let S) = scan-subset(g, k, azis, direction, inclusion, smode, sbit)

if [Sk| = 0 then
dest[k] — 1
else

dest[k] — (I1 source[m])

meS;

where scan-subset is as defined on page 45.

523

SCAN-WITH-MULTIPLY

See section 5.20 on page 42 for a general description of scan operations and the effect of the
azxis, direction, inclusion, smode, and sbit operands.

The CM:scan-with-f-multiply operation combines source fields by performing floating-point
multiplication. If the scan subset for a selected processor is empty, then the floating-point
value 1.0 is stored in the dest field for that processor. Note that this can occur only when
the inclusion argument is :exclusive.

524

SEND

SEND

Sends a message from every selected processor to a specified destination processor. Each se-
lected processor may specify any processor as the destination, including itself. A destination
processor may receive messages even if it is not selected, and all the destination processors
may be in a vp set different from the VP set of the source processors. Messages are all
delivered to the same address within each receiving processor. If a processor receives more
than one message, then the message data received by that processor will be unpredictable.

Formats CM:send-1L dest, send-address, source, len, notify

Operands dest The field ID of the destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.
len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted to
the receiving processor, is stored into the dest field regardless of the context-
flag of the receiving processor. The notify bit may be altered in any processor
regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
let Sp = {m | m € current-vp-set A context-flaglm] = 1 A send-address[m] = k }
if |Sk| = 0 then
if notify[k] # CM: *no-field* then notify[k] — 0
else if | S| = 1 then
if notify[k] # CM:*no-field* then notify[k] «— 1
dest[k] « source[choice(S)]
else
if notify[k] # CM: *no-field* then notify[k] — 1
dest[k] — (undefined)

525

SEND

where the choice function arbitrarily but deterministically chooses an element
from a set.

For every selected processor p,, a message length bits long is sent from that processor to
the processor pg whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor ps. Note that, although the send-address operand is a
field in the current VP set, its value must specify a valid send address for dest, which may
belong to a different vp set.

The CM:send operation combines multiple incoming messages in an unpredictable manner.
This operation may be used when the programmer can guarantee that no processor will
receive more than one message. Using this operation when it is appropriate may speed
message delivery. The destination area need not be prepared.

526

SEND-ASET32-ADD

SEND-ASET32-U-ADD

Sends a message from every selected processor to a specified destination processor and stores
it there, as if by aset32, in an array. Each selected processor may specify any processor as
the destination, including itself. A destination processor may receive messages even if it is
not selected. All incoming messages are combined with the destination array element using
unsigned integer addition.

Formats CM:send-aset32-u-add-2L array, send-address, source, indez,
slen, indez-len, indez-limat

Operands array The field ID of the destination array field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.

inder The field ID of the unsigned integer index into the array field. This
is used as a per-processor index into array. It specifies portions of
the array memory area in increments of slen.

slen The length of the source field. This must be a multiple of 32.

indez-len The length of the indez field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez. This is taken as the extent
of the destination array.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the data, once transmitted to the
receiving processor, is combined with the field indicated by array regardless
of the contezt-flag of the receiving processor.

Definition For every virtual processor k in the current-vp-set do
let Sx = {m | m € current-vp-set A contezt-flaglm| = 1 A send-address[m] = k }
for every processor k/ in Sy do
if indez[k'] < indez-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))

527

SEND-ASET32-ADD

let m = '_%J mod 32
let ¢ = indez[k']
for all j such that 0 < j < dlen do
let tempy(j) = array[k — m x r + (j mod 32) x #](32 x (i + L“s’%J))
let sum, = tempy, + source[k’]
for all j such that 0 < j < dlen do
arraylk — m x 7 + (7 mod 32) x (32 x (i + lé%)) — sumy(j)
else
(error)

For every selected processor p,, a message length bits long is sent from that processor to
the processor pg whose send address is stored at location send-address in the memory of
processor p,;. The message is taken from the source field within processor ps and is stored
into an array element within processor p;. Note that in each case the array element to be
modified in processor p; is determined by the value of indez within p,, not the value within

Pd.

The CM:send-aset32-u-add operation combines incoming messages with unsigned integer
addition. To receive the sum of only the messages, the destination array should first be
cleared in all processors that might receive a message.

528

SEND-ASET32-LOGIOR

SEND-ASET32-LOGIOR

Sends a message from every selected processor to a specified destination processor and stores
it there, as if by aset32, in an array. Each selected processor may specify any processor as
the destination, including itself. A destination processor may receive messages even if it is
not selected. All incoming messages are combined with the destination array element using
bitwise logical inclusive OR.

Formats CM:send-aset32-logior-2L array, send-address, source, indez,
slen, indez-len, indez-limit

Operands array The field ID of the destination array field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.

index The field ID of the unsigned integer index into the array field. This
is used as a per-processor index into array. It specifies portions of
the array memory area in increments of slen.

slen The length of the source field. This must be a multiple of 32.

indez-len 'The length of the indez field. This must be non-negative and no
greater than CM:*maximum-integer-lengthx.

indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez. This is taken as the extent
of the destination array.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the data, once transmitted to the
receiving processor, is combined with the field indicated by array regardless
of the contezi-flag of the receiving processor.

Definition For every virtual processor k in the current-vp-set do
let Si = {m | m € current-vp-set A context-flaglm] = 1 A send-address(m] = k }
for every processor k' in Sj do
if indez[k’] < indez-limit then
let » = geometry-total-vp-ratio(geometry(current-vp-set))

529

SEND-ASET32-LOGIOR

let m = I_%J mod 32
let i = indez[k']
for all j such that 0 < j < dlen do
let g=k —m x 7+ (j mod 32) x r
let b=32 x (i + |])
array(g)(b) — array(q](b) V source[k')(;)
else
(error)

For every selected processor p,, a message length bits long is sent from that processor to
the processor p; whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into an array element within processor p;. Note that in each case the array element to be
modified in processor py is determined by the value of indez within Ps, not the value within

Pd-

The CM:send-aset32-logior operation combines incoming messages with a bitwise logical in-
clusive Or operation. To receive the logical inclusive oR of only the messages, the destination
array should first be cleared in all processors that might receive a message.

530

SEND-ASET32-OVERWRITE

SEND-ASET32-OVERWRITE

Sends a message from every selected processor to a specified destination processor and stores
it there, as if by aset32, in an array. Each selected processor may specify any processor as
the destination, including itself. A destination processor may receive messages even if it is
not selected. If a processor receives more than one message destinated for the same array
element, then one is stored in that array element and the rest are discarded.

Formats CM:send-aset32-overwrite-2L array, send-address, source, indez,
slen, indez-len, indez-limit

Operands array The field ID of the destination array field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.

indez The field ID of the unsigned integer index into the array field. This
is used as a per-processor index into array. It specifies portions of
the array memory area in increments of slen.

slen The length of the source field. This must be a multiple of 32.

indez-len The length of the index field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez. This is taken as the extent
of the destination array.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the data, once transmitted to the
receiving processor, is combined with the field indicated by array regardless
of the contezt-flag of the receiving processor.

Definition For every virtual processor k in the current-vp-set do
let Sp = {m | m € current-vp-set A context-flagim] = 1 A send-address[m] = k}
let k' = choice(Sk)
if indez[k'] < indez-limit then
let » = geometry-total-vp-ratio(geometry(current-vp-set))

531

SEND-ASET32-OVERWRITE

let m = l%J mod 32
let ¢ = tndez[k’)
for all j such that 0 < j < dlen do
arraylk — m x r + (j mod 32) x 7)(32 x (i + l:,,%‘])) «— source[k'](j)
else
(error)

For every selected processor p,, a message length bits long is sent from that processor to
the processor p; whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor ps and is stored
into an array element within processor p;. Note that in each case the array element to be
modified in processor py is determined by the value of indez within Psy not the value within
Pa-

The CM:send-aset32-overwrite operation will store one of the messages sent to a particular
array element, discarding all other messages as well as the original contents of that array
element in the receiving processor.

532

SEND-TO-NEWS

SEND-TO-NEWS

Each processor sends a message to a neighboring processor along a specified NEWS axis.

Formats CM:send-to-news-1L dest, source, azis, direction, len
CM:send-to-news-always-1L dest, source, azis, direction, len

Operands dest The field ID of the destination field.
source The field ID of the source field.
azis An unsigned integer immediate operand to be used as the number

of a NEWS axis.
direction FEither :upward or :downward.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional, but whether data is copied depends only on the
context-flag of the originating processor; the data, once transmitted to the
receiving processor, is stored into the field indicated by dest regardless of the
context-flag of the receiving processor.

Note that in the conditional case the storing of data depends only on the
contezt-flag of the processor sending the data, not on the contezt-flag of the
processor receiving the data.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
let g = geometry(current-vp-set)
dest[news-neighbor(g, k, azis, direction)] « source[k]

The source field in each processor is stored into the dest field of that processor’s neighbor
along the NEWS axis specified by azis in the direction specified by direction.

If direction is :upward then each processor stores data into the neighbor whose NEWS coor-
dinate is one greater, with the processor whose coordinate is greatest storing data into the
processor whose coordinate is zero.

If direction is :downward then each processor stores data into the neighbor whose NEWS
coordinate is one less, with the processor whose coordinate is zero storing data into the
processor whose coordinate is greatest.

533

SEND-TO-QUEUE32

SEND-TO-QUEUE32

Sends a message from every selected processor to a specified destination processor and stores
it there, as if by aset32, in a queue. Each selected processor may specify any processor as
the destination, including itself. A destination processor may receive messages even if it is
not selected, and all the destination processors may be in a VP set different from the vp set
of the source processors.

Formats CM:send-to-queue32-1L dest, send-address, source, slen, indez-limit

Operands dest The field ID of the queue field. The length of this field must
accommodate 32 bits for the queue.count subfield, plus indez —
limit X slen bits for the queue.elements subfield, where indez-limit
is the number of queue elements in each processor.

send address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.

slen The length of the source field. This is also the length of each
queue element. It is currently restricted to 32 bits.

indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for a zero-based index into queue.elements.
The value of this argument must be at least 1 and should never
exceed the number of elements that can be stored in the queue.

Overlap The fields send-address and source may overlap in any manner. No overlap
with the dest field is allowed.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the data, once transmitted to the
receiving processor, is queued in the field indicated by dest regardless of the
contezt-flag of the receiving processor.

Definition For every virtual processor k in the current-vp-set do
let S) = {m | m € current-vp-set A conteat-flagim) = 1 A send-addressim] = k }
let T}, be a sub-set of S; where |T}| = min(| S| + queue.count, indez-limit)
for i from gueue.count to queue.count + |T%| = 1 do
queue.elements(i] — Ty [i]
queue.count « queue.count + ||

Note that if (|Sk| + queue.count > indez-limit) then there is some choice in
picking the elements of Tj,.

534

SEND-TO-QUEUE32

The destination field is treated as two subfields: queue.count and queue.elements.
Queue.count is 32 bits long and records the number of enqueued messages. Queue.elements
stores the enqueued messages; it is formatted as a slicewise array (accessed using aref32 and
aset32), and starts at an offset of 32 bits from the start of the destination field. Its length
is a multiple of the message length: at least indez-limit X slen and possibly greater.

The indez-limit argument specifies the maximum number of elements that any processor’s
queue.elements subfield may accumulate. If any processor receives more messages than this
specified number, the queue overflows and messages are lost. If a queue.elements subfield
overflows, the queue.count subfield for that processor nonetheless accurately reflects the
number of messages received.

For any given communication pattern, both the order of message queueing and the selection
of messages preserved or discarded in case of queue overflow are deterministic. That is, the
order and selection of enqueued messages can be predictably reproduced from one invocation
to the next.

This determinism is especially important for applications that use successive CM:send-to-
queue32-1L calls to send large data structures by breaking up them up into chunks of length
slen. By holding the send-address argument constant, such applications can send successive
chunks of slen bits each to corresponding queues.

To prepare an empty queue for a CM:send-to-queue-1L instruction, the gqueue.count subfield
should be set to zero. From Lisp/Paris, this is done by executing the following code in the
destination context:

(let ((zeros (allocate-stack-field 32))
(context-hold (allocate-stack-field 1)))
(cm:move-constant-always zeros 0 32)
(cm:store-context context-hold)
(cm:set-context)

(cm:aset32-2L zeros queue zeros 32 32 1)
(cm:load-context context-hold)

The CM:send-to-queue32-1L operation is conditional on the context of the source field; the
set of queues that will receive messages is independent of the currently active set. To zero
the queue.count subfield in only those queues that are to receive messages, execute the
following code in the source context:

(let ((zeros (allocate-stack-field 32)))
(cm:move-constant-always zeros 0 32)
(cm:send-aset32-overwrite-2L queue dest zeros zeros 32 32 1)

)

535

SEND-TO-QUEUE32

After the CM:send-to-queue32 operation, the local count can be retrieved by executing the
following code in the destination context:

(let ((zeros (allocate-stack-field 32)))
(count-field (allocate-stack-field 32))
)
(cm:mova-constant—always zeros 0 32)
(cm:aref32-2L count-field queue zeros 32 32 1)
)

The i(th) message can be retrieved from queue.elements by executing the following code in
the destination context:

(let ((index (allocate-stack-field 32))
(data-field (allocate-stack-field message-length))
)
(cm:move-constant-always index i 32)
(cm:aref32-2L data-field (+ 32 queue) index len 32 queue-size)

Note that queue.elements is offset from the queue field by 32 bits.

An artificially small queue size may be used by passing CM:send-to-queue-1L an index-limit
value that is less than the number of elements of length slen that could be stored in the
queuve.elements portion of the destination field. If this is done, the queues will be partially
filled. However, the correct queue size should always be used as the index-limit argument
to CM:aref32-2L when reading elements from the queue.

536

SEND-WITH-ADD

SEND-WITH-C-ADD

Sends a message from every selected processor to a destination processor. Each selected
processor may specify any processor as the destination, including itself. A destination
processor may receive messages even if not selected, and all the destination processors may
be in a vp set different from the VP set of the source processors. Messages are all delivered
to the same address within each receiving processor. All incoming messages are combined
with the destination field using complex addition.

Formats

Operands

Qverlap

Context

CM:send-with-c-add-1L dest, send-address, source, s, e, notify

dest The field ID of the complex destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the complex source field.

s € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

notify The field ID of the notification bit (a one-bit field).

The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the contezt-flag.

Definition

Let P = {m |0 < m < CM:*user-send-address-limit* }
For every virtual processor k in vp-set(dest) do
let Sk = {m | m € P A contezt-flaglm] = 1 A send-address[m| = k}
if |5k| = 0 then
if notify[k] # CM:*no-field* then notify(k] — 0
else
if notify[k] CM:#*no-field* then notify(k] « 1

dest(k] «— dest[k] + | > soume[m])
meS,

537

For every selected processor p,, a message length bits long is sent from that processor to the
processor pg whose absolute send address is stored at location send-address in the mermory
of processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor p,.

The CM:send-with-c-add operation adds incoming messages to the dest field, treating all
quantities as complex numbers. To receive the sum of only the messages, the destination
area should initially be set to zero in all processors that might receive a message.

538

SEND-WITH-ADD

SEND-WITH-F-ADD

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using floating-point addition.

Formats CM:send-with-f-add-1L dest, send-address, source, s, e, notify

Operands dest The field ID of the floating-point destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the floating-point source field.

s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field# if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
let S = {m | m € current-vp-set A context-flagm] = 1 A send-address[m] = k }

if | S| = 0 then
if notify[k] # CM: *no-field* then notify[k] «— 0
else

if notify(k] # CM:*no-field* then notify[k] « 1

desi[k] «— dest[k] + (mgs soume[m])

539

SEND-WITH-ADD

For every selected processor p,, a message length bits long is sent from that processor to
the processor p; whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor p;.

The CM:send-with-f-add operation adds incoming messages together with the dest field as
floating-point numbers. To receive the sum of only the messages, the destination area should
first be set to zero in all processors that might receive a message.

540

SEND-WITH-ADD

SEND-WITH-S-ADD

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using signed integer addition.

Formats CM:send-with-s-add-1L dest, send-address, source, len, notify

Operands dest The field ID of the signed integer destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the signed integer source field.
len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
let Sp = {m | m € current-vp-set A context-flagim] = 1 A send-address[m] = k }

if | Sk| = 0 then
if notify[k] # CM: *no-field* then notify[k] « 0
else

if notify(k] CM: *no-field* then notify[k] « 1
dest[k] + dest[k] + (¥ source[m])

meSk

041

END-WITH-ADD

i

For every selected processor p,, a message length bits long is sent from that processor to
the processor p; whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor ps and is stored
into the dest field within processor py.

The CM:send-with-s-add operation adds incoming messages into the dest field as signed
integers. Carry-out and arithmetic overflow are not detected. To receive the sum of only
the messages, the destination area should first be cleared in all processors that might receive
a message.

542

SEND-WITH-ADD

SEND-WITH-U-ADD

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using unsigned integer addition.

Formats CM:send-with-u-add-1L dest, send-address, source, len, notify

Operands dest The field ID of the unsigned integer destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the unsigned integer source field.
len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
contert-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
let S = {m | m € current-vp-set A contezt-flaglm] = 1 A send-addressim] = k }

if | S| = 0 then
if notify[k] # CM:*no-field* then notify(k] — 0
else

if notify[k] # CM:*no-field* then notify[k] « 1

dest[k] « dest[k] + (mé:s som‘ce[m])

543

SEND-WITH-ADD

For every selected processor p,, a message length bits long is sent from that processor to
the processor p; whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor p,.

The CM:send-with-u-add operation adds incoming messages into the dest field as unsigned
integers. Carry-out and arithmetic overflow are not detected. To receive the sum of only
the messages, the destination area should first be cleared in all processors that might receive

a message.

544

SEND-WITH-LOGAN

SEND-WITH-LOGAND

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using bitwise logical AND.

Formats CM:send-with-logand-1L dest, send-address, source, len, notify

Operands dest The field ID of the destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.
len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM: *no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
contezt-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let S = {m | m € current-vp-set A contezt-flaglm] = 1 A send-address(m] = k }

if |Sk| = 0 then
if notify[k] # CM:*no-field* then notify[k] «— 0
else

if notify[k] # CM: *no-field* then notify[k] «— 1

dest[k] — dest[k] N (A source[m])

mESE

545

SEND-WITH-LOGAND

For every selected processor p,, a message length bits long is sent from that processor to
the processor p; whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor pj.

The CM:send-with-logand operation will combine all messages and the original contents of
the destination field with a bitwise logical AND operation. To receive the logical AND of
only the messages, the destination area should first be set to all-ones in all processors that
might receive a message.

546

SEND-WITH-LOGIOR

SEND-WITH-LOGIOR

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using bitwise logical inclusive OR.

Formats CM:send-with-logior-1L dest, send-address, source, len, notify

Operands dest The field ID of the destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.
len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
contexi-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the contexzi-flag.

Definition For every virtual processor k in the current-up-set do
let Sp = {m | m € current-vp-set A context-flaglm] = 1 A send-address|m] = k }

if | S| = 0 then
if notify(k] # CM:*no-field* then notify(k] «— 0
else

if notify[k] # CM: ¥no-field* then notify(k] — 1

dest[k] — dest[k]V | V sou?‘ce[m])
meSy

547

SEND-WITH-LOGIOR

For every selected processor p,, a message length bits long is sent from that processor to
the processor pg whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor py.

The CM: send-with-logior operation combines incoming messages with a bitwise logical inclu-
sive OR operation. To receive the logical inclusive OR of only the messages, the destination
area should first be cleared in all processors that might receive a message.

548

SEND-WITH-LOGXOR

SEND-WITH-LOGXOR

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using bitwise logical exclusive OR.

Formats CM:send-with-logxor-1L dest, send-address, source, len, notify

Operands dest The field ID of the destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.
len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Qverlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
let Sy = {m | m € current-up-set A context-flaglm] = 1 A send-addressm] = k }

if |S5k| = 0 then
if notify[k] # CM: *no-field* then notify(k] — 0
else

if notify[k] # CM: *no-field* then notify(k] « 1

dest[k] — dest[k] @ (o] soufce[m])
meESy

549

SEND-WITH-LOGXOR

For every selected processor p,, a message length bits long is sent from that processor to
the processor p; whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor p,.

The CM: send-with-logxor operation is similar but combines incoming messages with a bitwise
logical EXCLUSIVE OR operation. To receive the logical EXCLUSIVE OR of only the messages,
the destination area should first be cleared in all processors that might receive a message.

550

SEND-WITH-MAX

SEND-WITH-F-MAX

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using a floating-point maximum operation.

Formats CM:send-with-f-max-1L dest, send-address, source, s, e, notify

Operands dest The field ID of the floating-point destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the floating-point source field.

5 e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
contezt-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the contezi-flag.

Definition For every virtual processor k in the current-vp-set do
let S, = {m | m € current-vp-set A context-flaglm] = 1 A send-address[m] = k }

if |Sk| = 0 then
if notify[k] Z CM:*no-field* then notify(k] « 0
else

if notify[k] # CM:*no-field* then notify[k] « 1
dest[k] «— max (dest[k], max source[m])
meSy

551

SEND-WITH-MAX

For every selected processor p,, a message length bits long is sent from that processor to
the processor ps whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor p,.

The CM:send-with-f-max operation combines incoming messages with the dest field using
floating-point maximum operations. The test-flagis not affected by the maximum operation.

To receive the maximum of only the messages, the destination field should first be set to
the smallest possible value: —oo.

552

SEND-WITH-MAX

SEND-WITH-S-MAX

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using a signed integer maximum operation.

Formats CM:send-with-s-max-1L dest, send-address, source, len, notify

Operands dest The field ID of the signed integer destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the signed integer source field.
len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM: *no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
let S, = {m | m € current-vp-set A contezt-flaglm] = 1 A send-address[m] = k }

if |Sk| = 0 then
if notify(k] # CM: *no-field* then notify(k] « 0
else

if notify(k] # CM:*no-field* then notify[k] « 1

dest[k] — max (dest[k], max source[m])
mes;

For every selected processor p,, a message length bits long is sent from that processor to
the processor py; whose send address is stored at location send-address in the memory of

553

SEND-WITH-MAX

processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor pq.

The CM:send-with-s-max operation combines incoming messages with the dest field using
signed integer maximum operations. The fest-flagis not affected by the maximum operation.

To receive the maximum of only the messages, the destination field should first be set to
athe smallest possible value: —2/en—1,

554

SEND-WITH-MAX

SEND-WITH-U-MAX

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using an unsigned integer maximum operation.

Formats CM:send-with-u-max-1L dest, send-address, source, len, notify

Operands dest The field ID of the unsigned integer destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the unsigned integer source field.
len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the contexi-flag.

Definition For every virtual processor k in the current-vp-set do
let S, = {m | m € current-vp-set A context-flagim] = 1 A send-address[m| = k }
if |Sk| = 0 then
if notify[k] # CM:*no-field* then notify[k] « 0
else
if notify[k] # CM:*no-field* then notify[k] « 1

dest[k] « max (dest[k], max source[m])
meSy,

For every selected processor p,, a message length bits long is sent from that processor to
the processor pg whose send address is stored at location send-address in the memory of

555

SEND-WITH-MAX

processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor py.

The CM:send-with-u-max operation combines incoming messages with the dest field using
unsigned integer maximum operations. The test-flag is not affected by the maximum oper-
ation.

To receive the maximum of only the messages, the destination field should first be set to
the smallest possible value: zero.

556

SEND-WITH-MIN

SEND-WITH-F-MIN

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the vp set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using a floating-point minimum operation.

Formats CM:send-with-f-min-1L dest, send-address, source, s, e, notify

Operands dest The field ID of the floating-point destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the floating-point source field.

8 e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
context-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
let Sp = {m | m € current-vp-set A contezt-flaglm] = 1 A send-addressm] =k }

if |Sk| = 0 then
if notify[k] # CM: ¥no-field* then notify[k] — 0
else

if notify[k] # CM: *no-field* then notify(k] — 1

dest[k] «— min (dest[k], me.lgx source[m])
mESy

557

SEND-WITH-MIN

For every selected processor p,, a message length bits long is sent from that processor to
the processor p; whose send address is stored at location send-address in the memory of
processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor p,.

The CM:send-with-f-min operation combines incoming messages with the dest field using
floating-point minimum operations. The test-flag is not affected by the minimum operation.

To receive the minimum of only the messages, the destination field should first be set to
the largest value possible: +oo0.

558

SEND-WITH-MIN

SEND-WITH-S-MIN

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the vp set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using a signed integer minimum operation.

Formats CM:send-with-s-min-1L dest, send-address, source, len, notify

Operands dest The field ID of the signed integer destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the signed integer source field.
len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the contezi-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
contezt-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
let S, = {m | m € current-vp-set A contezi-flagim] = 1 A send-address(m] = k }
if | S| = 0 then
if notify[k] # CM: *no-field* then notify[k] « 0
else
if notify(k] # CM:*no-field* then notifyk] « 1

dest[k] « min | dest[k], mélgl source[m])
meSg

For every selected processor p,, a message length bits long is sent from that processor to
the processor py whose send address is stored at location send-address in the memory of

559

SEND-WITH-MIN

processor p,. The message is taken from the source field within processor p, and is stored
into the dest field within processor pgy.

The CM:send-with-s-min operation combines incoming messages with the dest field using
signed integer minimum operations. The test-flag is not affected by the minimum operation.

To receive the minimum of only the messages, the destination field should first be set to
the largest possible value: 271 — 1,

560

SEND-WITH-MIN

SEND-WITH-U-MIN

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the dest field using an unsigned integer minimum operation.

Formats CM:send-with-u-min-1L dest, send-address, source, len, notify

Operands dest The field ID of the unsigned integer destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the unsigned integer source field.
len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM: *no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
contezt-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-up-set do
let S = {m | m € current-vp-set A contezt-flaglm] = 1 A send-addressim| = k }

if | S| = 0 then
if notify[k] # CM:*no-field* then notify[k] « 0
else

if notify[k] £ CM:*no-field* then notify[k] « 1

dest[k) « min | dest[k], min source[m])
MESE

For every selected processor p,, a message length bits long is sent from that processor to
the processor pg whose send address is stored at location send-address in the memory of

561

SEND-WITH-MIN
processor p,. The message is taken from the source field within processor ps and is stored
into the dest field within processor p;.

The CM:send-with-u-min operation combines incoming messages with the dest field using
unsigned integer minimum operations. The test-flag is not affected by the minimum oper-
ation.

To receive the minimum of only the messages, the destination field should first be set to
the largest possible value: 2™ — 1,

562

SEND-WITH-OVERWRITE

SEND-WITH-OVERWRITE

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des-
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. If a processor receives
more than one message, then one is delivered and the rest are discarded.

Formats CM:send-with-overwrite-1L dest, send-address, source, len, notify

Operands dest The field ID of the destination field.

send-address The field ID of the send address field. For each processor,
this indicates to which processor a message is sent.

source The field ID of the source field.
len The length of the dest and source fields.

notify The field ID of the notification bit (a one-bit field). This argu-
ment may be CM:*no-field* if no notification of message receipt is
desired.

Overlap The send-address and source may overlap in any manner. Similarly, the send-
address and dest may overlap in any manner. However, it is forbidden for the
source and dest to overlap.

Context This operation is conditional, but whether a message is sent depends only on
the conteat-flag of the originating processor; the message, once transmitted to
the receiving processor, is stored into the dest field regardless of the contezt-
flag of the receiving processor. The notify bit may be altered in any processor
regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
let S = {m | m € current-vp-set A context-flaglm] = 1 A send-address[m] = k}

if | S%| = 0 then
if notify[k] # CM: *no-field* then notify(k] « 0
else

if notify[k] # CM: *no-field* then notify(k] « 1
dest[k] « source[choice(S})]

For every selected processor p,, a message length bits long is sent from that processor to
the processor pg; whose send address is stored at location send-address in the memory of

563

SEND-WITH-OVERWRITE

processor p,. The message is taken from the source field within processor P, and is stored
into the dest field within processor py.

The CM:send-with-overwrite operation will store one of the messages sent, discarding all
other messages as well as the original contents of the dest field in the receiving processor.

564

SET-BIT

SET-BIT

Sets a specified memory bit.

Formats CM:set-bit dest
CM:set-bit-always dest

Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contect-flaglk] = 1) then
dest[k] — 1

The destination memory bit is set within each selected processor.

565

SET-CONTEXT

SET-CONTEXT

Unconditionally makes all processors active.

Formats CM:set-context

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
context-flaglk] — 1

Within each processor, the context bit for that processor is unconditionally set.

566

SET-FIELD-ALIAS-VP-SET

SET-FIELD-ALIAS-VP-SET

Sets the VP set of the specified alias fieldiD to the specified VP set.

Formats CM:set-field-alias-vp-set alias-id, vp-set

Operands alias-id An alias field ID. This must be an alias fieldip returned by
CM:make-field-alias. This alias id need not be in the current VP
set,

vp-set A VP set ID. This need not be the current VP set.

Context This operation is unconditional. It does not depend on the contert- flag.

This function sets the VP set of alias-id to vp-set.

An error is signaled if the physical length of the aliased field is not exactly divisible by the
vP ratio of vp-set. (See the definitions of CM:make-field-alias for more information about

the physical length of an aliased field.)

567

SET-SAFETY-MOD

SET-SAFETY-MODE

Formats CM:set-safety-mode safety-mode

Operands safety-mode An unsigned integer, the safety level. Currently only the
values 0 and 1 are meaningful.

Context This operation is unconditional. It does not depend on the context-flag.

The safety mode is set to the specified value. A non-zero value indicates that the Paris
interface should perform various extra error checks and consistency checks that may be
helpful in detecting bugs in user programs. Of course, the price of these error checks is
reduced execution speed.

568

SET-SYSTEM-LEDS-MODE

SET-SYSTEM-LEDS-MODE

Formats CM:set-system-leds-mode leds-maode

Operands leds-mode Either :leds-off, :leds-on, :leds-throb, :leds-diagnostics, :leds-
perfmon, :leds-sync, or :leds-blink-sync.

Context This operation is unconditional. It does not depend on the contezt-flag.

The lights on the front and back of the Connection Machine system cabinet can be controlled
in a variety of ways. The cm:set-system-leds-mode operation selects what information
will be displayed in the lights. If the specified leds-mode is :leds-off, then all the lights are
turned off, and thereafter the user operations cm:latch-leds and cm:latch-leds-always
may be used to control the lights. Other values for leds-mode select one of the system-
supplied display modes. (The operations cm:1latch-leds and cm:latch-leds-always may
still be used when in a system-supplied display mode, but the user-specified pattern is
unlikely to persist as it may be immediately altered by the system, depending on the mode.)

The names of the possible modes shown above are for the C/Paris and Fortran/Paris in-
terfaces. Through an accident of history, the names for the leds modes are different in the
Lisp/Paris interface:

C and Fortran Lisp

CM_leds_off nil

CM_leds_on t

CM_leds_throb :throb
CM_leds_diagnostics :diagnostics
CM_leds_perfmon : performance-monitor
CM_leds_sync :synch

CM_leds_blink_sync :blink-and-synch

Clest la vie,

569

SET-VP-SET

SET-VP-SET

Declares a specified VP set to be current.

Formats CM:set-vp-set vp-set-id
Operands wup-set-id A VP set ID.

Context ~ This operation is unconditional. It does not depend on the contezt-flag.

Definition current-vp-set — vp-set-id

The VP set specified by the vp-set-id becomes the current VP set. Most Paris operations
implicitly operate within the virtual processors of the current VP set.

570

SET-VP-SET-GEOMETRY

SET-VP-SET-GEOMETRY

Alters the geometry of an existing VP set.

Formats CM:set-vp-set-geometry vp-set-id, geometry-id

Operands wvp-set-id A VP set ID.
geometry-id A geometry ID.

Context This operation is unconditional. It does not depend on the context-flag.

The VP set specified by the vp-set-id is altered so that its geometry is that specified by-the
geometry-id. The new geometry must have the same total number of elements (product of
axis lengths) as the old geometry.

571

ET-flag

SET-flag

Sets a specified flag bit.

Formats CM:set-test
CM:set-overflow

Context This operation is conditional.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
flag(k] < 1
where flag is test-flag or overflow-flag, as appropriate.

Within each processor, the indicated flag for that processor is set.

572

SHIFT

S-S-SHIFT

Shifts a signed integer by an amount specified by a signed integer.

Formats CM:s-s-shift-2-2L dest/sourcel, source2, dlen, slen2
CM;s-s-shift-constant-3-2L dest, sourcel, source2-value, dlen, slenl

Operands dest The field ID of the signed integer destination field.

sourcel The field ID of the signed integer first source field. This is the
quantity to be shifted.

source?2 The field ID of the signed integer second source field. This is the
shift distance (positive for a left shift, negative for a right shift).

source2-value A signed integer immediate operand to be used as the second
source. The same shift distance is applied to each source! value.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-lengthx*.

slen?2 For CM:s-s-shift-2-2L, the length of the source?2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*,

slenl For CM:s-s-shift-constant-3-2L, the length of the source! field. This
must be no smaller than 2 but no greater than CM:*maximum-
integer-length*.

Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
dest[k] — lggwcej [k] x Qmurcez[k]J

if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] — 0

573

SHIFT

The operand sourcel is shifted by the number of bit positions specified by source2, where
a positive shift distance indicates a left shift (that is, a shift toward more significant bit
positions) and a negative shift distance indicates a right shift (that is, a shift toward less
significant bit positions). A left shift introduces zero bits into the vacated (least significant)
bit positions; a right shift introduces copies of the sign bit into the vacated (most significant)
bit positions. This operation is sometimes called an arithmetic shift.

The result is stored into the memory field dest. The various operand formats allow the
second source operand to be either a memory field or a constant. In the non-constant
version the destination field initially contains one source operand.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by dlen.

The overflow-flag may be altered by these operations. If overflow occurs, then the destina-
tion field will contain as many of the low-order bits of the true result as will fit.

574

SHIFT

U-S-SHIFT

Shifts an unsigned integer by an amount specified by a signed integer.

Formats

Operands

Overlap

Flags

Context

CM:u-s-shift-2-2L dest/sourcel, source2, dlen, slen2
CM:u-s-shift-constant-3-2L dest, sourcel, source2-value, dlen, sleni

dest The field ID of the unsigned integer destination field.

sourcel The field ID of the unsigned integer first source field. This is the
quantity to be shifted.

source2 The field ID of the signed integer second source field. This is the
shift distance (positive for a left shift, negative for a right shift.)

source2-value A signed integer immediate operand to be used as the second
source. The same shift distance is applied to each source! value.

dlen The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

slen2 For CM:u-s-shift-2-2L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

slenl For CM: u-s-shift-constant-3-2L, the length of the source1 field. This
must be non-negative and no greater than CM: *maximum-integer-
lengthx,

The fields sourcel and source2 may overlap in any manner. However, the
source2 field must not overlap the dest field, and the field sourcel must be ei-
ther disjoint from or identical to the dest field. Two integer fields are identical
if they have the same address and the same length.

overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] « lsourcel’{k] X 2""‘"“2["”
if {overflow occurred in processor k) then overflow-flaglk] + 1

else overflow-flaglk] — 0

575

SHIFT

The operand sourcel is shifted by the number of bit positions specified by source2, where
a positive shift distance indicates a left shift (that is, a shift toward more significant bit
positions) and a negative shift distance indicates a right shift (that is, a shift toward less sig-
nificant bit positions). Zero-valued bits are introduced into the vacated bit positions (least
significant for a left shift, most significant for a right shift). This operation is sometimes
called a logical shift.

The result is stored into the memory field dest. The various operand formats allow the
second source operand to be either a memory field or a constant. In the non-constant
version, the destination field initially contains one source operand.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by dlen.

The overflow-flag may be altered by these operations. If overflow occurs, then the destina-
tion field will contain as many of the low-order bits of the true result as will fit.

576

SIGNUM

C-C-SIGNUM

The signum of the complex source field is stored in the complex destination field.

Formats CM:c-c-signum-1-1L dest/source, s, e
CM:c-c-signum-2-1L dest, source, s, €
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
s € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e 4 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] «— signum(source(k])

The signum of a complex number is a complex number of the same phase but with unit
magnitude, unless the numer is a complex zero, in which case the result is a complex zero.

577

SIGNUM

F-F-SIGNUM

Determines whether the floating-point source field is negative, minus zero, plus zero, or
positive and places the value -1.0, +0.0, 0.0, or 1.0 in the destination field accordingly.

Formats CM:f-f-signum-1-1L dest/source, s, e
CM:f-f-signum-2-1L dest, source, s, e
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.

s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context ~ This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if source[k] < 0 then dest[k] — —1.0
else if source(k] > 0 then dest[k] — 1.0
else dest(k] «— source[k]

The signum function of the source operand is placed in the dest operand. The result is -1 0
-0.0, +0.0, or 1.0 thus indicating whether the source value is negative, minus zero, plus
zero, or positive, respectively. If the source operand is a NaN, then it is copied unchanged.

578

SIGNUM

S-F-SIGNUM

Determines whether the floating-point source field is negative, zero, or positive and places
the value -1, 0, or 1 in the destination field accordingly.

Formats CM:s-f-signum-2-2L dest, source, dlen, s, e

Operands dest The field ID of the signed integer destination field.
source The field ID of the floating-point source field.

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

s, € The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Qverlap The fields dest and source must not overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contexzt-flaglk] = 1 then
if source(k] < 0 then dest[k] — -1
else if source(k] > 0 then dest[k] « 1
else dest[k] — 0

The signum function of the source operand is placed in the dest operand. The result is -1,
0, or 1 according to whether the source value is negative (but non-zero), zero (+0 or —0),
or positive (but non-zero), respectively.

579

SIGNUM

S-S-SIGNUM

Determines whether the signed integer source field is negative, zero, or positive and places
the value -1, 0, or 1 in the destination field accordingly.

Formats CM:s-s-signum-1-1L dest/source, len
CM:s-s-signum-2-1L dest, source, len
CM:s-s-signum-2-2L dest, source, dlen, slen

Operands dest
source

len

dlen

slen

The field ID of the signed integer destination field.
The field ID of the signed integer source field.

The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

The length of the dest field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-length*.

The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same

length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
if source[k] < 0 then dest[k] «— —1
else if source[k] > 0 then dest[k] — 1
else dest[k] — 0

The signum function of the source operand is placed in the dest operand. The result is -1,
0, or 1 according to whether the source value is negative, zero, or positive, respectively.

580

SIN

C-SIN

The sine of the complex source field is placed in the complex destination field.

Formats CM:c-sin-1-1L dest/source, s, e
CM:c-sin-2-1L dest, source, s, €
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.

s e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-up-set do
if contezt-flaglk] = 1 then
dest[k] « sin source[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1

The sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23 and e = 8 or s = 52 and e = 11.

581

SIN

F-SIN

Calculates the floating-point sine of the source field values and stores the result in the
floating-point destination field.

Formats CM:f-sin-1-1L dest/source, s, e
CM:f-sin-2-1L dest, source, s, e
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap ~ The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context ~ This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] «— sin source[k|

The sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23and e =8 or s = 52 and e = 11.

582

B R e R

C-SINH

The hyperbolic sine of the complex source field is placed in the complex destination field.

Formats CM:c-sinh-1-1L dest/source, s, e
CM:c-sinh-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] « sinh source[k]

The hyperbolic sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23and e=8or s = 52 and e = 11.

583

SINH

F-SINH

Calculates the floating-point hyperbolic sine of the source field values and stores the result
in the floating-point destination field.

Formats CM:f-sinh-1-1L dest/source, s, e
CM:f-sinh-2-1L dest, source, s, €
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, € The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag s set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] «— sinh sourcelk]
if (overflow occurred in processor k) then overflow-flaglk] — 1

The hyperbolic sine of the value of the source field is stored into the dest field.

Length Restriction: This transcendental function is computed in either standard single-
or standard double-precision and then the result is moved into the destination, regardless
of the declared size of the destination. Therefore use standard lengths only, such that s =
23and e=8 or s = 52 and e = 11.

584

SPREAD-FROM-PROCESSOR

SPREAD-FROM-PROCESSOR

A single source processor is specified. A copy of its source field value is spread to every
(selected) processor in the destination field. Neither the destination nor the source field
needs to be in the current VP set.

Formats

Operands

Qverlap

Context

CM:spread-from-processor-1L dest, send-address-value, source, len
CM:spread-from-processor-a-1L dest, send-address-value, source, len

dest The field ID of the destination field.

send-address-value An unsigned integer immediate operand to be used as
the the send address of the processor whose source value is to be
spread.

source The field ID of the source field.
len The length of the dest and source fields. This must be non-negative

and no greater than CM:*maximum-integer-lengths.

The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

The non-always operations are conditional.

The always operations are unconditional.
For this instruction, -a is used instead of the standard -always suffix to indicate
unconditional operation.

Definition

For every virtual processor k in vp-set(dest) do
if (always or contezt-flaglk] = 1) then
dest[k] « source|[send-address-value]

The value of the source field in the processor specified by send-address-value is spread to all
(selected) processors in the destination field. The source and destination fields may reside
in different vP sets.

585

SPREAD-WITH-ADD

SPREAD-WITH-C-ADD

The destination field in every selected processor receives the sum of the complex source
fields from processors below or above it in some ordering of the processors.

Formats CM:spread-with-c-add-1L dest, source, azis, s, e

Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.

azis An unsigned integer immediate operand to be used as the the
number of a NEWS axis.

s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
let Cy = scan-subclass(k, { azis })

dest[k] — (Y source[m])
meCy
where scan-subclass is as defined on page 36 of the Paris Reference Manual.

See the section beginning on page 36 for a general description of spread operations. The
CM:spread-with-c-add operation combines source fields by performing complex addition.

A call to CM: spread-with-c-add-1L is equivalent to the sequence

CM:scan-with-c-add-1L dest, source, azis, s, e, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-1L dest, source, azis, 2 X (s + e + 1), :downward, :inclusive, :none, dont-care

but may be faster.

586

SPREAD-WITH-ADD

SPREAD-WITH-F-ADD

The destination field in every selected processor receives the sum of the floating-point source
fields from all processors in its scan subclass.

Formats CM:spread-with-f-add-1L dest, source, azis, s, e
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
axis An unsigned integer immediate operand to be used as the number
of a NEWS axis.
s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.
Overlap ~ The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format,
Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let C) = scan-subclass(g, k, azis)

dest[k] — ()3 source[m])
meCy

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-f-add operation combines source fields by performing floating-point addition.

A call to CM:spread-with-f-add-1L is equivalent to the sequence

CM:scan-with-f-add-1L temp, source, azis, s, e, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-1L dest, temp, azis, s + e + 1, :downward, :inclusive, :none, dont-care

but may be faster.

08T

SPREAD-WITH-ADD

SPREAD-WITH-S-ADD

The destination field in every selected processor receives the sum of the signed integer source
fields from all processors in its scan subclass.

Formats CM:spread-with-s-add-1L dest, source, azis, len
Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.
aris An unsigned integer immediate operand to be used as the number
of a NEWS axis.
len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.
Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.
Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let Cy, = scan-subclass(g, k, azis)

destlk] — | > source[m]
meC,

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-s-add operation combines source fields by performing signed integer addition.

A call to CM:spread-with-s-add-1L is equivalent to the sequence

CM:scan-with-s-add-1L temp, source, azis, len, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-1L dest, temp, axis, len, :downward, :inclusive, :none, dont-care

but may be faster.

588

SPREAD-WITH-ADD

SPREAD-WITH-U-ADD

The destination field in every selected processor receives the sum of the unsigned integer
source fields from all processors in its scan subclass.

Formats

Operands

Overlap

Context

CM:spread-with-u-add-1L dest, source, azis, len

dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*¥maximum-integer-length#.

The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

This operation is conditional. The destination may be altered only in proces-
sors whose context-flagis 1.

Definition

For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
let g = geomeiry(current-vp-set)
let Cy = scan-subclass(g, k, azis)
dest[k] — | 3 source[m]
meCE
where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-u-add operation combines source fields by performing unsigned integer addition.

A call to CM:spread-with-u-add-1L is equivalent to the sequence

CM:scan-with-u-add-1L temp, source, azis, len, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-1L dest, temp, azis, len, :downward, :inclusive, :none, dont-care

but may be faster.

589

SPREAD-WITH-COPY

SPREAD-WITH-COPY

The destination field in every selected processor receives a copy of the source value from a
particular value within its scan subclass.

Formats CM:spread-with-copy-1L dest, source, azis, len, coordinate
Operands dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.
aris An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along azis indicating which element of the scan
class is to be replicated.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let ¢ = deposit-news-constant(g, k, azis, coordinate-value)
dest[k] — source[c]

where deposit-news-constant is defined in the dictionary entry for CM:deposit-
news-coordinate.

See section 5.20 on page 42 for a general description of spread operations.

590

SPREAD-WITH-LOGAND

SPREAD-WITH-LOGAND

The destination field in every selected processor receives the bitwise logical AND of the
source fields from all processors in its scan subclass.

Formats CM:spread-with-logand-1L dest, source, azts, len

Operands dest The field ID of the destination field.
source The field ID of the source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative

and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let C = scan-subclass(g, k, azis)

dest[k] «— (A source[m])

meCk
where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-logand operation combines source fields by performing bitwise logical AND operations.

A call to CM:spread-with-logand-1L is equivalent to the sequence

CM:scan-with-logand-1L temp, source, axis, len, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-1L dest, temp, azis, len, :downward, :inclusive, :none, doni-care

but may be faster.

591

SPREAD-WITH-LOGIOR

SPREAD-WITH-LOGIOR

The destination field in every selected processor receives the bitwise logical inclusive OR of
the source fields from all processors in its scan subclass.

Formats CM:spread-with-logior-1L dest, source, azis, len

Operands dest The field ID of the destination field.
source The field ID of the source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative

and no greater than CM: *maximum-integer-lengthx.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-up-set do
if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
let Cy = scan-subclass(g, k, azis)
destlk] — | \/ source[m]
meC,,
where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-logior operation combines source fields by performing bitwise logical inclusive oRr op-
erations.

A call to CM:spread-with-logior-1L is equivalent to the sequence

CM:scan-with-logior-1L temp, source, azis, len, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-1L dest, temp, aais, len, :downward, :inclusive, :none, dont-care

but may be faster.

992

SPREAD-WITH-LOGXOR

SPREAD-WITH-LOGXOR

The destination field in every selected processor receives the bitwise logical exclusive OR of
the source fields from all processors in its scan subclass.

Formats CM:spread-with-logxor-1L dest, source, azis, len
Operands dest The field ID of the destination field.
source The field ID of the source field.
azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.
len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.
Qverlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.
Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
let ¢ = geometry(current-vp-set)
let Ci = scan-subclass(g, k, azis)
dest[k] (D sou'rce[m])
meC)
where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-logxor operation combines source fields by performing bitwise logical exclusive OR op-

erations.

A call to CM:spread-with-logxor-1L is equivalent to the sequence

CM:scan-with-logxor-1L temp, source, azis, len, :upward, :inclusive, :none, doni-care
CM:scan-with-copy-1L dest, temp, axis, len, :downward, :inclusive, :none, dont-care

but may be faster.

593

SPREAD-WITH-MAX

SPREAD-WITH-F-MAX

The destination field in every selected processor receives the largest of the floating-point
source fields from all processors in its scan subclass.

Formats CM:spread-with-f-max-1L dest, source, axis, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-up-set do
if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let Cy = scan-subclass(g, k, azis)

dest[k] «— (ma.x source[m]
meCy

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-f-max operation combines source fields by performing an floating-point maximum op-
eration.

A call to CM:spread-with-f-max-1L is equivalent to the sequence

CM:scan-with-f-max-1L temp, source, azis, s, e, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-1L dest, temp, azis, s + e + 1, :downward, :inclusive, :none, dont-care

but may be faster.

594

SPREAD-WITH-MAX

SPREAD-WITH-S-MAX

The destination field in every selected processor receives the largest of the signed integer
source fields from all processors in its scan subclass.

Formats CM:spread-with-s-max-1L dest, source, azis, len
Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.
azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.
len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM: *maximum-integer-length*.
Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.
Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let Cj = scan-subclass(g, k, azis)

dest[k] — (HiE source(m)

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM: spread-
with-s-max operation combines source fields by performing a signed integer maximum oper-

ation.

A call to CM:spread-with-s-max-1L is equivalent to the sequence

CM:scan-with-s-max-1L temp, source, azis, len, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-1L dest, temp, azis, len, :downward, :inclusive, :none, dont-care

but may be faster.

595

SPREAD-WITH-MAX

SPREAD-WITH-U-MAX

The destination field in every selected processor receives the largest of the unsigned integer
source fields from all processors in its scan subclass.

Formats

Operands

OIverlap

Context

CM:spread-with-u-max-1L dest, source, azis, len

dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-lengths.

The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let Cy = scan-subclass(g, k, azis)

dest[k] «— | max source[m]
meC;,

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-u-max operation combines source fields by performing an unsigned integer maximum

operation.

A call to CM:spread-with-u-max-1L is equivalent to the sequence

CM:scan-with-u-max-1L temp, source, azis, len, :upward, :inclusive, : none, doni-care
CM:scan-with-copy-1L dest, temp, azis, len, : downward, :inclusive, :none, dont-care

but may be faster.

596

SPREAD-WITH-MIN

SPREAD-WITH-F-MIN

The destination field in every selected processor receives the smallest of the floating-point
source fields from all processors in its scan subclass.

Formats

Operands

Overlap

Context

CM:spread-with-f-min-1L dest, source, azis, s, €

dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.

azxis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

s € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let Cy = scan-subclass(g, k, azis)

dest[k] — | min source[m]
meCy

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-f-min operation combines source fields by performing an floating-point minimum oper-

ation.

A call to CM:spread-with-f-min-1L is equivalent to the sequence

CM:scan-with-f-min-1L temp, source, azis, s, e, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-1L dest, temp, azis, s + e + 1, :downward, :inclusive, :none, dont-care

but may be faster.

597

SPREAD-WITH-MIN

SPREAD-WITH-S-MIN

The destination field in every selected processor receives the smallest of the signed integer
source fields from all processors in its scan subclass.

Formats CM:spread-with-s-min-1L dest, source, axis, len
Operands dest The field ID of the signed integer destination field.
source The field ID of the signed integer source field.
azxis An unsigned integer immediate operand to be used as the number
of a NEWS axis.
len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length=,
Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.
Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flag is 1.
Definition For every virtual processor k in the current-vp-set do

if context-flaglk] = 1 then
let g = geometry(current-vp-set)
let Ci = scan-subclass(g, k, azis)

dest[k] (n“]_:.lé] saurce{m])
meCy

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-s-min operation combines source fields by performing a signed integer minimum oper-

ation.

A call to CM:spread-with-s-min-1L is equivalent to the sequence

CM:scan-with-s-min-1L temp, source, azis, len, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-1L dest, temp, axis, len, :downward, :inclusive, :none, dont-care

but may be faster.

598

SPREAD-WITH-MIN

SPREAD-WITH-U-MIN

The destination field in every selected processor receives the smallest of the unsigned integer
source fields from all processors in its scan subclass.

Formats CM:spread-with-u-min-1L dest, source, azis, len

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the unsigned integer source field.

awis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

len The length of the dest and source fields. This must be non-negative
and no greater than CM: *maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
let g = geometry(current-vp-set)
let Cj = scan-subclass(g, k, axis)

dest[k] «— | min source[m]
meCk

where scan-subclass is as defined on page 44.

See section 5.20 on page 42 for a general description of spread operations. The CM:spread-
with-u-min operation combines source fields by performing an unsigned integer minimum
operation.

A call to CM:spread-with-u-min-1L is equivalent to the sequence

CM:scan-with-u-min-1L temp, source, azis, len, :upward, :inclusive, :none, dont-care
CM:scan-with-copy-1L dest, temp, azis, len, :downward, :inclusive, :none, dont-care

but may be faster.

599

SQRT

C-SQRT

Calculates the square root of the complex source field and places it in the complex destina-
tion field.

Formats CM:c-sqrt-1-1L dest/source, s, e
CM:c-sqrt-2-1L dest, source, s, e
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
s e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is 2(s+e+1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then

dest[k] — \/source

In each selected processor, the square root of the source field value is placed in the dest
field.

600

SQRT

F-SQRT

Calculates the floating-point square root of the source field values and stores the result in
the floating-point destination field.

Formats CM:f-sqrt-1-1L dest/source, s, €
CM:f-sqrt-2-1L dest, source, s, €

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.

s, € The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

' Flags test-flag is set if the source is negative and non-zero; otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if conteat-flagk] = 1 then

if source(k] > 0 then
dest[k] «— \/source[k]

else if source(k] = £0 then
dest[k] « source[k]

else if : source : [k] < 0 then
dest[k] — (unpredictable)
test(k] « 1

If the source value is non-negative, then the square root of that value is placed in the
destination. The square root of —0 is defined to be —0.

If the source operand is a NaN, then it is copied to the dest field unchanged.

601

STORE-CONTEXT

STORE-CONTEXT

Unconditionally stores the context bit into memory.

Formats CM:store-context dest
Operands dest The field ID of the destination bit (a one-bit field).

Context This operation is unconditional. The destination may be altered regardless of
the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
dest[k] — contezt-flag[k]|

Within each processor, the context bit for that processor is unconditionally stored into
memory.

602

STORE-FLAG

STORE-flag

Conditionally stores a flag bit into memory.

Formats CM:store-test dest
CM:store-test-always dest
CM:store-overflow dest

CM:store-overflow-always dest
Operands dest The field ID of the destination bit (a one-bit field).

Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the contezi-flag.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — flag[k]

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, the indicated flag for that processor is stored into memory.

603

STRUCTURE-ARRAY-FORMAT

FE-STRUCTURE-ARRAY-FORMAT

This instruction returns an array format descriptor for a particular slot in an array of
structures. A format descriptor may be passed to any array transfer instruction to specify
a front-end array format, although this is not required. See also CM:fe-array-format and
CM:fe-packed-array-format.

This instruction is not provided for the Lisp interface to Paris.

Formats result « CM:fe-structure-array-format cm-element-byte-size,
structure-byte-size

Operands cm-element-byte-size A signed integer immediate operand to be used as the
number of bytes each Connection Machine element occupies in the
front-end array. This must be a power of two between 1 and 16.

structure-byte-size A signed integer immediate operand to be used as the
length of the front-end structure in bytes. This may be any positive
integer.

Result The array format descriptor specified.

Context This is a front-end operation. It does not depend on the value of the contezt-

flag.

The return value is a format descriptor for a front-end array of structures. Such a format
descriptor can be passed to any of the CM array transfer instructions in order to allow
transfers in either direction between CM fields and a front-end array of structures. If this
is done, one CM element per selected processor is copied into, or receives data from, the
specified slot across an array of structures on the front end.

Values for both cm-element-byte-size and cm-structure-byte-size may be obtained by calls
to sizeof(...).

The value of cm-element-byte-size specifies the length of the structure slot in bytes. It also
defines the unit of measure for the fe-offset-vector argument to the CM: read-from-news-array
and CM:writé-to-news-array instructions.

The value of structure-byte-size specifies the length of the entire stucture in bytes. It also
defines the unit of measure for the argument fe-dimension-vector to the CM: read-from-news-
array and CM:write-to-news-array instructions.

If a slot other than the first slot in the front-end structure is the destination of a CM: read-
from-news-array or the source for a CM:write-to-news-array transfer instruction, then a pointer
to that slot must be provided as the value of front-end-array. This is a bit tricky. The

604

STRUCTURE-ARRAY-FORMAT

pointer must identify the location of the chosen slot in the structure that is the first element
of the array of structures.

Here is an example in C.

#define n_foos 256

/* declare array of structure foo */
struct foo { int a; double b; char c; } fooarray[n_foos];

/* declare the format */
CM_array_format_t foo_format;

/* declare an offset for the ’b’ slot of struct foo */
/* this is a pointer to a double - b is a double */
double *bslot_pointer;

/* lots of other declarations etc. in here */

/* create format descriptor for foo.b */
foo_format = CM_structure_array_format(sizeof(double), sizeof(struct foo));

/* create pointer offset to slot b of struct foo */
bslot_pointer = &fooarray[0].b;

/* store src-field values in slot b of each foo struct in foo_array */
/* all variables xxxx_vector should be self explanatory */

CM_f_read_from_news_array_1lL(bslot_pointer, offset_vector,
start_vector, end_vector, axis_vector,
src_field, 23, 8, rank,
dimension_vector, foo_format);

Slot b of each foo structure in the array foo_array receives a copy of the value stored in the
corresponding cM src-field processor.

The value of bslot_pointer is a pointer to the b slot of the first foo structure in foo_array.
Given this starting place, foo_format indicates how many bytes must be skipped between b
slots.

For further examples, refer to the manual entitled Iniroduction to Programming in C/Paris.

605

SUBF-CONST-MULT

F-SUBF-CONST-MULT

Calculates a value (b — a)z and places it in the destination.

Formats CM:f-subf-const-mult-1L dest, sourcel, source2-value, source3, s, e
CM:f-subf-const-mult-always-1L dest, sourcel, source2-value, source3, s, e
CM:f-subf-const-mult-const-1L dest, sourcel, source2-value, source3-value, s, e
CM:f-subf-const-mult-const-a-1L dest, sourcel, source2-value, source3-value, s, e

Operands dest The field ID of the floating-point destination field.
sourcel ~ The field ID of the floating-point first source (subtrahend) field.

sourceZ-value A floating-point immediate operand to be used as the second
source (minuend).

source3 The field ID of the floating-point third source (multiplier) field.

source3-value A floating-point immediate operand to be used as the third
source (multiplier).

s, € The significand and exponent lengths for the dest, sourcel, source?,
and sourced fields. The total length of an operand in this format
iss+e+ 1.

Overlap The fields source! and source3 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context ~ The non-always operations are conditional. The destination and flag may be
altered only in processors whose context-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] — (source2-value[k] — source1[k]) x source3[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1

The operand source! is subtracted from source2-value, treating them as floating-point num-
bers, and then the difference is multiplied by a third operand sourced. The result is stored

606

SUBF-CONST-MUL

in the destination field. The various operand formats allow the second and third source
operands to be either memory fields or constants.

The constant operands source2-value and source3d-value should be double-precision front-
end values (in Lisp, automatic coercion is performed if necessary). The constants are then
converted, in effect, to the format specified by s and e before the operation is performed.

A call to CM:f-subf-const-mult-1L is equivalent to the sequence

CM:f-subfrom-constant-3-1L dest, sourcel, source2-value, s, e
CM:f-multiply-3-1L dest, dest, sourced, s, e

but may be faster.

607

SUB-MULT

F-SUB-MULT

Calculates a value (2 — a)b and places it in the destination.

Formats CM:f-sub-mult-1L dest, sourcel, source2, source3, s, e
CM:f-sub-mult-always-1L dest, sourcel, source?, sourced, s, e
CM:f-sub-const-mult-1L dest, sourcel, source2-value, sources, s, e
CM:f-sub-const-mult-always-1L dest, sourcel, source2-value, source$, s, e
CM:f-sub-mult-const-1L dest, sourcel, source2, sourced-value, s, e

CM:f-sub-mult-const-always-1L dest, sourcel, source2, source3-value, s, e
CM:f-sub-const-mult-const-1L dest, sourcel, source2-value, source3-value, s, e
CM:f-sub-const-mult-const-a-1L dest, sourcel, source2-value, source3-value, s, e

Operands dest The field ID of the floating-point destination field.
sourcel The field ID of the floating-point first source (minuend) field.
source2 The field ID of the floating-point second source (subtrahend) field.

source2-value A floating-point immediate operand to be used as the second
source (subtrahend).

source3 The field ID of the floating-point third source (multiplier) field.
sourced-value A floating-point immediate operand to be used as the third
source (multiplier).

5 € The significand and exponent lengths for the dest, sourcel, source?2,
and sourced fields. The total length of an operand in this format
iss+e+1.

Overlap The fields sourcel, source2, and source3 may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.,
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context ~ The non-always operations are conditional. The destination and flag may be
altered only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the contezt-flag.

Definition For every virtual processor k'in the current-vp-set do
if (always or context-flaglk] = 1) then
dest(k] «— (sourcel[k] — source2[k]) X sourced|[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1

608

SUB-MULT

The operand source2 is subtracted from sourcel, treating them as floating-point numbers,
and then the difference is multiplied by a third operand sourced. The result is stored in the
destination field.

The various operand formats allow the second and third source operands to be either mem-
ory fields or constants.

The constant operand source2-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary). Before the operation is performed, the con-
stant is converted, in effect, to the format specified by s and e.

A call to CM:f-sub-mult-1L is equivalent to the sequence

CM:f-subtract-3-1L temp, sourcel, source2, s, e
CM:f-multiply-3-1L dest, temp, source3, s, e

but may be faster.

609

SUBTRACT

C-SUBTRACT

The difference of two complex source values is placed in the destination field.

Formats CM:c-subtract-2-1L dest/sourcel, source?, s, e
CM:c-subtract-always-2-1L dest/sourcel, source?, s, e
CM:c-subtract-3-1L dest, sourcel, source?, s, e
CM:c-subtract-always-3-1L dest, sourcel, source?, s, e
CM: c-subtract-constant-2-1L dest/sourcel, source2-value, s, e
CM:c-subtract-const-always-2-1L dest/sourcel, source2-value, s, e
CM:c-subtract-constant-3-1L dest, sourcel, source2-value, s, e
CM:c-subtract-const-always-3-1L dest, sourcel, source2-value, s, e
CM:c-subfrom-2-1L dest/source?, sourcel, s, e
CM:c-subfrom-always-2-1L dest/source2, sourcel, s, e
CM: c-subfrom-constant-2-1L dest/source2, sourcel-value, s, e
CM:c-subfrom-const-always-2-1L dest/source2, sourcei-value, s, e
CM:c-subfrom-constant-3-1L dest, source2, sourcel-value, s, e

CM:c-subfrom-const-always-3-1L dest, source2, sourcel-value, s, e

Operands dest The field ID of the complex destination field. This is the difference,

the result of the subtraction operation.

sourcel The field ID of the complex first source field. This is the minuend.

source2 The field ID of the complex second source field. This is the sub-

trahend.

sourcel-value A complex immediate operand to be used as the first source.

source2-value A complex immediate operand to be used as the second

source.

5, € The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is

2(s+e+1).

Overlap The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
complex fields are identical if they have the same address and the same format.

It is permissible for all the fields to be identical.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only

in processors whose contezt-flag is 1.

610

SUBTRACT

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] « sourcel[k] — source2[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

The operand source2 is subtracted from sourcel, treated as as complex numbers. The result
is stored into the memory field dest. The various operand formats allow operands to be
either memory fields or constants; in some cases the destination field initially contains one
source operand. The “subfrom” operations allow for the destination to be subtracted from
the other operand, or for a memory field to be subtracted from an immediate value.

The constant operand sourcel-value or source2-value should be a double-precision complex
front-end value (in Lisp, automatic coercion is performed if necessary). Before the operation
is performed, the constant is converted, in effect, to the format specified by s and e.

611

SUBTRACT

F-SUBTRACT

The difference of two floating-point source values is placed in the destination field.

Formats

Operands

Overlap

Flags

Context

CM:f-subtract-2-1L dest/sourcel, source?, s, e
CM:f-subtract-always-2-1L dest/sourcel, source2, s, e
CM:f-subtract-3-1L dest, sourcel, source2, s, e
CM:f-subtract-always-3-1L dest, sourcel, source2, s, e
CM:f-subtract-constant-2-1L dest/sourcel, source2-value, s, e
CM:f-subtract-const-always-2-1L dest/sourcel, source2-value, s, e
CM:f-subtract-constant-3-1L dest, sourcel, source2-value, s, e
CM:f-subtract-const-always-3-1L dest, sourcel, source2-value, s, e
CM:f-subfrom-2-1L dest/source?, sourcel, s, e
CM:f-subfrom-always-2-1L dest/source2, sourcel, s, e
CM:f-subfrom-constant-2-1L dest/source2, sourcel-value, s, e
CM:f-subfrom-const-always-2-1L dest/source2, sourcel-value, s, e
CM:f-subfrom-constant-3-1L dest, source2, sourcel-value, s, e

CM:f-subfrom-const-always-3-1L dest, source2, sourcel-value, s, €
dest The field ID of the floating-point destination field. This is the
difference, the result of the subtraction operation.

sourcel The field ID of the floating-point first source field. This is the
minuend.

source2 The field ID of the floating-point second source field. This is the
subtrahend.

sourcel-value A floating-point immediate operand to be used as the first
source.

source2-value A floating-point immediate operand to be used as the second

source.

s € The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
st+e+1.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

The non-always operations are conditional. The destination and flag may be
altered only in processors whose contezt-flag is 1.

612

SUBTRACT

The always operations are unconditional. The destination and flag may be
altered regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-flaglk] = 1) then
dest[k] « sourcel[k] — source2[k]
if (overflow occurred in processor k) then overflow-flaglk] «— 1

The operand source2 is subtracted from sourcel, treated as as floating-point numbers. The
result is stored into the memory field dest. The various operand formats allow operands to
be either memory fields or constants; in some cases the destination field initially contains
one source operand. The “subfrom” operations allow for the destination to be subtracted
from the other operand, or for a memory field to be subtracted from an immediate value.

The constant operand sourcel-value or source2-value should be a double-precision front-
end value (in Lisp, automatic coercion is performed if necessary). Before the operation is
performed, the constant is converted, in effect, to the format specified by s and e.

613

SUBTRACT

S-SUBTRACT

The difference of two signed integer source values is placed in the destination field. “Borrow-
in” and “borrow-out” are simulated by the carry-flag, and overflow is also computed.

Formats

Operands

Overlap

CM:s-subtract-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-subtract-2-1L dest/sourcel, source2, len
CM:s-subtract-3-1L dest, sourcel, source2, len

CM:s-subtract-constant-2-1L dest/sourcel, source2-value, len
CM:s-subtract-constant-3-1L dest, sourcel, source2-value, len
CM:s-subfrom-2-1L dest/source2, sourcel, len

CM:s-subfrom-constant-2-1L dest/source?, sourcel-value, len
CM:s-subfrom-constant-3-1L dest, source2, sourcel-value, len

dest

sourcel

source?

The field ID of the signed integer destination field. This is the
difference, the result of the subtraction operation.

The field ID of the signed integer first source field. This is the
minuend.

The field ID of the signed integer second source field. This is the
subtrahend.

sourcel-value A signed integer immediate operand to be used as the first

source.

source2-value A signed integer immediate operand to be used as the second

len

dlen

slenl

slen2

source.

The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length#,
For CM:s-subtract-3-3L, the length of the dest field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*,
For CM:s-subtract-3-3L, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
lengthx,

For CM:s-subtract-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
lengthx,

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

614

SUBTRACT

Flags carry-flag is set if there no borrow-in to the high-order bit position; otherwise
it is cleared.

For subtraction, “carry” is equivalent to “not borrow.” Thus, if sourcel is
greater than or equal to source2, then the carry-flag is set — meaning there is
no borrow. Conversely, if sourcel is less than source2, a borrow 1s required
so the carry-flag is cleared.

overflow-flag is set if the difference cannot be represented in the destination

field; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if conteat-flaglk] = 1 then
dest[k] — sourcel[k] — source2[k]
if (no borrow needed in processor k) then carry-flaglk] — 1
else carry-flaglk] « 0
if (overflow occurred in processor k) then overflow-flagk] « 1
else overflow-flaglk] — 0

The operand source2 is subtracted from sourcel, treated as as signed integers. A borrow
bit is simulated by inverting the carry-flag. The result is stored into the memory field dest.

The various operand formats allow the first and second source operands to be either memory
fields or constants; in some cases the destination field initially contains one source operand.
The “subfrom” operations allow for the destination to be subtracted from the other operand,
or for a memory field to be subtracted from an immediate value.

The carry-flag and overflow-flag may be altered by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

The constant operand sourcel-value or source2-value should be a signed integer front-end
value. Generally the constant has the same length as the field operand it replaces, although
this is not strictly required. Regardless of the length of the constant, however, the operation
is performed using exactly the number of bits specified by len.

615

SUBTRACT

U-SUBTRACT

The difference of two unsigned integer source values is placed in the destination field.
“Borrow-in” and “borrow-out” are simulated by the carry-flag, and overflow is also com-

puted.
Formats CM:u-subtract-3-3L dest, sourcel, source2, dlen, slenl, slen2

CM:u-subtract-2-1L dest/sourcel, source2, len

CM:u-subfrom-2-1L dest/source2, sourcel, len

CM:u-subtract-3-1L dest, sourcel, source, len

CM:u-subtract-constant-2-1L dest/sourcel, source2-value, len

CM:u-subfrom-constant-2-1L dest/source2, sourcel-value, len

CM:u-subtract-constant-3-1L dest, sourcel, source2-value, len

CM:u-subfrom-constant-3-1L dest, source2, sourcel-value, len

Operands dest The field ID of the unsigned integer destination field. This is the

difference, the result of the subtraction operation.

sourcel The field ID of the unsigned integer first source field. This is the
minuend.

source2 The field ID of the unsigned integer second source field. This is
the subtrahend.

sourcel-value An unsigned integer immediate operand to be used as the
first source.

source2-value An unsigned integer immediate operand to be used as the
second source.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length#.

dlen For CM:u-subtract-3-3L, the length of the dest field. This must be
non-negative and no greater than CM: *maximum-integer-lengths.

sleni For CM:u-subtract-3-3L, the length of the sourcel field. This
must be non-negative and no greater than CM: *maximum-integer-
length*,

slen2 For CM:u-subtract-3-3L, the length of the source2 field. This
must be non-negative and no greater than CM: *maximum-integer-
length#.

Overlap The fields source! and source2 may overlap in any manner. Each of them,

however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

616

SUBTRACT

Flags carry-flag is set if there is no borrow-in to the high-order bit position; other-
wise it is cleared.

For subtraction, “carry” is equivalent to “not borrow.” Thus, if sourcel is

greater than or equal to source2, then the carry-flag is set — meaning there is
no borrow. Conversely, if sourcel is less than source2, a borrow is required
so the carry-flag is cleared.

overflow-flag is set if the difference cannot be represented in the destination
field; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] «— sourcel[k] — source2(k]
if (no borrow needed in processor k) then carry-flaglk] — 1
else carry-flaglk] « 0
if (overflow occurred in processor k) then overflow-flag[k] « 1
else overflow-flaglk] — 0

The operand source is subtracted from sourcel, treated as as unsigned integers. A borrow
bit is simulated by inverting the carry-flag. The result is stored into the memory field dest.

The various operand formats allow operands to be either memory fields or constants; in some
cases the destination field initially contains one source operand. The “subfrom” operations
allow for the destination to be subtracted from the other operand, or for a memory field to
be subtracted from an immediate value.

The carry-flag and overflow-flag may be altered by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as
will fit.

The constant operand sourcel-value or source2-value should be an unsigned integer front-
end value. Generally the constant has the same length as the field operand it replaces,
although this is not strictly required. Regardless of the length of the constant, however, the
operation is performed using exactly the number of bits specified by len.

617

SUBTRACT-BORROW

S-SUBTRACT-BORROW

In each selected processor, computes the difference of two signed integer source values and
places it in the destination field. “Borrow-in” and “borrow-out” are simulated by the carry-
flag, and overflow is also computed.

Formats CM:s-subtract-borrow-3-1L dest, sourcel, source2, len
Operands dest The field ID of the signed integer destination field. This is the

difference, the result of the subtraction operation.

source]l The field ID of the signed integer first source field. This is the
minuend.

sourceZ The field ID of the signed integer second source field. This is the
subtrahend.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

Overlap The fields source! and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

Flags carry-flag is set if there is no borrow-in to the high-order bit position; other-
wise it is cleared. '
For subtraction, “carry” is interpreted as “not borrow.” Thus, if source! is
greater than or equal to source2, then the carry-flag is set — meaning there is
no borrow. Conversely, if sourcel is less than source2, a borrow is required
so the carry-flag is cleared.
overflow-flag is set if the difference cannot be represented in the destination
field; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do

if contezt-flaglk] = 1 then
dest([k] « sourcel[k] — source2(k] + (carry-flaglk] — 1)
if (no borrow needed in processor k) then carry-flaglk] — 1
else carry-flaglk] < 0
if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flaglk] — 0

618

SUBTRACT-BORROW

The operand source2 is subtracted from sourcel, treated as signed integers. A borrow bit
is simulated by inverting the carry-flag. The result is stored into the memory field dest.

The carry-flag and overflow-flag may be altered by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as

will fit.

619

SUBTRACT-BORROW

U-SUBTRACT-BORROW

In each selected processor, computes the difference of two unsigned integer source values
and places it in the destination field. “Borrow-in” and “borrow-out” are simulated by the
carry-flag, and overflow is also computed.

Formats

Operands

Overlap

Flags

Context

CM:u-subtract-borrow-3-1L dest, sourcel, source2, len

dest The field ID of the unsigned integer destination field. This is the
difference, the result of the subtraction operation.

sourcel The field ID of the unsigned integer first source field. This is the
minuend.

source2 The field ID of the unsigned integer second source field. This is
the subtrahend.

len The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

carry-flag is set if there no borrow-in to the high-order bit position; otherwise
it is cleared.

For subtraction, “carry” is equivalent to “not borrow.” Thus, if source! is
greater than or equal to source2, then the carry-flagis set — meaning there is
no borrow. Conversely, if sourcel is less than source2, a borrow is required
so the carry-flag is cleared.

overflow-flag is set if the difference cannot be represented in the destination
field; otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition

For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] « sourcel[k] — source2[k] + (carry-flaglk] — 1)
if (no borrow needed in processor k) then carry-flaglk] « 1
else carry-flaglk] — 0
if (overflow occurred in processor k) then overflow-flagk] « 1

else overflow-flaglk] — 0

620

SUBTRACT-BORROW
The operand source?2 is subtracted from sourcel, treated as as unsigned integers. A borrow
bit is simulated by inverting the carry-flag. The result is stored into the memory field dest.

The carry-flag and overflow-flag may be altered by these operations. If overflow occurs,
then the destination field will contain as many of the low-order bits of the true result as

will fit.

621

SWAP

SWAP

Swaps the contents of two bit fields.

Formats CM:swap-2-1L dest1/sourcel, dest2/source2, len
CM:swap--always-2-1L destl/sourcel, dest2/source2, len

Operands dest1 The field ID of the first destination field.
sourcel The field ID of the first source (same as first destination) field.
dest2 The field ID of the second destination field.

source2 The field ID of the second source (same as second destination)

field.

len The length of the dest1, sourcel, dest2, and source? fields. This
must be non-negative and no greater than CM:*maximum-integer-
lengthx.

Overlap The fields dest1 and dest2 must not overlap in any manner.
Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-up-set do
if (always or contezt-flaglk] = 1) then
let templ; = sourcel[k]
let temp2;. = source2[k]
let dest1[k] — temp2,
let dest2[k] — templ,

Each of the two provided fields is copied into the other so as to exchange their contents.

622

TAN

C-TAN

Calculates the complex tangent of the source field values and stores the result in the complex
destination field.

Formats CM:c-tan-1-1L dest/source, s, e
CM:c-tan-2-1L dest, source, s, e

Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — tan source[k]
if (overflow occurred in processor k) then overflow-flaglk] « 1

The tangent of the value of the source field is stored into the dest field.

623

TAN

F-TAN

Calculates the floating-point tangent of the source field values and stores the result in the
floating-point destination field.

Formats CM:f-tan-1-1L dest/source, s, e
CM:f-tan-2-1L dest, source, s, e
Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest|k] «— tan source[k]
if (overflow occurred in processor k) then overflow-flaglk] — 1

The tangent of the value of the source field is stored into the dest field.

624

TANH

C-TANH

Calculates the complex hyperbolic tangent of the source field values and stores the result
in the complex destination field.

Formats CM:c-tanh-1-1L dest/source, s, e
CM:c-tanh-2-1L dest, source, s, e
Operands dest The field ID of the complex destination field.
source The field ID of the complex source field.
s, e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is 2(s + e + 1).

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
dest[k] « tanh source

The hyperbolic tangent of the value of the source field is stored into the dest field.

625

TANH

F-TANH

Calculates the floating-point hyperbolic tangent of the source field values and stores the
result in the floating-point destination field.

Formats CM:f-tanh-1-1L dest/source, s, €
CM:f-tanh-2-1L dest, source, s, e

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
s e The significand and exponent lengths for the dest and source fields.

The total length of an operand in this format is s + e + 1.

Overlap ~ The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] — tanh source
if (overflow occurred in processor k) then overflow-flaglk] — 1

The hyperbolic tangent of the value of the source field is stored into the dest field.

626

TIME

TIME

Times other operations and reports both the total amount of time elapsed and the amount
of time spent executing on the Connection Machine system.

This instruction is available only from the Lisp/Paris interface. For Fortran/Paris and
C/Paris users, the equivalent functionality is provided by the CM:timer- series of functions
— which may also be used from Lisp. The CM:timer- functions are documented in this
dictionary and also in the CM System User’s Guide.

Formats CM:time form, [return-statistics-p]

Operands form The a Lisp, Lisp/Paris, or *Lisp form to be timed. This must be a
single Lisp expression. To time more than one expression, enclose
them in a progn form.

return-statistics-p The answer to the question, “Do you want timing
statistics returned as the value of the macro?”. This is an op-
tional keyword argument and defaults to NIL. When specified, the
invocation must include the keyword :return-statistics-p followed
by T or NIL.

Context This operation is unconditional. It does not depend on the contezt-flag.

The CM:time facility is a Lisp macro, not a function. It is used in the Lisp/Paris interface
to time the execution of other operations on the Connection Machine system.

A call to the CM:time macro may contain a single Lisp expression; this is executed in the
normal manner, but before the value is returned, timing information is printed out as for
the Common Lisp time macro.

Specifying a NIL value to the :return-statistics-p (the default) causes the statistics to be
displayed on standard output.

Specifying a T value to the :return-statistics-p causes the statistics to be returned as two
floating-point values in a list that is the return value of the macro call.

" The first number reported is elapsed time during execution on both the front-end computer
and the Connection Machine system. In addition, timing information related to Connection
Machine system performance is printed. The second number reported is the amount of that
time that the Connection Machine system was actually executing instructions (not waiting
for the front end). For optimal performance, the programmer strives to obtain the maximum
percentage of Connection Machine utilization possible.

For further information about timing code from the Lisp /Paris interface, see the CM Sysiem
User’s Guide chaper entitled “In The Lisp Environment.”

627

The timing facility is provided in the C/Paris and Fortran /Paris interfaces throu gh a set of
functions whose names all begin with CM: timer-.

628

TIMER

TIMER

The timing facility. A set of instructions that together determine how much time any part
of a program takes to execute on the Connection Machine.

Formats CM:timer-clear timer
CM:timer-start timer
CM:timer-stop timer
CM:timer-print timer
CM:timer-read-starts timer

CM:timer-read-elapsed timer
CM:timer-read-cm-busy timer
CM:timer-read-cm-idle timer
CM:timer-read-run-state timer
CM:timer-set-starts timer, int

Operands timer The integer used to identify the timer being used.. This must be
an unsigned integer immediate operand between 0 (inclusive) and
CM*max-number-of-timers* (exclusive).

int For CM:timer-set-starts, the start number to which the specified
timer is to be reset.

Context This operation is unconditional. It does not depend on the contezt-flag.

To activate multiple timers, assign each an integer identifier. Nested calls to different timers
is permitted. Each timer can record timings of up to 43 hours, with microsecond precision.

Four basic operations are required in order to use this timing facility. Use them in the
following order:

CM:timer-clear
Sets the total elapsed time, total CM busy time, and number of starts for timer to
zero.

CM:timer-start
Starts the clock running for timer. Elapsed time (also known as wall time) and CM
busy time are accumulated. Number of starts is incremented.

CM:timer-stop

Stops the clock running for timer. The specified timer’s state variables for CM elapsed
time and CM busy time are updated. A subsequent call to CM:timer-start — without
an intervening call to CM:timer-clear — restarts the timer and adds to the accumulated
elapsed and busy values for this timer.

629

TIMER

CM:timer-print

Prints information about timer, including, but not limited to: the number of starts,
the total elapsed time, and the total time that the Connection Machine was busy
while this timer was active.

To use a timer, first invoke CM:timer-clear to zero the timer values. Then, call CM:timer-
start and CM:timer-stop any number of times. Finally call CM: timer-print.

For each timer, state variables for CM elapsed time and CM busy time are maintained.
Elapsed time records how much time has elapsed between each pair of CM:timer-start and
CM:timer-stop calls that have been made since CM:timer-clear was last called for timer.
CM busy time records the total time the CM has spent being active between each pair of
CM:timer-start and CM:timer-stop calls that have been made since CM:timer-clear was last
called for timer.

The following five functions return state values for a specified timer:

CM:timer-read-starts
Returns an unsigned integer, the number of times CM:timer-start has been called for
this timer.

CM:timer-read-elapsed

Returns the total elapsed time, in seconds, accumulated while timer was running.

CM:timer-read-cm-busy

Returns the total CM busy time, in seconds, accumulated while timer was running.

CM:timer-read-cm-idle
Returns the total CM idle time, in seconds, accumulated while timer was running.
CM idle time is equal to total elapsed time minus the CM busy time.
CM:timer-read-run-state

Returns TRUE (or t or 1) if and only if #imer is running. Otherwise, returns FALSE (or
nil or 0).

One further operation is provided to reset the number of starts for the specified timer:

CM:timer-set-starts

Sets the number of starts for timer to the specified integer value. This is useful in
code that stops a timer to query it and then restarts the same timer. CM:timer-set-
starts can be used to set the number of starts to 1 less than the actual number of
starts before restarting the timer. In this way, querying a timer does not change the
number of starts ultimately recorded.

630

For a detailed guide to using the new timing facility, including information about conditions
that affect timing accuracy, see the CM System User’s Guide.

631

TO-GRAY-CODE

FE-TO-GRAY-CODE

Converts, on the front end, a nonnegative integer into a bit string representing a Gray-coded
integer value.

Formats result « CM:fe-to-gray-code integer

Operands integer ~ An unsigned integer immediate operand to be used as the nonneg-
ative integer.

Result An unsigned integer, the Gray code equivalent of integer.

Context This operation is performed on the front end. It does not depend on the CM
contezt-flag.

Definition Return integer @ L_L‘“‘; "J

This function calculates, entirely on the front end, a bit-string encoding in a particular
reflected binary Gray code. The position of that value in the standard Gray code sequence
is equal to the specified integer.

Note that the binary value 0 is always equivalent to a Gray code string that is all 0-bits.

632

TO-GRAY-CODE

U-TO-GRAY-CODE

Converts an unsigned binary integer to a bit string representing a Gray-coded integer value.

Formats CM:u-to-gray-code-1-1L dest/source, len
CM:u-to-gray-code-2-1L dest, source, len
Operands dest The field ID of the destination field.
source The field ID of the unsigned integer source field.
len The length of the dest and source fields. This must be non-negative

and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contezt-flagis 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k](len — 1) — source[k](len — 1)
for § from len — 2 to 0 do
dest[k](j) « source[k](j) ® source[k](j + 1)

The source operand is an unsigned binary integer, and is converted to a bit-string value in
a particular reflected binary Gray code. The position of that value in the standard Gray
code sequence is the source.

Note that the binary value 0 is always equivalent to a Gray code string that is all 0-bits.

633

TRANSPOSE32

TRANSPOSE32

Within each cluster of 32 physical processors, for every group of 32 virtual processors in
such a cluster, copies one 32-bit field to another. During this copying operation, transposes
the data as a 32-by-32 bit matrix. Thus, each virtual processor receives one bit from the
source value of each virtual processor in its group of 32.

Formats CM:transpose32-1-1L dest/source, len
CM:transpose32-2-1L dest, source, len

Operands source The field ID of the source field.

dest The field ID of the destination field.

len The length of the source and dest fields. This must be non-negative
and no greater than CM:*maximum-integer-length*. This must be
a multiple of 32.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length. The
fields dest and source may overlap in any manner.

Context This operation is unconditional. The destination may be altered regardless of
the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
for all j such that 0 < j < dlen do
dest[k](j) —
source [32r J.E%;J + (k mod r) + 7(j mod 32)] (32 l-ﬁj + m>

where r is the value of CM: *virtual-to-physical-processor-ratio* and 7 is the bit
position in each field.

This instruction copies each 32-bit field to the corresponding 32-bit field within each virtual
processor. In the course of copying the bits, it “transposes” them so that a 32-bit value
lying entirely within the source field of one virtual processor is made to occupy a memory
slice, that is, one bit in each of 32 virtual processors. The opposite is also true: the 32-bit
value that ends up in the dest field of a virtual processor is made up of one bit from each
of 32 virtual processors. Transposed data is said to be stored in a slicewise format.

For the purposes of this instruction, the physical processors are divided into clusters of 32.
Two processors are in the same cluster if their physical processor numbers agree in all but
the five least significant bits.

634

TRANSPOSE32

The virtual processors are similarly divided into groups of 32; a group of virtual processors
consists of one virtual processor from each physical processor of a cluster, such that the vir-
tual processors occupy the same physical memory locations within their respective physical
processors. Thus, two virtual processors are in the same group if their virtual processor
numbers agree in all but bit positions n through n + 4, where n is the number of virtual
processors bits in each physical processor.

The CM:transpose32 operation may then be understood as taking the 32 32-bit source values
from a group of 32 virtual processors as the rows of a 32-by-32 bit matrix, and then storing
the columns of this matrix into the dest fields of these same virtual processors.

The process may be understood pictorially. Suppose that before the operation the memory
of a group of 32 virtual processors looks like this:

Processor sSource
31
30
29 - r
ic=a)
]
o L L
; | |

bit 0 LR bit 31

Then, after the CM:transpose32 operation, it will look like this:

635

TRANSPOSE32

processor source dest
31
30
29 - r ‘
=
[|
]
JEsiEst, s B i I
m

2 r - |
1
o

bit 0 ae bit 31 bit 0 v bit 31

Knowledge of the internal details of Connection Machine vP memory layout is required to
use this instruction properly on source values represented in more than 32-bits.

This instruction reorients processor data into a slicewise format that permits rapid, indirect
field addressing. A memory region containing transposed data may be viewed either as a
single, shared slicewise array or as a set of parallel slicewise arrays. (See the CM:aref32 and
CM:aref32-shared dictionary entries for a description of these data formats.) Viewed as a
shared slicewise array, this is especially useful for quickly constructing lookup tables.

Transposition is reversed by applying the CM:transpose32 instruction to a field already
stored in the slicewise format. To preserve the correlation between processors and data,
this instruction should not be used on slicewise data that was orginally stored by providing
CM:aset32 or CM:aset32-shared with an indez-limit other than 32.

636

TRUNCATE

F-F-TRUNCATE

Rounds each source field value to the largest integral value not greater than that value and
stores the result as a floating-point number in the destination field.

Formats CM:f-f-truncate-1-1L dest/source, s, €
CM:f-f-truncate-2-1L dest, source, s, €

Operands dest The field ID of the floating-point destination field.
source The field ID of the floating-point source field.
&, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces-
sors whose contert-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if conteat-flaglk] = 1 then
dest[k] « sign(source) x ||source[k]|]

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of zero, which is stored into the dest field as a floating-point number.

637

TRUNCATE

S-F-TRUNCATE

Rounds each floating-point source field value to the largest integer not greater than that
value and stores the result as a signed integer in the destination field.

Formats CM:s-f-truncate-2-2L dest, source, dlen, s, e

Operands dest The field ID of the signed integer destination field.
source The field ID of the floating-point source field.

len The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length#.

s, e The significand and exponent lendths for the source field. The
total length of an operand in this format is s 4+ e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest[k] « sign(source) x ||source[k]||
if (overflow occurred in processor k) then overflow-flaglk] — 1 else overflow-flaglk] — 0

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of zero, which is stored into the dest field as a signed integer.

638

TRUNCATE

S-TRUNCATE

The quotient of two signed integer source values, rounded toward zero to the nearest integer,
is placed in the destination field. Overflow is also computed.

Formats

Operands

Overlap

Flags

Context

CM:s-truncate-3-3L dest, sourcel, source2, dlen, slenl, slen2
CM:s-truncate-2-1L dest/sourcel, source2, len
CM:s-truncate-3-1L dest, sourcel, source2, len

CM:s-truncate-constant-2-1L dest/sourcel, source2-value, len
CM:s-truncate-constant-3-1L dest, sourcel, source2-value, len

dest The field ID of the signed integer quotient field.
sourcel The field ID of the signed integer dividend field.
source2 The field ID of the signed integer divisor field.

source2-value A signed integer immediate operand to be used as the second
source.

len The length of the dest, sourcel, and source2 fields. This must
be no smaller than 2 but no greater than CM:*maximume-integer-
lengthx*,

dlen For CM:s-truncate-3-3L, the length of the dest field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
length*.

slenl For CM:s-truncate-3-3L, the length of the sourcel field. This must
be no smaller than 2 but no greater than CM: *maximum-integer-
length*.

slen2 For CM:s-truncate-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer-
lengthx.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if divisor is zero; otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

639

TRUNCATE

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if source2(k] = 0 then
dest[k] — (unpredictable)
else

_ . |sourcei k“
dest[k] « sign(sourcel[k]) x sign(source2(k]) x [source2|k |_|

if (overflow occurred in processor k) then overflow-flaglk] « 1
else overflow-flagk] « 0

The signed integer source! operand is divided by the signed integer source2 operand. The
mathematical quotient is truncated towards zero and stored into the signed integer memory
field dest. The various operand formats allow operands to be either memory fields are
constants; in some cases the destination field initially contains one source operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the dest;i-
nation field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

640

TRUNCATE

U-TRUNCATE

The quotient of two unsigned integer source values, rounded toward zero to the nearest
integer, is placed in the destination field. Overflow is also computed.

Formats

Operands

Overlap

Flags

Context

CM:u-truncate-3-3L dest, sourcel, source?, dlen, slenl, slen2
CM:u-truncate-2-1L dest/sourcel, source2, len
CM:u-truncate-3-1L dest, sourcel, source2, len

CM:u-truncate-constant-2-1L dest/sourcel, source2-value, len
CM:u-truncate-constant-3-1L dest, sourcel, source2-value, len

dest

sourcel

source?

The field ID of the unsigned integer quotient field.
The field ID of the unsigned integer dividend field.
The field ID of the unsigned integer divisor field.

source2-value An unsigned integer immediate operand to be used as the

len

dlen

sleni

slen2

second source.

The length of the dest, sourcel, and source2 fields. This must be
non-negative and no greater than CM:*maximum-integer-length*.

For CM:u-truncate-3-3L, the length of the dest field. This must be
non-negative and no greater than CM:*maximum-integer-lengthx*.

For CM:u-truncate-3-3L, the length of the sourcel field. This
must be non-negative and no greater than CM: *maximum-integer-
length=.

For CM:u-truncate-3-3L, the length of the source? field. This
must be non-negative and no greater than CM:*maximum-integer-
lengthx*.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if divisor is zero; otherwise it is cleared.

This operation is conditional. The destination and flags may be altered only
in processors whose contert-flag is 1.

641

TRUNCATE

Definition For every virtual processor k in the current-vp-set do
if contezt-flaglk] = 1 then
if source2(k] = 0 then
dest[k] «— (unpredictable)
else
sourcel [k
dest{i] i~ lsource.? k”
if (overflow occurred in processor k) then overflow-flaglk] — 1
else overflow-flaglk] «— 0

The unsigned integer sourcel operand is divided by the unsigned integer source2 operand.
The floor of the mathematical quotient is stored into the unsigned integer memory field
dest. The various operand formats allow operands to be either memory fields are constants;
in some cases the destination field initially contains one source operand.

The overflow-flag may be affected by these operations. If overflow occurs, then the desti-
nation field will contain as many of the low-order bits of the true result as will fit.

The constant operand source2-value should be a signed integer front-end value. Generally
the constant has the same length as the field operand it replaces, although this is not strictly
required. Regardless of the length of the constant, however, the operation is performed using
exactly the number of bits specified by len.

642

TRUNCATE

U-F-TRUNCATE

Rounds each source field value to the largest integer not greater than that value and stores
the result as an unsigned integer in the destination field.

Formats CM:u-f-truncate-2-2L dest, source, dlen, s, e

Operands dest The field ID of the unsigned integer destination field.
source The field ID of the floating-point source field.

len The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other-
wise it is cleared.

Context ~ This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flaglk] = 1 then
dest « sign(source) X ||source||
if (overflow occurred in processor k) then overflow-flaglk] « 1

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of zero, and the result is stored into the dest field as an unsigned integer.

643

—

VAX-TO-IEEE

F-VAX-TO-IEEE

Converts the floating-point source field values from VAX floating-point format to IEEE
floating-point format and stores the result in the destination field.

Formats CM:f-vax-to-ieee-1L ieee-dest, vaz-source, len

Operands ieee-dest The field ID of the floating-point destination field.
vaz-source The field ID of the floating-point source field.

len The length of the vaz-source and ieee-dest fields. The value of len
must be either 32 or 64.

Overlap The fields teee-dest and vaz-source may overlap in any manner.

Flags overflow-flag is set if the vax-source cannot be represented in the destination
field; otherwise it is cleared. If vaz-source is the VAX “undefined variable”,
the IEEE destination is set to NaN(all 1’s) and the overflow-flag is cleared.
VAX double precision format uses three more mantissa bits than the IEEE
double precision format uses. These bits are simply dropped during the con-
version. The overflow-flag is always cleared for double-precision conversion.

Context This operation is conditional. The flag may be altered only in processors
whose contezt-flag is 1.

The CM operates internally on floating point data in IEEE format whereas the VAX uses a
VAX floating-point format. In each active processor, this function converts a floating-point

field in VAX format to a field in standard IEEE format.

The value of len specifies the precision of vaz-source. If len is specified as 32, then VAX ‘F’
format is used. If len is specified as 64, then VAX ‘D’ format is used.

VAX and IEEE floating-point formats are incompatible, so there are a number of potential
inaccuracies in the translation. These are described in the flags description above.

This instruction is useful for rapidly converting floating-point data from VAX to IEEE
format. For example, if data is transferred from a VAX to a file in the CM file system,
CM:f-vax-to-ieee-1L should be called after reading the data file.

All Paris front end to CM data transfer functions automatically convert the data from the
front-end format appropriately so it is not necessary to call CM:vax-to-ieee before calling,
for instance, one of the write-to-news-array instructions.

To convert data back to VAX floating-point format, see the definition of CM:f-ieee-to-vax-
1L,

645

VP-SET-GEOMETRY

VP-SET-GEOMETRY

Returns the geometry associated with a given vP set.

Formats result « CM:vp-set-geometry vp-set-id
Operands wvp-set-id A VP set ID.
Result A geometry ID, identifying the current geometry of the specified vp set.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition Return geometry(vp-set-id)

The geometry associated with the specified VP set is returned.

646

WARM-BOOT

WARM-BOOT

This operation is used by the Lisp/Paris interface to reinitialize the Connection Machine
system without disturbing user memory.

Formats CM:warm-boot

Context This operation is unconditional. It does not depend on the contezt-flag.

This operation clears error status indicators for the attached Connection Machine hardware.
It also clears the IFIFO and OFIFO in the bus interface and possibly loads fresh microcode
into the attached microcontroller(s). The user memory areas in the Connection Machine
system are not disturbed, but are checked for errors; any memory errors are reported.
Certain system memory areas in the Connection Machine system are reinitialized, but the
state of the pseudo-random number generator is not altered and the system lights-display
mode is not altered. The intent is to recover from an error condition while preserving as
much of the machine state as possible.

The facility for warm-booting Connection Machine hardware is provided in different ways
in the Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces
(on the other hand).

In the Lisp/Paris interface, CM:warm-boot is a function.

This operation takes no arguments and returns no values. It signals an error if the warm-
boot process was not successful.

There are two sets of initializations, kept in the variables CM:*before-warm-boot-
initializations* and CM:*after-warm-boot-initializations*, that are evaluated before and af-
ter anything else occurs.

In the C/Paris and Fortran/Paris interfaces, there is no CM:warm-boot operation. Instead,
a related operation called CM:init is used.

647

WRITE-TO-NEWS-ARRAY

C-WRITE-TO-NEWS-ARRAY

Copies a subarray of an array in the memory of the front end into a field within a set
of processors forming a subarray (of the same shape) of the NEws grid. Both source and
destination values are treated as complex numbers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified cM field be in the current VP set.

Formats

CM:c-write-to-news-array-1L front-end-array, fe-offset-vector, cm-start-vector,
cm-end-vector, cm-azis-vector, dest, s, e,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of complex

Context

data.

fe-offset-vector A front-end vector of signed integer subscript offsets for the
front-end-array. Must be of length fe-rank.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWs indices. Must be of length fe-rank.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEws indices. Must be of length fe-rank.

cm-azis-vector A front-end vector of signed integer numbers indicating
NEWS axes. Must be of length fe-rank.

dest The field ID of the complex destination field. Must have length
equal to the rank of the dest geometry.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is 2(s + e + 1).

e-rank A signed integer, the rank (number of dimensions) of the
g
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp. Must be of length fe-rank.

format The array descriptor for front-end-array. This is a keyword argu-
ment when calling Paris from Lisp.

This operation is unconditional. It does not depend on the context-flag.

648

WRITE-TO-NEWS-ARRAY

This operation copies a rectangular subblock of an array in the front end into a similarly
shaped subblock of the NEws grid. Complex number values are transferred from the speci-
fied front-end-array to the Connection Machine processors.

The dest parameter specifies the memory address within each processor of the field into
which the data is stored.

The front-end-array parameter specifies the front-end source array from which one element
is copied to each processor specified by dest.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to
the rank of the destination field geometry. When calling Paris from Lisp, this value can be
deduced from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) When calling Paris from Lisp, the front-
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-offset-vector parameter contains the coordinate of the first front-end array element
transferred to the Connection Machine. The length of this argument is measured in units
of cm-element-size, except during an extended array transfer — when it is measured in
units of (stride X array-element-size). Notice that cm-element-size, array-element-size, and
stride are parameters to the operations that return the format array descriptor. (See the
description of format below.)

The cm-start-vector parameter specifies the coordinate of the first cM element to receive
data from the front end. The cm-end-vector parameter specifies the coordinate of the last
cM element to receive data from the front end. Both of these are permuted by by the values
in cm-azis-vector.

The c¢m-azis-vector parameter specifies how Connection Machine axes are mapped to front-
end array axes. For example, if cm-azis-vector[A] = B, then axis A of the Connection
Machine destination field geometry is mapped to axis B of the front-end array. The length
of this vector must be equal to the rank of the destination field geometry.

The format parameter is an array descriptor that specifies the format of the front-end ar-
ray. An appropriate descriptor may be obtained by a call to CM:array-format, CM:packed-
array-format, or CM:structure-array-format. Alternatively, from C or Fortran, one of the
following predefined complex format values may be used: CM_complex_float.single or
CM_complex_float_double. For complex data types in C, two front-end elements are used
for each Connection Machine element.

649

WRITE-TO-NEWS-ARRAY

When calling Paris from Lisp, the format parameter is a keyword argument; for complex

transfers only arrays of type t may be used

Definition

rank—1
For all i such that 0 < j < [] (end; — start;) do
7=0

for all m such that 0 < m < rank do

let s(;m) = | ot mod (end,, — start,,)
I1 (endj—start;)
j=m+1
rank-1 .
let k; = V make-news-coordinate(azis;, start; + s; ;)
=0

dest[k;] — ﬁ-ant-end-army,{l.‘o)_,(‘.,1},____,{‘.”“_”
Another formulation:
For all so such that 0 < s < (endg — startg) do

for all s; such that 0 < s; < (end; — start,) do
for all s; such that 0 < s; < (end, — start;) do

for all $y4nt—1 such that 0 < s,gnp_1 < (end gnp_1 — Start,gnp_q) do

rank—1

let k,q,
dest[k

MienSpgnkoy
=0

30,81 S pank_y]

fmn!-end— array offsety+sq,0ffsety +s1,..., oﬂsetmnk_l sy

650

V make-news-coordinate(axis;, start; + s;)

WRITE-TO-NEWS-ARRAY

F-WRITE-TO-NEWS-ARRAY

Copies a subarray of an array in the memory of the front end into a field within a set
of processors forming a subarray (of the same shape) of the NEWS grid. Both source and
destination values are treated as floating-point numbers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified cM field be in the current VP set.

Formats CM:f-write-to-news-array-1L front-end-array, fe-offset-vector, cm-stari-vecior,
cm-end-vector, cm-azis-vector, dest, s, €,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of floating-
point data.

fe-offset-vector A front-end vector of signed integer subscript offsets for the
front-end-array. Must be of length fe-rank.

em-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWSs indices. Must be of length fe-rank.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices. Must be of length fe-rank.

cm-azis-vector A front-end vector of signed integer numbers indicating
NEWS axes. Must have length equal to the rank of the dest geom-

etry.
dest The field ID of the floating-point destination field.
s, € The significand and exponent lengths for the dest field. The total

length of an operand in this format is s + e + 1.

fe-rank A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp. Must be of length fe-rank.

format The array descriptor for front-end-array. This is a keyword argu-
ment when calling Paris from Lisp.

Context This operation is unconditional. It does not depend on the contezt-flag.

651

WRITE-TO-NEWS-ARRAY

This operation copies a rectangular subblock of an array in the front end into a similarly
shaped subblock of the NEws grid. Floating-point number values are transferred from the
specified array to the Connection Machine processors.

The dest parameter specifies the memory address within each processor of the field into
which the data is stored.

The front-end-array parameter specifies the front-end source array from which one element
is copied to each processor specified by dest.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to
the rank of the destination field geometry. When calling Paris from Lisp, this value can be
deduced from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) When calling Paris from Lisp, the front-
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-offset-vector parameter contains the coordinate of the first front-end array element
transferred to the Connection Machine. The length of this argument is measured in units
of cm-element-size, except during an extended array transfer - when it is measured in
units of (stride x array-element-size). Notice that cm-element-size, array-element-size, and
stride are parameters to the operations that return the format array descriptor. (See the
description of format below.)

The cm-start-vector parameter specifies the coordinate of the first cM element to receive
data from the front end. The cm-end-vector parameter specifies the coordinate of the last
CM element to receive data from the front end. Both of these are permuted by by the values
in cm-awxis-vector.

The cm-ageis-vector parameter specifies how Connection Machine axes are mapped to front-
end array axes. For example, if em-azis-vector[A] = B, then axis A of the Connection
Machine destination field geometry is mapped to axis B of the front-end array. The length
of this vector must be equal to the rank of the destination field geometry.

The format parameter is an array descriptor that specifies the format of the front-end
array. An appropriate descriptor may be obtained by a call to CM:array-format, CM: packed-
array-format, or CM:structure-array-format. Alternatively, one of the predefined floating-
point format values may be used. These are CM float_single or CM _float_double from C or
Fortran, and :float-single or :float-double from Lisp.

When calling Paris from Lisp, the format parameter is a keyword argument. If not specified,

652

WRITE-TO-NEWS-ARRAY

it defaults based on the element type of the front-end array or, if the array is of type t,
based on the type of the Connection Machine field.

653

WRITE-TO-NEWS-ARRAY

rank—1
Definition For all i such that 0 < j < [[(end; — start;) do
=0
for all m such that 0 < m < rank do

let simy = | mod (end, — start,,)
l-I (tﬂlfj—ltq.rt:')
j=mil
rank—1 .
let ki =V make-news-coordinate(azis;, start; + s; ;)
i=0

dest[k;] «— front-end-array, —_

'(i,l) v --:-'(:'.mmkml)

Another formulation:

For all sg such that 0 < s < (endo — starty) do
for all s; such that 0 < s; < (end; — start;) do
for all s3 such that 0 < s; < (end; — start;) do

for all s,4nk—1 such that 0 < s,eni_1 < (endpani—1 — start,qni—1) do
rank—1
let kyo,00,..0s8 V make-news-coordinate(azis;, start; + s;)
dest[k,,,

j‘:ﬂ
ﬁ‘ont‘end'armyaﬂutﬂ+co ,offset; +a1,..., "-ﬁ"“mnkq +3

rank—1
i """’ruﬂk—x] -

rank—1

654

WRITE-TO-NEWS-ARRAY

S-WRITE-TO-NEWS-ARRAY

Copies a subarray of an array in the memory of the front end into a field within a set of
processors forming a subarray (of the same shape) of the NEWs grid. Both the source and
destination values are treated as signed integers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified cM field be in the current vP set.

Formats

Operands

Context

CM:s-write-to-news-array-1L front-end-array, fe-offset-vector, cm-start-vector,
cm-end-vector, cm-azis-vector, dest, len,
[fe-rank, fe-dimension-vector,
format]

front-end-array A front-end array (possibly multidimensional) of signed in-
teger data.

fe-offset-vector A front-end vector of signed integer subscript offsets for the
front-end-array. Must be of length fe-rank.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWSs indices. Must be of length fe-rank.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices. Must be of length fe-rank.

cm-agis-vector A front-end vector of signed integer numbers indicating
NEWS axes. Must have length equal to the rank of the dest geom-

etry.
dest The field ID of the signed integer destination field.
len The length of the dest field. This must be no smaller than 2 but

no greater than CM:*maximum-integer-length*.

fe-rank A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp. Must be of length fe-rank.

format The array descriptor for front-end-array. This is a keyword argu-
ment when calling Paris from Lisp.

This operation is unconditional. It does not depend on the contezt-flag.

655

WRITE-TO-NEWS-ARRAY

This operation copies a rectangular subblock of an array from the front end into a similarly
shaped subblock of the NEWs grid. Signed integer values are transferred from the specified
array to the Connection Machine processors.

The dest parameter specifies the memory address within each processor of the field into
which the data is stored.

The front-end-array parameter specifies the front-end source array from which one element
is copied to each processor specified by dest.

When calling Pais from Lisp, the array may be either a general array (of type t) containing
signed integers, or a specialized integer-element array (such as an array of type (unsigned-
byte 8)).

The fe-rank parameter specifies the rank of the front-end array and is normally equal to
the rank of the destination field geometry. When calling Paris from Lisp, this value can be
deduced from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) When calling Paris from Lisp, the front-
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-offset-vector parameter contains the coordinate of the first front-end array element
transferred to the Connection Machine. The length of this argument is measured in units
of cm-element-size, except during an extended array transfer — when it is measured in
units of (siride x array-element-size). Notice that cm-element-size, array-element-size, and
stride are parameters to the operations that return the format array descriptor. (See the
description of format below.)

The cm-start-vector parameter specifies the coordinate of the first cM element to receive
data from the front end. The cm-end-vector parameter specifies the coordinate of the last
CM element to receive data from the front end. Both of these are permuted by by the values
in cm-azis-vector.

The c¢m-azis-vector parameter specifies how Connection Machine axes are mapped to front-
end array axes. For example, if cm-azis-vector[A] = B, then axis A of the Connection
Machine destination field geometry is mapped to axis B of the front-end array. The length
of this vector must be equal to the rank of the destination field geometry.

The format parameter is an array descriptor that specifies the format of the front-end array.
An appropriate descriptor may be obtained by a call to CM:array-format, CM: packed-array-
format, or CM:structure-array-format. Alternatively, one of the predefined signed format

656

WRITE-TO-NEWS-ARRAY

values may be used.

657

WRITE-TO-NEWS-ARRAY

From C or Fortran a value of CM_8_bit, CM_16_bit, or CM_32_bit specifies an unpacked front-
end array while CM_1_bit_packed, CM_2_bit_packed, or CM_4 bit_packed specifies a front-end
array in which several cMm elements are packed into each array element. From Lisp, the
predefined signed format keywords are :8-bit, :16-bit, :32-bit, :1-bit-packed, :2-bit-packed,
and :4-bit-packed.

When calling Paris from Lisp, the format parameter is a keyword argument. If not specified,
it defaults based on the element type of the front-end array or, if the array is of type t,
based on the type of the Connection Machine field.

rank—1
Definition For all i such that 0 < j < T[] (end; — start;) do
j=0
for all m such that 0 < m < rank do

i

let s my = | = mod (end,, — start,,)
n (end; —atart;)
j=m+1
rank—1 .
let k; = \/ make-news-coordinate(azis;, start; + s; ;)
3=0

dest[k;] — front-end—ar‘r‘ay,(‘.m],“'l)._

¥ (i rank—1)

Another formulation:
For all 5o such that 0 < sq < (endo — starty) do -

for all s; such that 0 < s, < (end; — start;) do
for all s, such that 0 < s, < (end; — starty) do

for all spanr_1 such that 0 < span—1 < (end gni—1 — start,4n;_1) do

rank—1
| L _Vﬂ make-news-coordinate(azis;, start; + s;)
j:
dest[ksm!l "“'srunk-l] =

f'rant- eﬂd"a?‘my offsety+sa,0ffset; +3; N i L1 S I

658

WRITE-TO-NEWS-ARRAY

U-WRITE-TO-NEWS-ARRAY

Copies a subarray of an array in the memory of the front end into a field within a set of
processors forming a subarray (of the same shape) of the NEws grid. Both the source and
destination values are treated as unsigned integers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified cM field be in the current vp set.

Formats CM:u-write-to-news-array-1L front-end-array, fe-offset-vector, cm-start-vector,
cm-end-vector, cm-azis-vector, dest, len,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of unsigned
integer data.

fe-offset-vector A front-end vector of signed integer subscript offsets for the
front-end-array. Must be of length fe-rank.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWs indices. Must be of length fe-rank.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEwWs indices. Must be of length fe-rank.

cm-azxis-vector A front-end vector of signed integer numbers indicating
NEWSs axes. Must have length equal to the rank of the dest geom-

etry.
dest The field ID of the unsigned integer dest field.
len The length of the dest field. This must be non-negative an” no

greater than CM:*maximum-integer-length*.

fe-rank A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp. Must be of length fe-rank.

format The array descriptor for front-end-array. This is a keyword argu-
ment when calling Paris from Lisp.

Context This operation is unconditional. It does not depend on the contezi-flag.

659

WRITE-TO-NEWS-ARRAY

This operation copies a rectangular subblock of an array from the front end into a similarly
shaped subblock of the NEws grid. Unsigned integer values are transferred from the specified
array to the Connection Machine processors.

The dest parameter specifies the memory address within each processor of the field into
which data is stored.

The front-end-array parameter specifies the front-end source array from which one element
is copied to each processor specified by dest.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to
the rank of the destination field geometry. When calling Paris from Lisp, this value can be
deduced from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) When calling Paris from Lisp, the front-
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-offset-vector parameter contains the coordinate of the first front-end arr~y element
transferred to the Connection Machine. The length of this argument is measured in units
of cm-element-size, except during an extended array transfer — when it is meusured in
units of (stride X array-element-size). Notice that cm-element-size, array-element-size, and
stride are parameters to the operations that return the format array descriptor. (See the
description of format below.)

The cm-start-vector parameter specifies the coordinate of the first cM element to receive
data from the front end. The cm-end-vector parameter specifies the coordinate of the last
CM element to receive data from the front end. Both of these are permuted by by the values
in em-azis-vector.

The cm-azis-vector parameter specifies how Connection Machine axes are mapped to front-
end array axes. For example, if cm-azis-vector[A] = B, then axis A of the Connection
Machine source field geometry is mapped to axis B of the front-end array. The length of
this vector must be equal to the rank of the source field geometry.

The format parameter is an array descriptor that specifies the format of the front-end array.
An appropriate descriptor may be obtained by a call to CM:array-format, CM: packed-array-
format, or CM:structure-array-format. Alternatively, one of the predefined unsigned format
values may be used.

From C or Fortran a value of CM_8_bit, CM_16_bit, or CM_32_bit specifies an unpacked front-
end array while CM_1_bit_packed, CM_2_bit_packed, or CM_4 bit_packed specifies a front-end

660

WRITE-TO-NEWS-ARRAY

array in which several cM elements are packed into each array element. From Lisp, the
predefined unsigned format keywords are :8-bit, : 16-bit, :32-bit, : 1-bit-packed, :2-bit-packed,
and :4-bit-packed.

When calling Paris from Lisp, the format parameter is a keyword argument. If not specified,
it defaults based on the element type of the front-end array or, if the array is of type t,
based on the type of the Connection Machine field.

rank—1

Definition Forall i suchthat 0<j< T[] (end;— start;) do
j=0

for all m such that 0 < m < rank do

let sm) = | = U mod (end,, — start,,)
IT (endj—start;)
i=m+1
rank—1
let k; = \/ make-news-coordinate(azis;, start; + s; ;)
3=0

dest[k;] « front-end-arrays ;o\ .s. 1yvesmani)

Another formulation:

For all sg such that 0 < sq < (endg — starty) do
for all 5; such that 0 < s; < (end; — start;) do
for all s; such that 0 < s, < (end, — start;) do

for all spgnt—1 such that 0 < spgnr—1 < (endrgnk—1 — Start,enk_1) do
rank—1
V make-news-coordinate(azis;, start; + s;)

] i
rank—1 J:O

et kysay...

de'gt[k’ﬂjsl v“l’fgnk_l]
ﬁ'Oﬂt- end'amyoﬂ:eto +30,0ffsety +o1,...0ffset ok FEank_

661

C-WRITE-TO-PROCESSOR

Stores an immediate complex number operand value into the destination field of a single
specified processor.

Formats CM:c-write-to-processor-1L send-address-value, dest, source-value, len
Operands send-address-value ~ An immediate operand, the send address of a single
particular processor.
dest The field ID of the complex destination field.
source-value A complex immediate operand to be used as the source.
s € The significand and exponent lengths for the dest field. The total
length of an operand in this format is 2(s + e + 1).
Context This operation is unconditional. It does not depend on the contezt-ﬁag.
Definition dest[send-address-value] — source-value

The specified source-value, a complex number, is stored into the dest field of the processor
whose send address is the immediate operand send-address-value.

The constant operand source-value should be a double-precision front-end value (in Lisp,
automatic coercion is performed if necessary).

662

WRITE-TO-PROCESSO

F-WRITE-TO-PROCESSOR

Stores an immediate floating-point number operand value into the destination field of a
single specified processor.

Formats CM:f-write-to-processor-1L send-address-value, dest, source-value, s, e

Operands send-address-value ~ An immediate operand, the send address of a single
particular processor.

dest The field ID of the floating-point destination field.
source-value A floating-point immediate operand to be used as the source.
s, e The significand and exponent lengths for the dest field. The total

length of an operand in this format is s 4 e+ 1.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition dest[send-address-value] — source-value

The specified source-value, a floating-point number, is stored into the dest field of the
processor whose send address is the immediate operand send-address-value.

663

WRITE-TO-PROCESSOR

S-WRITE-TO-PROCESSOR

Stores an immediate signed integer operand value into the destination field of a single
specified processor.

Formats

Operands

Context

CM:s-write-to-processor-1L send-address-value, dest, source-value, len

send-address-value An immediate operand, the send address of a single
particular processor.

dest The field ID of the signed integer destination field.

source-value A signed integer immediate operand to be used as the source.

len The length of the dest field. This must be no smaller than 2 but

no greater than CM:*maximum-integer-length*.

This operation is unconditional. It does not depend on the contezt-flag.

Definition

dest[send-address-value] — source-value

The specified source-value, a signed integer, is stored into the dest field of the processor
whose send address is the immediate operand send-address-value.

664

WRITE-TO-PROCESSOR

U-WRITE-TO-PROCESSOR

Stores an immediate unsigned integer operand value into the destination field of a single
specified processor.

Formats CM:u-write-to-processor-1L send-address-value, dest, source-value, len
Operands send-address-value ~ An immediate operand, the send address of a single
particular processor.
dest The field ID of the unsigned integer destination field.
source-value An unsigned integer immediate operand to be used as the
source.
len The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-length*.
Context This operation is unconditional. It does not depend on the contezt-flag.
Definition dest[send-address-value] «— source-value

The specified source-value, an unsigned integer, is stored into the dest field of the processor
whose send address is the immediate operand send-address-value.

665

